|
1Baran, E. J. Model studies related to vanadium biochemistry: recent advances and perspectives. Journal of the Brazilian Chemical Society 14, 878-888 (2003). 2Hirao, T. New Directions in Chemistry and Biological Chemistry of Vanadium-The Third International Symposium on Chemistry and Biological Chemistry of Vanadium. Coord. Chem. Rev. 237, 1 (2003). 3Crans, D. C., Smee, J. J., Gaidamauskas, E. & Yang, L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev. 104, 849-902 (2004). 4Huyer, G. et al. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J. Biol. Chem. 272, 843-851 (1997). 5Benabe, J., Echegoyen, L., Pastrana, B. & Martinez-Maldonado, M. Mechanism of inhibition of glycolysis by vanadate. J. Biol. Chem. 262, 9555-9560 (1987). 6Taylor, S. W., Kammerer, B. & Bayer, E. New perspectives in the chemistry and biochemistry of the tunichromes and related compounds. Chem. Rev. 97, 333-346 (1997). 7Garner, C. D. et al. Investigations of amavadin. J. Inorg. Biochem. 80, 17-20 (2000). 8Bruech, M. et al. Effects of vanadate on intracellular reduction equivalents in mouse liver and the fate of vanadium in plasma, erythrocytes and liver. Toxicology 31, 283-295 (1984). 9Janas, Z. & Sobota, P. Aryloxo and thiolato vanadium complexes as chemical models of the active site of vanadium nitrogenase. Coord. Chem. Rev. 249, 2144-2155 (2005). 10Kim, J. & Rees, D. Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Science 257, 1677-1682 (1992). 11Eady, R. R. Current status of structure function relationships of vanadium nitrogenase. Coord. Chem. Rev. 237, 23-30 (2003). 12Sono, M., Roach, M. P., Coulter, E. D. & Dawson, J. H. Heme-containing oxygenases. Chem. Rev. 96, 2841-2888 (1996). 13Fujii, H. Electronic structure and reactivity of high-valent oxo iron porphyrins. Coord. Chem. Rev. 226, 51-60 (2002). 14Ghosh, P. et al. Coordinated o‐Dithio‐and o‐Iminothiobenzosemiquinonate (1−) π Radicals in [MII (bpy)(L.)](PF6) Complexes. Angew. Chem. Int. Ed. 42, 563-567 (2003). 15Kimura, S., Bill, E., Bothe, E., Weyhermüller, T. & Wieghardt, K. Phenylthiyl radical complexes of gallium (III), iron (III), and cobalt (III) and comparison with their phenoxyl analogues. J. Am. Chem. Soc. 123, 6025-6039 (2001). 16Springs, J. et al. Electron paramagnetic resonance and electrochemical study of the oxidation chemistry of mononuclear and binuclear chromium carbonyl thiolates. J. Am. Chem. Soc. 112, 5789-5797 (1990). 17Grapperhaus, C. A., Poturovic, S. & Mashuta, M. S. Oxygenation of a ruthenium (II) thiolate to a ruthenium (II) sulfinate proceeds via ruthenium (III). Inorg. Chem. 44, 8185-8187 (2005). 18Stenson, P. A. et al. Molecular and Electronic Structures of One‐Electron Oxidized NiII–(Dithiosalicylidenediamine) Complexes: NiIII–Thiolate versus NiII–Thiyl Radical States. Chemistry-A European Journal 14, 2564-2576 (2008). 19Lee, C.-M., Chen, C.-H., Ke, S.-C., Lee, G.-H. & Liaw, W.-F. Mononuclear nickel (III) and nickel (II) thiolate complexes with intramolecular SH proton interacting with both sulfur and nickel: Relevance to the [NiFe]/[NiFeSe] hydrogenases. J. Am. Chem. Soc. 126, 8406-8412 (2004). 20Giles, N. M., Giles, G. I. & Jacob, C. Multiple roles of cysteine in biocatalysis. Biochem. Biophys. Res. Commun. 300, 1-4 (2003). 21Licht, S., Gerfen, G. J. & Stubbe, J. Thiyl radicals in ribonucleotide reductases. Science 271, 477-481 (1996). 22Stubbe, J., Nocera, D. G., Yee, C. S. & Chang, M. C. Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem. Rev. 103, 2167-2202 (2003). 23Ouch, K., Mashuta, M. S. & Grapperhaus, C. A. Metal-Stabilized Thiyl Radicals as Scaffolds for Reversible Alkene Addition via C–S Bond Formation/Cleavage. Inorg. Chem. 50, 9904-9914 (2011). 24Chauhan, R., Mashuta, M. S. & Grapperhaus, C. A. Selective and reversible base-induced elimination of a ruthenium dithioether yields a vinyl metallosulfonium complex. Inorg. Chem. 51, 7913-7920 (2012). 25Shilov, A. E. & Shul'pin, G. B. Activation of CH bonds by metal complexes. Chem. Rev. 97, 2879-2932 (1997). 26Meunier, B., De Visser, S. P. & Shaik, S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem. Rev. 104, 3947-3980 (2004). 27Shteinman, A. A. The mechanism of methane and dioxygen activation in the catalytic cycle of methane monooxygenase. FEBS Lett. 362, 5-9 (1995). 28Wang, D., Farquhar, E. R., Stubna, A., Münck, E. & Que, L. A diiron (IV) complex that cleaves strong C–H and O–H bonds. Nature chemistry 1, 145-150 (2009). 29Bryant, J. R. & Mayer, J. M. Oxidation of CH bonds by [(bpy) 2 (py) RuIVO] 2+ occurs by hydrogen atom abstraction. J. Am. Chem. Soc. 125, 10351-10361 (2003). 30Wijeratne, G. B., Corzine, B., Day, V. W. & Jackson, T. A. Saturation Kinetics in Phenolic O–H Bond Oxidation by a Mononuclear Mn (III)–OH Complex Derived from Dioxygen. Inorg. Chem. (2014). 31Chang, Y.-H. et al. An Eight-Coordinate Vanadium Thiolate Complex with Charge Delocalization between V (V)− Thiolate and V (IV)− Thiyl Radical Forms. J. Am. Chem. Soc. 133, 5708-5711 (2011). 32Chen, Y. S. The metal-centered an ligand-based reactivity of vanadium-thiolate complexes. 國立成功大學化學研究所碩士論文, (2012). 33Liu, C. L. Syntheses, Characterization and Reactivity of High Valent Vanadium Complexes with Tris(benzenethiolato)phosphine Derivatives. 國立成功大學化學研究所碩士論文, (2011).
|