跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 01:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅淳剛
研究生(外文):Chun-KangLo
論文名稱:含硫配位基的高價釩錯合物的研究/探討藉由氫鍵的輔助斷裂鍵能較強之碳-氧和氧-氫鍵
論文名稱(外文):Studies of high-valent vanadium complexes binding with non-innocent thiolato ligands / the cleavage of strong C-O and O-H bonds with assistance of hydrogen bonds
指導教授:許鏵芬
指導教授(外文):Hua-Fen Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:64
中文關鍵詞:釩硫錯合物反應活性
外文關鍵詞:Vanadium thiolatereactivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
兩種四芽配位基PS3”和PS3*被用來與高價釩金屬起始物反應,以便能夠了解高價釩硫化學的作用,在這份研究中,我們鑑定了五種釩硫錯合物,分別為: [V(PS3”)2][NEt4] (1a), [V(PS3*)2][NPr4] (1b), [VIV(PS2”SH)(PS3”)][PPh4] (2a), [VIV(PS3*)(PS2*SH)][NPent4] (2b), 與[VIV(PS3*)2] [(NPr4)2] (3)。它們與空氣的反應活性已被探討,其結果可由紫外光可見光光譜、與質譜等方法驗證。七配位之[VIV(PS2”SH)(PS3”)]- (2a)與[VIV(PS3*)(PS2*SH)]- (2b)可與空氣反應進而生成[V(PS3”)2]- (1a)與[V(PS3*)2]- (1b)。八配位之[VIV(PS3*)2]2- (3) 可與空氣或[Fe(C5H5)2][BF4]進行一個電子的氧化進而生成化合物1b。
化合物1a與1b為一個具有自由基四價釩硫錯合物與五價釩硫錯合物的共振型式存在的特性之錯合物,可以與水反應而進行氧-氫鍵斷裂生成化合物2a和2b。1a與1b亦可與甲醇反應分別進行碳-氧鍵和氧-氫鍵斷裂,各別生成化合物2a, [VIV(PS3”)(PS2SCH3”)]- (4a)與2b, [VIV(PS3*)(PS2SCH3*)]- (4b)。
化合物1a與一系列的受質,如水、甲苯、CH3CN、fluorene與THF之動力學研究已被探討。從動力學同位素效應中可得知,氧-氫鍵的斷裂為速率決定步驟。有趣的是化合物1a可斷裂較強的氧-氫鍵卻不能斷裂較弱的碳-氫鍵,此發現我們推測藉由受質與化合物1a所產生的氫鍵之輔助作用造成預排列的現象,進而降低了活化位能障礙。
In our effort to understanding high-valent vanadium sulfur chemistry, two tris(thiolato)phosphine ligands, [PS3”]H3 and [PS3*]H3 has been untilized to interact with high-valent vanadium species.([PS3”]H3=[P(C6H3-3-Me3Si-2-S)3]3-. [PS3*]H3=[P(C6H3-3-Ph-2-S)3]3-). At this work, several five vanadium-thiolate complexes have been obtained and characterized. They are [V(PS3”)2][NEt4] (1a), [V(PS3*)2][NPr4] (1b),[VIV(PS2”SH)(PS3”)][PPh4] (2a), [VIV(PS3*)(PS2*SH)][NPent4] (2b), and [VIV(PS3*)2] [(NPr4)2] (3). The reactivity of them with air has been explored. The evidences were supported by Ultraviolet-visible spectroscopies and ESI-MS studies. The hepta-coordinated [VIV(PS2”SH)(PS3”)]- (2a), and [VIV(PS3*)(PS2*SH)]- (2b) proceed air oxidation to form the octa-coordinated [V(PS3”)2]- (1a) and [V(PS3*)2]- (1b), respectively. The octa-coordinated [VIV(PS3*)2]2- (3) can be oxidized via one electron oxidation to form complex 1b by air oxidation or [Fe(C5H5)2][BF4] oxidation.
From ESI-MS studies, complex 1a and 1b, species with resonance forms between V(V)-thiolate and V(IV)-thiyl radical, can reacted with H2O and form 2a and 2b by homolytic cleavage of the O-H bond. In addition, complex 1a and 1b also reacted with methanol via homolytic cleavage of O-H bond and C-O bond. Consequently, it led to the formation of 2a, [VIV(PS3”)(PS2SCH3”)]- (4a), and 2b, [VIV(PS3*)(PS2SCH3*)]- (4b), respectively.
The kinetic studies of 1a with a series of substrates, such as H2O, toluene, CH3CN, fluorene and THF, have been investigated. From the kinetic isotope effect (KIE), O-H bond cleavage in H2O is an important component of the rate-determining step. It is interesting that 1a prefers to cleave stronger O-H bonds rather than C-H bonds. This finding was proposed that the preorganization step via the assistant of the hydrogen bonding interaction between substrates and 1a plays a key role which reduces the activation energy barrier.
Abstract I
中文摘要 II
誌謝 III
List of Content IV
List of Schemes V
List of Tables VI
List of Figures VII
Abbreviation XI
Chapter 1. Introduction 1
1-1 Vanadium-thiolate chemistry 1
1-2 Examples and reactivity studies of ligand-radical bound to metal complexes 2
1-3 Biological Oxidation and Its Chemical Models 7
1-4 The motivation for this work 10
Chapter 2: Results and Discussions 11
2-1 Synthesis and characterization of the metal-stabilized thiyl-radical complex, [V(PS3*)2][NPr4] (1b) 11
2-2 Reactivity studies of the metal-stabilized thiyl-radical complexes, [V(PS3”)2][NEt4] (1a) and [V(PS3*)2][NPr4] (1b) : O-H bond and C-O bond cleavage 27
2-3 Kinetic studies of the metal-stabilized thiyl-radical complex, [V(PS3”)2][NEt4] (1a) : O-H bond and C-H bond cleavage 47
Chapter 3: Conclusions 49
Chapter 4. Experimental and Instruments 51
4-1 General procedures 51
4-2 Syntheses 52
Reference 55
Appendix A 58
1Baran, E. J. Model studies related to vanadium biochemistry: recent advances and perspectives. Journal of the Brazilian Chemical Society 14, 878-888 (2003).
2Hirao, T. New Directions in Chemistry and Biological Chemistry of Vanadium-The Third International Symposium on Chemistry and Biological Chemistry of Vanadium. Coord. Chem. Rev. 237, 1 (2003).
3Crans, D. C., Smee, J. J., Gaidamauskas, E. & Yang, L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev. 104, 849-902 (2004).
4Huyer, G. et al. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J. Biol. Chem. 272, 843-851 (1997).
5Benabe, J., Echegoyen, L., Pastrana, B. & Martinez-Maldonado, M. Mechanism of inhibition of glycolysis by vanadate. J. Biol. Chem. 262, 9555-9560 (1987).
6Taylor, S. W., Kammerer, B. & Bayer, E. New perspectives in the chemistry and biochemistry of the tunichromes and related compounds. Chem. Rev. 97, 333-346 (1997).
7Garner, C. D. et al. Investigations of amavadin. J. Inorg. Biochem. 80, 17-20 (2000).
8Bruech, M. et al. Effects of vanadate on intracellular reduction equivalents in mouse liver and the fate of vanadium in plasma, erythrocytes and liver. Toxicology 31, 283-295 (1984).
9Janas, Z. & Sobota, P. Aryloxo and thiolato vanadium complexes as chemical models of the active site of vanadium nitrogenase. Coord. Chem. Rev. 249, 2144-2155 (2005).
10Kim, J. & Rees, D. Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Science 257, 1677-1682 (1992).
11Eady, R. R. Current status of structure function relationships of vanadium nitrogenase. Coord. Chem. Rev. 237, 23-30 (2003).
12Sono, M., Roach, M. P., Coulter, E. D. & Dawson, J. H. Heme-containing oxygenases. Chem. Rev. 96, 2841-2888 (1996).
13Fujii, H. Electronic structure and reactivity of high-valent oxo iron porphyrins. Coord. Chem. Rev. 226, 51-60 (2002).
14Ghosh, P. et al. Coordinated o‐Dithio‐and o‐Iminothiobenzosemiquinonate (1−) π Radicals in [MII (bpy)(L.)](PF6) Complexes. Angew. Chem. Int. Ed. 42, 563-567 (2003).
15Kimura, S., Bill, E., Bothe, E., Weyhermüller, T. & Wieghardt, K. Phenylthiyl radical complexes of gallium (III), iron (III), and cobalt (III) and comparison with their phenoxyl analogues. J. Am. Chem. Soc. 123, 6025-6039 (2001).
16Springs, J. et al. Electron paramagnetic resonance and electrochemical study of the oxidation chemistry of mononuclear and binuclear chromium carbonyl thiolates. J. Am. Chem. Soc. 112, 5789-5797 (1990).
17Grapperhaus, C. A., Poturovic, S. & Mashuta, M. S. Oxygenation of a ruthenium (II) thiolate to a ruthenium (II) sulfinate proceeds via ruthenium (III). Inorg. Chem. 44, 8185-8187 (2005).
18Stenson, P. A. et al. Molecular and Electronic Structures of One‐Electron Oxidized NiII–(Dithiosalicylidenediamine) Complexes: NiIII–Thiolate versus NiII–Thiyl Radical States. Chemistry-A European Journal 14, 2564-2576 (2008).
19Lee, C.-M., Chen, C.-H., Ke, S.-C., Lee, G.-H. & Liaw, W.-F. Mononuclear nickel (III) and nickel (II) thiolate complexes with intramolecular SH proton interacting with both sulfur and nickel: Relevance to the [NiFe]/[NiFeSe] hydrogenases. J. Am. Chem. Soc. 126, 8406-8412 (2004).
20Giles, N. M., Giles, G. I. & Jacob, C. Multiple roles of cysteine in biocatalysis. Biochem. Biophys. Res. Commun. 300, 1-4 (2003).
21Licht, S., Gerfen, G. J. & Stubbe, J. Thiyl radicals in ribonucleotide reductases. Science 271, 477-481 (1996).
22Stubbe, J., Nocera, D. G., Yee, C. S. & Chang, M. C. Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem. Rev. 103, 2167-2202 (2003).
23Ouch, K., Mashuta, M. S. & Grapperhaus, C. A. Metal-Stabilized Thiyl Radicals as Scaffolds for Reversible Alkene Addition via C–S Bond Formation/Cleavage. Inorg. Chem. 50, 9904-9914 (2011).
24Chauhan, R., Mashuta, M. S. & Grapperhaus, C. A. Selective and reversible base-induced elimination of a ruthenium dithioether yields a vinyl metallosulfonium complex. Inorg. Chem. 51, 7913-7920 (2012).
25Shilov, A. E. & Shul'pin, G. B. Activation of CH bonds by metal complexes. Chem. Rev. 97, 2879-2932 (1997).
26Meunier, B., De Visser, S. P. & Shaik, S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem. Rev. 104, 3947-3980 (2004).
27Shteinman, A. A. The mechanism of methane and dioxygen activation in the catalytic cycle of methane monooxygenase. FEBS Lett. 362, 5-9 (1995).
28Wang, D., Farquhar, E. R., Stubna, A., Münck, E. & Que, L. A diiron (IV) complex that cleaves strong C–H and O–H bonds. Nature chemistry 1, 145-150 (2009).
29Bryant, J. R. & Mayer, J. M. Oxidation of CH bonds by [(bpy) 2 (py) RuIVO] 2+ occurs by hydrogen atom abstraction. J. Am. Chem. Soc. 125, 10351-10361 (2003).
30Wijeratne, G. B., Corzine, B., Day, V. W. & Jackson, T. A. Saturation Kinetics in Phenolic O–H Bond Oxidation by a Mononuclear Mn (III)–OH Complex Derived from Dioxygen. Inorg. Chem. (2014).
31Chang, Y.-H. et al. An Eight-Coordinate Vanadium Thiolate Complex with Charge Delocalization between V (V)− Thiolate and V (IV)− Thiyl Radical Forms. J. Am. Chem. Soc. 133, 5708-5711 (2011).
32Chen, Y. S. The metal-centered an ligand-based reactivity of vanadium-thiolate complexes. 國立成功大學化學研究所碩士論文, (2012).
33Liu, C. L. Syntheses, Characterization and Reactivity of High Valent Vanadium Complexes with Tris(benzenethiolato)phosphine Derivatives. 國立成功大學化學研究所碩士論文, (2011).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top