跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 01:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張宗文
研究生(外文):Tsung-wen Chang
論文名稱:陣列鐵芯結構應用於非接觸式手機充電平台之研究
論文名稱(外文):Study of Contactless Charging Platform with Coil Array Structure for Mobile Phone
指導教授:李嘉猷
指導教授(外文):Jia-You Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:89
中文關鍵詞:非接觸式電能傳輸
外文關鍵詞:contactless power transmission
相關次數:
  • 被引用被引用:24
  • 點閱點閱:504
  • 評分評分:
  • 下載下載:134
  • 收藏至我的研究室書目清單書目收藏:0
本文旨在應用非接觸式電能傳輸技術於手機鋰電池之充電,並提出一通用型手機充電平台。所提充電平台係由數個罐型鐵芯組成,俾使置於其上之充電電路,得在容許位移距離內正常地充電。基於非接觸式感應結構存在較大氣隙,其電能轉換效果必然較差,充電平台中運用相鎖迴路控制將電路操作頻率維持於初級側諧振頻率之上,並結合單晶片控制電路調整充電平台待機時之功率損耗,藉以提高整體轉換效能。充電平台之次級側感應結構則利用印刷電路板線圈方式,大幅降低次級側電路厚度。經由實測驗證,在充電電流為200mA情況下,2.5mm氣隙之非接觸式感應結構其最大轉換效率達55%。
This thesis studies a charging method based on contactless power transmission techniques for lithium battery of cell-phone, and proposes a common charging platform. The charging platform is formed with several pot-cores, in order to the charging circuit put on the platform would work in permitting displacement. Because contactless inductive structure exist a large air gap, power transmission efficiency is poor. Phase-locked loop (PLL) is used to let operation frequency of circuit maintain on primary resonant frequency in charging platform. And input power loss is regulated by microchip when charging platform is idle, used to improve transmission efficiency. The inductive structure of secondary side is made by printed-circuit-board (PCB), which reduces thickness of secondary circuit. Experimental results show that the transmission efficiency between contactless inductive structures is 55% at charging current is 200mA and air gap is 2.5mm.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1 研究背景與目的 1
1-2 研究方法 4
1-3 論文大綱 5
第二章 感應線圈基本特性及充電策略 7
2-1 前言 7
2-2 非接觸式電能傳輸基本原理 7
2-3 感應結構特性分析 10
2-4 感應線圈之渦電流效應 14
2-5 蓄電池充電技術 18
2-5-1 定電流充電法 18
2-5-2 定電壓充電法 18
2-5-3 混合式充電法 19
2-5-4 脈衝充電法 20
2-5-5 ReflexTM充電法 20
2-6 鋰電池充電 21
第三章 非接觸式充電系統 25
3-1 前言 25
3-2 系統整體架構規劃 25
3-3 感應線圈設計 28
3-4 感應線圈陣列 33
3-5 諧振電路設計 38
第四章 電路設計與硬體製作 41
4-1 前言 41
4-2 硬體電路架構 41
4-3 次級側電路 42
4-3-1 D類半橋式變流器 42
4-3-2 感應線圈驅動方式 47
4-3-3 PLL控制電路 50
4-3-4 非反向放大器電路 52
4-3-5 單晶片控制電路 53
4-3-6 半橋驅動電路 57
4-4 次級側電路 58
4-4-1 電壓調整電路 58
4-4-2 充電電路 60
4-4-3 次級側結構設計 62
4-5 非接觸式充電系統設計流程 62
第五章 模擬與實驗結果 66
5-1 前言 66
5-2 PSpice模擬 66
5-3 硬體電路製作 68
5-4 實驗結果量測 70
第六章 結論與未來研究方向 79
6-1 結論 79
6-2 未來研究發展 80
參考文獻 81
自傳 89
[1]J. Yungtaek and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, 2003.
[2]C. Byungcho, C. Honnyong, N. Jaehyun, and P. Sangkyu, “A new contactless battery charger for portable telecommunication/computing electronics,” in Proc. ICCE, 2001, pp. 58-59.
[3]A. P. Hu, Z. J. Chen, S. Hussmann, G. A. Govic, and J. T. Boys, “A dynamically on-off controlled resonant converter designed for coalmining battery charging applications,” in Proc. PowerCon, 2002, vol. 2, pp. 1039-1044.
[4]S. Y. R. Hui and W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, 2005.
[5]H. Abe, H. Sakamoto, and K. Harada, “A noncontact charger using a resonant converter with parallel capacitor of the secondary coil,” IEEE Trans. Ind. Appl., vol. 36, no. 2, pp. 444-451, 2000.
[6]A. Esser, “Contactless charging and communication for electric vehicles,” IEEE Trans. Ind. Appl., vol. 1, no. 6, pp. 4-11, 1995.
[7]C. G. Kim, D. H. Seo, J.S. You, J. H. Park, and B. H. Cho, “Design of a contactless battery charger for cellular phone,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1238-1247, 2001.
[8]F. Nakao, Y. Matsuo, M. Kitaoka, and H. Sakamoto, “Ferrite core couplers for inductive chargers,” in Proc. PCC, 2002, pp. 850-854.
[9]H. Sakamoto, K. Harada, S. Washimiya, K. Takehara, Y. Matsuo, and F. Nakao, “Large air-gap coupler for inductive charger [for electric vehicles],” IEEE Trans. Magn., vol. 35, no. 5, pp. 3526-3528, 1999.
[10]H. Sakamoto and K. Harada, “A novel converter for noncontact charging with electro-magnetic coupling,” in Proc. INTELEC, 1993, pp. 87-93.
[11]羅國原,非接觸式感應充電技術應用於可攜式電子產品之研究,國立成功大學電機工程系碩士論文,2006。
[12]J. O. McSpadden and J. C. Mankins, “Space solar power programs and microwave wireless power transmission technology,” IEEE Trans. Microw. Magn., vol. 3, no. 4, pp. 46-57, 2002.
[13]J. Hirai, T. W. Kim, and A. Kawamura, “Practical study on wireless transmission of power and information for autonomous decentralized manufacturing system,” IEEE Trans. Ind. Electron., vol. 46, no. 2, pp. 349-359, 1999.
[14]Y. Kanai, M. Mino, and T. Sakai, “A non-contact power supply card powered by solar cells for mobile communication,” in Proc. INTELEC, 2001, pp. 14-18.
[15]T. Bieler, M. Perrottet, V. Nguyen, and Y. Perriard, “Contactless power and information transmission,” IEEE Trans. Ind. Appl., vol. 38, no. 5, pp. 1266-1272, 2002.
[16]J. Hirai, T. W. Kim, and A. Kawamura, “Integral motor with driver and wireless transmission of power and information for autonomous subspindle drive,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 13-20, 2000.
[17]J. Hirai, T. W. Kim, and A. Kawamura, “Wireless transmission of power and information and information for cableless linear motor drive,” IEEE Trans. Ind. Appl., vol. 15, no. 1, pp. 21-27, 2000.
[18]H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, 1992.
[19]C. C. Tsai, B. S. Chen, and C. M. Tsai, “Design of wireless transcutaneous energy transmission system for totally artificial hearts,” in Proc. IEEE APCCAS, 2000, pp. 646-649.
[20]M. Takahashi, K. Watanabe, F. Sato, and H. Matsuki, “Signal transmission system for high frequency magnetic telemetry for an artificial heart,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2921-2924, 2001.
[21]F. Sato, J. Murakami, T. Suzuki, H. Matsuki, S. Kikuchi, K. Harakawa, H. Osada, and K. Seki, “Contactless energy transmission to mobile loads by CLPS-test driving of an EV with starter batteries,” IEEE Trans. Magn., vol. 33, no. 5, pp. 4203-4205, 1997.
[22]Y. Matsuo, O. M. Kondoh, and F. Nakao, “Controlling new die mechanisms for magnetic characteristics of super-large ferrite cores,” IEEE Trans. Magn., vol. 36, no. 5, pp. 3411-3414, 2000.
[23]G. A. J. Elliott, J. T. Boys, and A. W. Green, “Magnetically coupled systems for power transfer to electric vehicles,” in Proc. IEEE PEDS, 1995, pp. 797-801.
[24]N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. APEC, 1997, pp. 841-847.
[25]J. M. Barnard, J. A. Ferreira, and J. D. van Wyk, “Optimized linear contactless power transmission systems for different applications,” in Proc. APEC, 1997, pp. 953-959.
[26]R. Radys, J. Hall, J. Hayes, and G. Skutt, “Optimizing AC and DC winding losses in ultra-compact, high-frequency, high-power transformers,” in Proc. APEC, 1999, pp. 14-18.
[27]T. Hata and T. Ohmae, “Position detection method using induced voltage for battery charge on autonomous electric power supply system for vehicles,” in Proc. IEEE AMC, 2004, pp. 187-191.
[28]F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Stable energy transmission to moving loads utilizing new CLPS,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5034-5036, 1996.
[29]J. G. Hayes, M. G. Egan, J. M. D. Murphy, S. E. Schulz, and J. T. Hall, “Wide-load-range resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface,” IEEE Trans. Ind. Appl., vol. 35, no. 4, pp. 884-895, 1999.
[30]G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. PowerCon, 2000, pp. 79-84.
[31]李依穎,非接觸式感應饋電技術應用於可動機具之研究,國立成功大學電機工程系碩士論文,2006。
[32]K. W. Klontz, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “Contactless power delivery system for mining applications,” IEEE Trans. Ind. Appl., vol. 31, no. 1, pp. 27-35, 1995.
[33]Y. H. Kim and H. D. Ha, “Design of interface circuits with electrical battery models,” IEEE Trans. Ind. Electron., vol. 44, no. 1, pp. 81-86, 1997.
[34]D. K. Cheng, Field and Wave Electromagnetics. 2nd ed., U.S.A:Addison-Willy, 1989, pp. 232-238.
[35]K. Finkenzeller, RFID Handbook. 2nd ed., England:Willy, 2003, pp. 61-80.
[36]K. D. T. Ngo and R. S. Lai, “Effect of height on power density in spiral-wound power-pot-core transformers,” IEEE Trans. Power Electron., vol. 7, no. 3, pp. 601-606, 1992.
[37]K. D. T. Ngo, R. P. Alley, A. J. Yerman, R. J. Charles, and M. H. Kuo, “Design issues for the transformer in a low-voltage power supply with high efficiency and high power density,” IEEE Trans. Power Electron., vol. 7, no. 3, pp. 592-600, 1992.
[38]T. O. Howard and K. H. Carpenter, “A numerical study of the coupling coefficients for pot core transformers,” IEEE Trans. Magn., vol. 31, no. 3, pp. 2249-2253, 1995.
[39]R. Laouamer, M. Brunello, J. P. Ferrieux, O. Normand, and N. Buchheit, “A multi-resonant converter for non-contact charging with electromagnetic coupling,” in Proc. IEEE IECON, 1997, vol. 2, pp. 792-797.
[40]S. C. Tang, S. Y. Hui, and H. S. H. Chung, “Coreless planar printed-circuit-board (PCB) transformers-A fundamental concept for signal and energy transfer,” IEEE Trans. Power Electron., vol. 15, no. 5, pp. 931-941, 2000.
[41]S. C. Tang, S. Y. Hui, and H. S. H. Chung, “Characterization of coreless printed circuit board (PCB) transformers,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1275-1282, 2000.
[42]S. Y. Hui, S. C. Tang, and S. H. C. Henry, “Optimal operation of coreless PCB transformer-isolated gate drive circuits with wide switching frequency range,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 506-514, 1999.
[43]C. Byungcho, N. Jaehyun, C. Honnyong, A. Taeyoung, and C. H. Seungwon, “Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140-147, 2004.
[44]S. C. Tang, S. Y. R. Hui, and S. H. C. Henry, “A low-profile low-power converter with coreless PCB isolation transformer,” IEEE Trans. Power Electron., vol. 16, no. 3, pp. 31-315, 2001.
[45]S. C. Tang, S. Y. R. Hui, and H. S. C. Chung, “A low-profile wide-band three-port isolation amplifier with coreless printed-circuit-board (PCB) transformers,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1180-1187, 2001.
[46]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics. 3rd ed., U.S.A:Wiley, 2003, pp. 752-776.
[47]N. Xi and C. R. Sullivan, “An improved calculation of proximity-effect loss in high-frequency windings of round conductors,” in Proc. IEEE PESC, 2003, vol. 2, pp. 853-860.
[48]J. A. Ferreira, “Improved analytical modeling of conductive losses in magnetic components,” IEEE Trans. Power Electron., vol. 9, no. 1, pp. 127-131, 1994.
[49]N. Xi and C. R. Sullivan, “Simplified high-accuracy calculation of eddy-current loss in round-wire windings,” in Proc. IEEE PESC, 2004, vol. 2, pp. 873-879.
[50]S. Eroglu, G. Friedman, and R. L. Magin, “Estimate of losses and signal-to-noise ratio in planar inductive micro-coil detectors used for NMR,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2787-2789, 2001.
[51]A. W. Lotfi, P. M. Gradzki, and F. C. Lee, “Proximity effects in coils for high frequency power applications,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2169-2171, 1992.
[52]A. W. Lotfi and F. C. Lee, “Proximity losses in short coils of circular cylindrical windings,” in Proc. IEEE PESC, 1992, vol. 2, pp. 1253-1260.
[53]A. Schellmanns, P. Fouassier, J. P. Keradec, and J. L. Schanen, “Equivalent circuits for transformers based on one-dimensional propagation: accounting for multilayer structure of windings and ferrite losses,” IEEE Trans. Magn., vol. 36, no. 5, pp. 3778-3784, 2000.
[54]R. C. Cope and Y. Podrazhansky, “The art of battery charging,” in Proc. BCAA, 1999, pp. 233-235.
[55]W. B. Burkett, P. Palisades, and R. V. Jackson, “Rapid charging of batteries,” U. S. Patent 3 517 293, 1970.
[56]BQ2057 Data Sheet, Texas Instruments Inc., 2002.
[57]R. L. Lin and Y. T. Chen, “Electronic ballast for fluorescent lamps with phase-locked loop control scheme,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 254-262, 2006.
[58]R. L. Lin and M. C. Yeh, “Inductor phase feedback for phase-locked loop control of electronic ballasts (PSRT),” in Proc. IEEE IAS, 2005, pp. 2763-2769.
[59]邱良祥,環型壓電變壓器應用於直流電源轉換器之研究,國立成功大學電機工程系碩士論文,2002。
[60]TPS5420 Data Sheet, Texas Instruments Inc., 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top