跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪泰智
研究生(外文):Tai-Chih Hung
論文名稱:改良式傾斜循環流體化床應用於吸附除濕系統
論文名稱(外文):Performance Improvement of Circulating Inclined Fluidized Bed Applied to Desiccant Dehumidification Systems
指導教授:陳希立陳希立引用關係
口試委員:江沅晉李文興王榮昌
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:72
中文關鍵詞:傾斜式循環流體化床循環吸附除濕矽膠高分子
外文關鍵詞:circulating Inclined Fluidized Bedcirculatingdesiccant dehumidificationpolymersilica gel
相關次數:
  • 被引用被引用:2
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的為設計一傾斜式循環流體化床系統,此系統透過重力、垂直於床體的顆粒通道與流體化特性即可連續操作,無須採用漏斗及轉彎接頭。首先,本研究以操作風速3 m/s,吸附床入口空氣溫度27℃、相對濕度70%與再生床入口空氣溫度50℃的條件進行垂直式循環流體化床與傾斜式循環流體化床之比較,使用平均粒徑為4 mm的矽膠顆粒1100 g之改良式傾斜循環流體化床相較傾斜循環流體化床提升吸附能力6.8%,壓損下降10.6%,風機耗電量減少11.8%,所以改良式傾斜循環流體化床適合用於空調除濕系統。
其次,更進一步變動改良式傾斜循環流體化床之幾何參數後,再生底座高度不變及吸附床顆粒通道於床體20 cm處時,整體吸附能力提升16%。且進行模擬2014台北全年外氣條件,全年吸附量達到729.5 kg,相較傾斜循環流體化床除濕量提升至14.1%。而當吸附床入口溫度30℃、相對濕度80%與再生床溫度50℃,使用混合顆粒於改良式傾斜循環流體化床,相對使用矽膠顆粒的情況下,吸附能力略低於11.6%,混合顆粒較不適用於循環除濕系統上。最後,當床體的角度改為10°時,可以增加除濕量5.7%,但系統無法於長時間下穩定運作。


The purpose of this study is to design a inclined circulating fluidized bed that maintains a healthy indoor environment and be energy-efficient. With gravity, the design of particle channels vertical to the bed and the characteristics of the fluidized bed. The system can adsorb water continuously without funnel and corner joints.
First, compared to the circulating inclined fluidized beds device. The total adsorption amounts of circulating improved inclined fluidized bed increased by 6.8% when the air speed was 3 m/s, the entrance air temperature was 27℃and relative humidity was 70% in the adsorption bed, the entrance air temperature was 50℃in the desorption bed , and filled with 4mm diameter silica gel, total weight 550 g, in each bed. Under this condition, the pressure loss and the energy consumption of fan reduced by 10.6% and 11.8% respectively. The result indicated that the circulating improved inclined fluidized bed has better dehumidification performance than the circulating inclined fluidized bed.
Second, changed the geometric parameters of the circulating improved inclined fluidized bed. Maintain the high of desorption bed base and adjust particle channels to 20 cm high of the adsorption bed, accordingly, the total adsorption amounts increased by 16%. Further, simulation ambient air conditions at Taipei 2014 annual. The total adsorption amounts was 729.5 kg , compared to the circulating inclined fluidized beds device, the dehumidification performance of circulating improved inclined fluidized bed increased by 14.1%
When the entrance air temperature was 30℃and relative humidity was 80% in the adsorption bed, the entrance air temperature was50℃ in the desorption bed, compared to the circulating improved inclined fluidized beds device with silica gel, the adsorption capacity of particles mixed with silica gel and polymer was lower than silica gel 11.6%. The result indicated that silica gel has better particles mixed with silica gel and polymer.
Last, the dehumidification will increase 5.7% when inclined circulating fluidized bed adjust to 10°, but this system can not maintaining stability in a long time.


誌謝 I
摘要 II
ABSTRACT III
目錄 V
圖目錄 VII
表目錄 X
符號說明 XI
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機與目的 14
第二章 基礎理論 16
2.1 全熱交換器運作原理 16
2.2 吸附流體化床運作原理 18
2.3 吸附原理 24
2.4 吸附材料 27
2.5 固定填充床壓力損失之數學理論模型 29
2.6 流體化床壓力損失與最小流體化速度 30
2.7 傾斜流體化床壓力損失與渠道突破速度 30
2.8 除濕系統之性能計算 31
第三章 研究方法 34
3.1 改良式傾斜循環流體化床設計與簡介 34
3.2 實驗設備與量測儀器 39
3.3 實驗參數 46
3.4 實驗流程 48
第四章 結果與討論 50
4.1 不同系統之間的性能比較 50
4.2 改變幾何參數對系統性能的影響 54
4.3 利用改良後的系統操作於全年外氣條件 58
4.4 不同材料對系統的影響 61
4.5 不同角度對系統的影響 63
第五章 結論與建議 65
5.1 結論 65
5.2 建議 66
參考文獻 68



[1]經濟部能源局 (2012)。能源查核與節約能源案例手冊-空調系統。
[2]C.M. Yang, C.C. Chen, S.L. Chen (2013). Energy-efficient air conditioning system with combination of radiant-cooling and periodic total heat exchanger. Energy 59, 467-477.
[3]C.C. Chang, C.H. Lai , C.M. Yang, Y.C. Chiang, S.L. Chen (2013), Thermal performance enhancement of a periodic total heat exchanger using energy- storage material, Energy and Buildings, 67,579–586.
[4]徐湧智 (2009)。全熱交換器之週期式運轉性能研究。碩士論文,國立國立臺灣大學機械工程研究所。
[5]S. Misha, S. Mat, M.H. Ruslan and K. Sopian (2012). Review of solid/liquid desiccant in the drying applications and its regeneration methods. Renewable and Sustainable Energy Reviews, 16, 4686–4707.
[6]Ahmed M. Hamed (2002). Theoretical and experimental study on the transient adsorption characteristics of a vertical packed porous bed. Renewable Energy (27), 525-541.
[7]A. Ramzy K., R. Kadoli, T.P. Ashok Babu (2011), Improved utilization of desiccant material in packed bed dehumidifier using composite particles, Renewable Energy 36, 732-742.
[8]A.E. Kabeel (2009), Adsorption–desorption operations of multilayer desiccant packed bed for dehumidification, Renewable Energy 34, 255–265.
[9]S. Neti and E.I. Wolfe (2000). Measurements of effectiveness in a silica gel rotary exchanger. Applied Thermal Engineering, 20, 309-322.
[10]N. Subramanyam, M.P. Maiya and S. S. Murthy (2004).Application of desiccant wheel to control humidity in air-conditioning systems.Applied Thermal Engineering, 24, 2777–2788.
[11]J. D. Chung and D.Y. Lee (2009). Effect of desiccant isotherm on the performance of desiccant wheel. International Journal of Refrigeration, 32, 720-726.
[12]Daizo Kunii (1991). Fluidization Engineering.
[13]Ahmed M. Hamed, Walaa R. Abd El Rahman, S.H. El-Eman (2010). Experimental study of the transient adsorption/desorption characteristics of silica gel particles in fluidized bed. Energy, 35, 2468-2483.
[14]A. Horibe, S. Husain, H. Inaba, N. Haruki (2008), Sorption characteristics of organic powder sorption material in fluidized bed with a cooling pipe, , Journal of Thermal Science and Technology 3, 207–218.
[15]陳子東 (2013)。矽膠流體化床之性能研究。碩士論文,國立國立臺灣大學機械工程學系研究所。
[16]J. Bridgwater (1976). Powder Technology, 11, 199.
[17]Ahmed M. Hamed (2005). Experimental investigation on the adsorption/desorption processes using solid desiccant in an inclined-fluidized bed. Renewable Energy, 30, 1913–1921.
[18]Watcharop Chaikittisilp, Teerapong Taenumtrakul, Peeravuth Boonsuwan, Wiwut Tanthapanichakoon, Tawatchai Charinpanitkul (2006). Analysis of solid particle mixing in inclined fluidized beds using DEM simulation. Chem. Eng. Journal 122, 21–29.
[19]江國棟 (1993)。雙塔式矽膠除濕系統之測試與模擬分析。碩士論文,國立國立臺灣大學機械工程學系研究所。
[20]Alexander Reichhold, and Hermmann Hofbauer (1995). Internally circulating fluidized bed for continuous adsorption and desorption. Chemical Engineering and Procseesing, 34, 521-527.
[21]A. Horibe, Sukmawaty, N. Haruki, D. Hiraishi (2012). Continuous Sorption and Desorption of Organic Sorbent Powder in Two Connected Fluidized beds. Journal of Thermal Science and Technology, 7, 564-576.
[22]A. Horibe, Sukmawaty, N. Haruki, D. Hiraishi (2013), Sorption–desorption operations on two connected fluidized bed using organic sorbent powder, International Journal of Heat and Mass Transfer 65, 817-825.
[23]吳柏勳 (2014)。矽膠循環流體化床應用於吸附除濕系統之研究。碩士論文,國立國立臺灣大學機械工程學系研究所。
[24]江宜瑾 (2015)。循環式傾斜流體化床應用於吸附除濕系統。碩士論文,國立國立臺灣大學機械工程學系研究所。
[25]K. Smolders, J. Baeyens (2001). Gas fluidized beds operating at high velocities: a critical review of occurring regimes. Poowder Technology, Vol.119, pp.269-291.
[26]D. Geldart (1973). Type of Gas Fluidization. Powder Technology, Vol.7, pp.285-292.
[27]Akhil Rao, Jennifer S. Curtis, Bruno C. Hancock and Carl Wassgren (2010). The Effect of Column Diameter and Bed Height on Minimum Fluidization Velocity. AIChE Journal, Vol. 56, No. 9, 2304-2311.
[28]Ajay MR and Aditya Karnik (2012). Numerical investigation of the effect of bed height on minimum fluidization velocity of cylindrical fluidized bed. ICCMS, 1-10.
[29]David Roberto Escudero (2010). Bed height and material density effects on fluidized bed hydrodynamics. Iowa State University, Ames, Iowa.
[30]鄭最亮,傅采峰,鄭柏存 (2007)。混凝土製品及技術,上海建材,第2期。
[31]侯國豔,冀志江,王繼梅,王曉燕(2006)。調濕材料的研究現狀,生態環境建材。
[32]Stephen Brunauer, Lola S. Deming, W. Edwards Deming, Edward Teller (1940). On a Theory of the Van Der Waals Adsorption of Gases. Journal of the American Chemical Society, Vol.62, pp.1723-1732.
[33]Noll, K. E., V. Gounaris, and W. S. Hou (1992). Adsorption technology for air and water pollution control. Lewis Pubbishers, Inc., 32‐34.
[34]謝長鈜 (2011)。週期式運轉全熱交換器之吸附材料性能研究。碩士論文,國立國立臺灣大學機械工程學系研究所。
[35]Weilong Wang, Luoming Wu, Zhong Li, Yutang Fang, Jing Ding, and Jing Xiao (2013). An Overview of Adsorbents in the Rotary Desiccant Dehumidifier for Air Dehumidification. Drying Technology: An International Journal, 31, 1334-1345.
[36]K.C. Ng, H.T. Chua, C.Y. Chung, C.H. Loke, T. Kashiwagi, A. Akisawa, B.B.Saha (2001). Experimental investigation of the silica gel-water adsorption isotherm characteristics. Applied Thermal Engineering, 21, 1631-1642.
[37]China Silica Gel Co. Silica Gel Basic. Retrieved May 11, 2015, from: http://www.china-silicagel.com/knowledge.html
[38]Jiang, Y.; Ding, J. (2011). Experimental research on silica gel molecularsieve composite adsorbents with ceramic fiber matrix. Journal of Engineering Thermophysics, 32, 1218–1220.
[39]Sabri Ergun (1952). Fluid Flow Through Packed Columns. Carnegie Institute of Technology.
[40]Wen, C.Y. & Y.H. Yu (1966). A generalized method for predicting the minimum fluidization velocity. AIChE J 12, 610-612.
[41]D. P. O’Dea, V. Rudolph*, & Y. 0. Chong (1990). The effect of inclination on fluidized beds. Powder Technology, 63, 169-178.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top