跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/21 13:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:溫兆源
研究生(外文):CHAO-YUAN WEN
論文名稱:具全向輪驅動單球輪機械人之控制
論文名稱(外文):Control of single spherical wheel robot driven by omni wheels.
指導教授:黃啟光黃啟光引用關係
指導教授(外文):CHI-KUANG HWANG
學位類別:碩士
校院名稱:中華大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:44
中文關鍵詞:全向輪球輪可變結構系統控制非線性迴授控制
外文關鍵詞:Omni wheelsSpherical wheelVariable structure system controlNonlinear feedback control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:508
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
這篇論文主要研究的重點是提出適用於全向輪驅動球輪之球形機器人的控制方法。此球形機器人之動態模組是從尤拉方程式衍生,因此,此機器人在固定速度下保持垂直的角度功能,提出分為兩大演算法之七種控制法則。第一種演算法為可變結構系統控制(VSSC),其特性是可調整參數讓它到沿滑動平面達到上述的功能。第二種為非線性迴授控制,它與VSSC不同的是該輸入是平滑的。藉由這兩個類型的模擬已經可以證實可讓球型機械人保持垂直且平穩等速的移動。
This thesis mainly discusses the control of a spherical robot using Omni wheels to drive a spherical wheel. The dynamical model is derived from Euler Lagrange approach. Therefore, seven different control methods are presented which can achieve a constant speed at a vertical balance altitude. The proposed control methods can be categorized into two algorithms. The first algorithm is the variable structure system control (VSSC) in which the time needed to enter the sliding surface or to reach the stable point can be adjusted by parameters. The second one is the nonlinear feedback, but its smoothing input is different from the switching input of variable structure system control (VSSC). The constant speed of the spherical robot with vertical balance altitude can be achieved by both algorithms and be verified by simulations.
摘要………………………………………………………………………………………..i
Abstract……………………………………………………………………………………ii
Contents…………………………………………………………………………………..iii
List of figures……………………………………………………………………………..iv
1 Introduction…………………………………………………………………………....1
2 System Description and Modeling………………………………………………….…5
3 Control Laws…………………………………………………………………………15
3.1 VSSCs Control…………………………………………………………………..15
3.2 Nonlinear Feedback Control…………………………………………………….18
4 Simulations and Discussions………………………………………………………....20
4.1 VSSc ….……………………………………………………………………….20
4.2 Nonlinear Feedback control…………………………………………………25
5 Conclusions…………………………………………………………………………28

[1] Y. S. Ha and S. Yuta, “Trajectory tracking control for navigation of self-contained mobile inverse pendulum”, Proc. IEEE/RSJ Int’l. Conf. Intelligent Robots and Systems, vol. 3, pp. 1875-1882, 12-16 September 1994.
[2] R. Nakajima, T. Tsubouchi, S. Yuta, and E. Koyanagi, “A development of a new mechanism of an autonomous unicycle”, Proc. IEEE/RSJ Int’l. Conf. Intelligent Robots and Systems, vol. 2, pp. 906-912, 7-11 September 1997.
[3] H. G. Nguyen, J. Morrell, K. Mullens, A. Burmeister, S. Miles, N. Farrington, K. Thomas, and D. Gage, “Segway robotic mobility platform”, SPIE Proc. 5609: Mobile Robots XVII, pp. 207-220, 2004.
[4] H. W. Lee, S. W. Ryu, and J. M. Lee, “Optimal posture of mobile inverted pendulum using a single gyroscope and tilt sensor”, ICROS-SICE Int’l Joint Conf., pp. 865-870, Fukuoka International Congress Center, Japan, 18-21 August 2009.
[5] T. Lauwers, G. Kantor, and R. Hollis, “One is enough!”, Proc. Int’l. Symposia for Robotics Research, San Francisco, 12-15 October, 2005.
[6] T. B. Lauwers, G. A. Kantor, and R. L. Hollis, “A dynamically stable single wheeled mobile robot with inverse mouse-ball drive”, Proc. IEEE Int’l. Conf. Robotics and Automation, pp. 2884-2889, 15-19 May 2006.
[7] V1. I. Utkin, “Variable structure system, present and future”, Automat, Remote, Control, vol. 44, No. 9, pp.1105-1120, 1983.
[8] F. Harashima, and H. Hashimoto, “Variable structure strategy in motion control”, Proc. Conf. Applied Motion Control, Minneapolis, pp 191-198, 1986.
[9] J. E. Slotine, “Sliding controller design for nonlinear systems”, Int’l. J. Control, vol. 40, No. 2, pp. 421-434, 1984.
[10] J. E. Slotine, “The robust control of robot manipulators”, Int’l. J. Robotics Research, vol. 4, pp. 49-64, 1985.
[11] H. Hemami and P. C. Camana, “Nonlinear feedback in simple locomotion system”, IEEE Trans. Automatic Control, vol. 21, pp. 855-860, December 1976.
[12] F. Gubina, H. Hemami, and R. B. McGhee, “On the dynamic stability of biped locomotion”, IEEE Trans. Biomedical Engineering, vol. 21, No. 2, pp. 102-108, 1974.
[13] M. Fliess, “Nonlinear control systems design”, IFAC Symposia Series, pp. 489-494, 1993.
[14] Y. Mutoh and P. N. Nikiforuk, “A method for verifying sector conditions in nonlinear discrete-time control systems”, IEEE Trans. Automatic Control, vol. 37, pp. 1505-1509, October 1992.
[15] J. L. Willems and D. Aeyels, “Comments on a method for verifying sector conditions in nonlinear discrete-time control systems”, IEEE Trans. Automatic Control, vol. 38, pp. 999-1000, June 1993.
[16] L. Ljung and T. Soderstrom, “Theory and practice of recursive identification”, IEEE Trans. Automatic Control, vol. 30, pp. 1054-1056, October 1985.
[17] I. W. Sandberg, “An observation concerning the application of the contraction mapping fixed-point theorem, and a result concerning the norm-boundedness of solutions of nonlinear functional equations”, The Bell Sys. Tech. J., pp. 1809-1812, 1965.
[18] J. C. Willems, “The analysis of feedback systems”, IEEE Trans. Systems, Man and Cybernetics, vol. 2, pp. 559-560, September 1972.
[19] G. Zames, “On the input-output stability of time-varying nonlinear feedback systems, Part I”, IEEE Trans. Automatic Control, vol. 11, pp. 228-238, April 1966.
[20] Z. P. Jiang, A. R. Teel, and L. Praly, “Small gain theorem for ISS systems and applications”, Math. Control Signals System, vol. 7, pp.95-120, 1994.
[21] I. M. Y. Mareels and D. J. Hill, “Monotone stability of nonlinear feedback systems”, J. Math. System Estimation and Control, vol. 2, No. 3, pp. 275-291, 1992.
[22] E. D. Sontag, “Smooth stabilization and input-to-state stability”, IEEE Trans. Automation Control, vol. 34, pp. 435-443, April 1989.
[23] E. D. Sontag, “Further facts about input-to-state stabilization”, IEEE Trans. Automation Control, vol. 35, pp. 473-476, April 1990.
[24] P. Kokotovic, H. K. Khalil, and J. O’Reilly, “Singular perturbation methods in control”, Analysis and Design. Academic Press, New York, 1986.
[25] Umashankar Nagarajan, Anish Mampetta, A. George Kantor and L. Ralph Hollis, “State transition, balancing, station keeping, and yaw control for a dynamically stable single spherical wheel mobile robot”, ICRA '09 IEEE Int’l Conf. Robotic and Automation, pp. 998-1003, 12-17 May 2009.
[26] Umashankar Nagarajan, George Kantor and L. Ralph Hollis, “Hybrid control for navigation of shape-accelerated underactuated balancing systems”, 49th IEEE Conf. Decision and Control, pp. 3566 – 3571, 15-17 December 2010.
[27] Umashankar Nagarajan, George Kantor and L. Ralph Hollis, “Trajectory planning and control of an underactuated dynamically stable single spherical wheeled mobile robot”, IEEE int’l Conf. Robotic and Automation, pp. 3743-3748, Kobe, Japan, 12-17 May 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top