跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 15:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊淵韓
研究生(外文):Yuan-Han Yang
論文名稱:乙醯膽鹼酯酶抑制劑在阿茲海默氏症療效評估
論文名稱(外文):Evaluating the Therapeutic Response of Acetyl-cholinesterase Inhibitor in Alzheimer''s Disease
指導教授:劉景寬劉景寬引用關係
指導教授(外文):Jing-kuan Liu
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:183
中文關鍵詞:乙醯膽鹼酯酶乙醯膽鹼酯酶乙醯膽鹼酯酶乙醯膽鹼酯酶乙醯膽鹼酯酶乙醯膽鹼酯酶乙醯膽鹼酯酶乙醯膽鹼酯酶
外文關鍵詞:Alzheimer&apos&aposs diseaseAD8 questionnaireapo-lipoprotein E geneenzyme(ACE)acetl-cholinesterase inhibitors(AChE-I)MMSE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1229
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前阿茲海默氏失智症的盛行率和發生率隨著人口老化而有上升的趨勢, 其病理學上的變化主要有老化斑、 神經纖維糾結、 以及後來的神經原喪失。目前阿茲海默氏失智症的治療是以乙醯膽鹼酯酶抑制劑為主,希望能藉著提高藥物使用劑量,來間接提高腦部乙醯
膽鹼酯酶之抑制,進而來提高臨床之療效, 但是並不是每一位病人
皆對此治療有良好之反應。因此我們使用毛細管電泳檢測藥物乙醯膽
鹼酯酶抑制劑: donepezil 之血中濃度, 且分析此血中濃度和病人
治療反應之相關性,我們發現高濃度的藥物對治療並沒有較好的治療
反應。治療時已是較嚴重的失智症,以 CDR-SB (Clinical Dementia
Rating-Sum of Boxes)評估,則治療效果越差。但若使用另外一項常
用的評估量表:簡易智能測驗(Mini-Mental Status Examination;
MMSE)來評估時,治療前MMSE 分數較高的病人也較難有進步空間。我
們也發現臺灣整體而言, 約有百分之五十八至六十的阿茲海默氏失
智症的病人,對此些乙醯膽鹼酯酶抑制劑有正面反應,且此反應和其
本身的年齡、教育程度、性別,及E 型脂蛋白基因多型性並無顯著相
關性。但E 型脂蛋白基因是被公認的是和阿茲海默失智症相關的基
因,因此和阿茲海默失智症相關基因的角色釐清是需要 。由於血管
加壓素可以分解乙型類澱粉,因此血管加壓素基因[Angiotensin
2converting enzyme (ACE) gene]是另一個被推論和阿茲海默失智症
相關的基因 。然而血管加壓素基因多型性對在阿茲海默失智症的影
響,會隨著種族的不同而有差異,我們收錄257 位阿茲海默失智症的
病人和137 位非失智的對照組,來檢驗血管加壓素基因和阿茲海默失
智症的相關性,並且去分析相對於不同血管加壓素基因多型性的情況
下,血管加壓素濃度的高低。我們的結果發現相對其他基因組合, I/I
同型合子相對上是顯著的保護因子(p=0.040, OR=0.584,
95%CI:0.349-0.976),且I/I 族群中其血中血管加壓素濃度,相對
於其他基因型是比較低的(114.79±31.32 ng/mL, p=0.023)。
失智症的早期診斷和治療效果是相關的, 因此我們翻譯及檢定美
國聖路易華盛頓大學發展出來之「AD8 極早期失智症篩檢量表」中文
版在台灣的適用性。我們收集了共239 位正常與阿茲海默氏失智症的
病人來檢定此量表之適用性。在區別正常組(CDR=0) 和極早期失智症
組 (CDR=0.5)的判定值是2,且有95.89%的敏感度和78.7%的特異
性,在區別正常組(CDR=0)和失智症組(CDR≧0.5)時,其判斷值
也是2,其敏感度為97.6%,且特異性為78.07%。
此論文中的研究從乙醯膽鹼酯酶抑制劑臨床療效評估開始, 而
進一步檢驗AD8 極早期失智症篩檢量表,來篩檢極早期失智症以進一
步提高治療效果,以及檢測血管加壓素基因和阿茲海默失智症的相關
性。目前的研究尚未完全解決所有的問題, 特別是在服用乙醯膽鹼酯
酶抑制劑單一劑量,與多次服用後donepezil 血中濃度是否有差別,
病人身體中CYP450 基因型和donepezil 濃度是否相關, 以及目前
donepezil 5mg,以及未來要研究的10 mg 甚至是23mg,是否對不同
的認知功能有不同的改變及影響。

The prevalence and incidence of Alzheimer’s disease (AD) is
increasing with aging. Pathological hallmarks for AD are mainly senile plaque, neurofibrillary tangle, and neuronal loss eventually. Currently the treatment of AD is mainly focused on acetyl-cholinesterase inhibitors(AChE-I)However, not every AD patient will respond to the treatment of AChE-I. Therefore, we conducted a study to measure and analyze the plasma concentration of AChE-I: donepezil in relation to the clinically therapeutic response. We have found that higher plasma concentration of doenepzil did not provide better therapeutic response. AD patients with their higher initial sum of boxes for clinical dementia rating (CDR) were
not good respond to the treatment as well as the higher initial Mini-Mental Status Examination (MMSE) score. In general, 58-60% of our AD patients will respond to these treatments regardless of age,education, gender, and their apo-lipoprotein E genotypes (ApoE),although ApoE genotype is a putative genetic factor to AD. Beyond ApoE gene, given to Angiotensin converting enzyme (ACE) can degrade the beta-amyloid, ACE gene is a putative genetic factor to AD, but its 5 effect was varied with races. We have recruited 257 AD patients and 137 non-demented Taiwanese to examine the genetic association and the ACE plasma protein level in relation to the various ACE genotypes. Our study has shown ACE insertion homozygote was a protective factor to AD
(p=0.040, OR=0.584, 95%CI: 0.349-0.976), for its lower ACE plasma protein level (114.79±31.32 ng/mL, p=0.023) compared to other genotypes.
The early diagnosis of AD is related to the therapeutic response. In order to diagnose AD at its early stage, we have translated and validated the AD8 questionnaire developed by Washington University in St Louis. We have recruited 239 normal cognitive and AD subjects into analyses. Our results have shown that the cut-off values were both 2 in differentiating normal (CDR=0) from very mild dementia (CDR=0.5) with the sensitivity 95.9% and specificity 78.7% and in differentiating normal (CDR=0) from dementia (CDR≧0.5) with the sensitivity 97.6% and specificity 78.1%, respectively.
My study began at evaluating clinically therapeutic response of acetyl-cholinesterase inhibitors to AD, validating AD8 questionnaire to screen early AD in order to have better therpaetic response in AD patients 6 in their early stage, and examining the association of ACE gene and AD.
Current study results are not sufficient to answer the questions for the treatment of donepezil to AD, especially in the difference of plasm concnetration, if any, between single dose and multiple doses of donepezil in AD patients. We also have to clarify whether cytochrome P450 will effect the donepezil concentration, and the various cognitive
responses, if any, under current dosage of donepezil 5 mg and coming higher dosage, 10 mg or 23 mg in the future.

Chapter 1
Current status of Alzheimer’s disease ----------------------------------11
1.1. The prevalence and incidence of Alzheimer’s disease----------11
1.2. The pathogenesis of Alzheimer’s disease--------------------------15
1.3. Current treatment of Alzheimer’s disease------------------------18
1.3.1. N-methyl D-aspartate antagonist---------------------------------20
1.3.2. Acetyl-cholinesterase inhibitors-----------------------------------21
1.4. The therapeutic outcome of Acetyl-cholinesterase
Inhibitors in Alzheimer’s disease---------------------------------24
1.4.1. The questions of treatment we faced----------------------------26
1.4.1.1 Hypothesis: Can higher dosage of cholinesterase
inhibitors provide better therapeutic outcomes---------------27
1.4.1.2 Factors related to the therapeutic outcomes ----------------29


Chapter 2
Predicting therapeutic response of cholinesterase
inhibitors in Alzheimer’s disease ---------------------------------------31
2.1 Is increased acetyl-cholinesterase inhibition associated
with therapeutic response? ----------------------------------------------32
2.2 Developing the study to examine the therapeutic response
of donepezil to patient with Alzheimer’s disease--------------------33
2.2.1. Recruiting Patients -----------------------------------------------------35
2.2.2. Evaluating therapeutic responses: the psychometrics-----------37
2.2.3. The Apo-lipoprotein E genotype-------------------------------------38
2.2.4. The measurement of plasma concentration of
doenepzil through capillary electrophoresis---------------------39
2.2.4.1 The donepezil---------------------------------------------------------40
2.2.4.2 Conditions for capillary electrophoresis------------------------41
2.2.4.3 Plasma extraction----------------------------------------------------45
2.2.4.4 Sample preparation and method validation--------------------46
2.3 Results----------------------------------------------------------------------48
2.4 Discussion ------------------------------------------------------------------53

Chapter 3
Prospect to increase the therapeutic response and identifying the genetic feature of Alzheimer’s disease: early diagnosis and the role of angiotensin converting enzyme gene ------------------------62
3.1 The therapeutic response among various stage of dementia------62
3.2 Validating AD8-Chinese version questionnaire to screen very mild dementia------------------------------------------------------------64
3.2.1.1 Clinical Dementia Rating Scale-----------------------------------71
3.2.1.2 Translation and validation of AD-8 questionnaire-------------73
3.2.1.3 Participants and Psychometrics------------------------------------75
3.2.1.4 Results and the application of AD8-Chinese version-----------77
3.3 The angiotensin converting enzyme gene in
Alzheimer’s disease--------------------------------------------------------81
3.3.1 The angiotensin converting enzyme gene and
Alzheimer’s disease in African American
and Caucasian American------------------------------------------------85
3.3.2 The angiotensin converting enzyme gene and Alzheimer’s disease in Taiwanese---------------------------------------------------93
3.3.3 Conclusion and discussion ------------------------------------------100

Chapter 4
Limitations of current results and prospects to the further studies
4.1 The concentration of donepezil in individuals taking a single dose of donepezil and in cognitive response in AD patient.--------------------------------------------------------------------104
4.2 The effects of cytochrome P450 gene polymorphism to the
concentration of donepezil----------------------------------------------107

Reference----------------------------------------------------------------------109
Tables (I~XXV) ------------------------------------------------------------- 141
Figures (I~VIII)--------------------------------------------------------------156
Appendix ----------------------------------------------------------------------164
Publication List---------------------------------------------------------------179


1. Rin H, Huang MG, Tseng MC. Prevalence of elderly dementias in Taipei area. Proc Ann Meeting Soc Neurol Psychiatry, ROC, 1987:24.
2. Yip PK, Shyu TI, Lee JY, et al. Prevalence of dementia in the elderly in an urban district of Taipei. Acta Neurol Sin1992;1:347-54.
3. Liu HC, Chou P, Lin KN, et al. Assessing cognitive abilitiesand dementia in a predominantly illiterate population of older individuals in Kinmen. Psychol Med 1994;24:763-70.
4. Liu HC, Fuh JL, Wang SJ, et al. Prevalence and subtypes of dementia in a rural Chinese population. Alzheimer Dis Assoc Disord 1998;12:127-34.
5. Liu HC, Lin KN, Teng EL, et al. Prevalence and subtypesof dementia in Taiwan: a community survey of 5297 individuals. J Am Geriatr Soc 1995;43:144-9.
6. Liu CK, Lin RT, Chen YF, et al. Prevalence of dementia in an urban area in Taiwan. J Formos Med Assoc 1996;95: 762-8.
7. Liu CK, Lai CL, Tai CT, et al. Incidence and subtypes of dementia in southern Taiwan: impact of socio-demographic factors. Neurology 1998;50:1572-9.
8. Cleusa P Ferri, Martin Prince, Carol Brayne, et al. Lancet. 2005; 366: 2112–2117.
9. Yang YH, Lai CL, Lin RT, Liu CK: Prevalence and demographic characteristics of mild cognitive impairment: a community-based study in Taiwan. The 57th annual meeting of American Academy of Neurology 2005; P03.022
10. Bennett DA, Wilson RS, Schneider JA, Evans DA, et al. Education modifies the relation of AD pathology to level of cognitive function in older persons. Neurology 2003;60:1909-1915.
11. Riley KP, Snowdon DA, Markesbery WR. Alzheimer''s neurofibrillary pathology and the spectrum of cognitive function: findings from the Nun Study. Ann Neurol. 2002;51:567-77.
12. Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol 2009; 66: 200–8.
13. Morris JC, Price AL. Pathologic correlates of non-demented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. J Mol
Neurosci 2001; 17: 101–18.
14. Riley KP, Snowdon DA, Markesbery WR. Alzheimer’s neurofibrillary pathology and the spectrum of cognitive function: findings from the Nun Study. Ann Neurol 2002; 51: 567–77
15. White L, Small BJ, Petrovitch H, Ross GW, Masaki K, Abbott RD, et al. Recent clinical-pathologic research on the causes of dementia in late
life: update from the Honolulu-Asia Aging Study. J Geriatr Psychiatry
Neurol 2005; 18: 224–7.
16. Seltzer B, Zolnouni P, Goldman R, et al, Donepezil "402" Study Group. Efficacy of donepezil in early-stage Alzheimer disease: a randomized placebo-controlled trial. Arch Neurol. 2004;61:1852-6.
17. Farlow M, Anand R, Messina J, et al, A 52-week study of the efficacy of rivastigmine in patients with mild to moderately severe Alzheimer''s disease. Eur Neurol. 2000;44:236-41
18. RaskindMA, Peskind ER, Wessel T, et al. Galantamine USA-1 Study Group. Galantamine in AD: A 6-month randomized placebo controlled trial with a 6-month extension. Neurology 2000;54:2261–2268
19. Black SE, Doody R, Li H, McRae T, et al. Donepezil preserves cognition and global function in patients with severe Alzheimer disease. Neurology.2007;69:459-69
20. Reisberg B, Doody R, Stoffler A, et al, Memantine in moderate-to-severe Alzheimer’s disease. New England Journal of Medicine 2003;348:1333-1341.
21. Tariot PN, Farlow MR, Grossberg GT, et al. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 2004;291:317-324.
22. Peskind ER, Potkin SG, Pomara N, et al. Memantine treatment in mild to moderate Alzheimer disease: a 24-week randomized, controlled trial. Am J Geriatr Psychiatry 2006;14:704-715.
23. Porsteinsson AP, Grossberg GT, Mintzer J, et al. Memantine MEM-MD-12 Study Group. Memantine treatment in patients with mild to moderate Alzheimer''s disease already receiving a cholinesterase inhibitor: a randomized, double-blind, placebo-controlled trial. Curr Alzheimer Res. 2008;5:83-89.
24. Cholinesterase inhibitors for Alzheimer’s disease. 2009 The Cochrane Collaboration.
25. Jann M. W., Shirley K. L., Small G. W. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet. 2002; 41: 719-39.
26.Poirier J, Delisle MC, Quirion R, Aubert I, Farlow M, Lahiri D, Hui S, Bertrand P, Nalbantoglu J, Gilfi x BM, et al: Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sci USA 1995; 92: 12260–12264.
27. Aerssens J, Raeymaekers P, Lilienfeld S, Geerts H, Konings F, Parys W: APOE genotype: No influence on galantamine treatment efficacy nor on rate of decline in Alzheimer’s disease. Dement Geriatr Cogn Disord 2001; 12: 69–77.
28. Borroni B., Pettenati C., Bordonali A., Akkawi N., Luca M. D., Padovani A. Serum cholesterol levels modulate long-term efficacy of cholinesterase inhibitors in Alzheimer’s disease. Neurosicence Letters 2003; 343: 213-215.
29. Simons M., Keller P., Dichgans J., Schulz J. B.. Cholesterol and Alzheimer’s disease Is there a link? Neurology. 2001; 57:1089-93.
30. Perry EK, Perry RH, Blessed G, Tomlinson BE. Changes in
brain cholinesterases in senile dementia of Alzheimer type.
Neuropathol Appl Neurobiol 1978;4(4):273-7.
31. Fishman EB, Siek GC, MacCallum RD, et al. Distribution of the molecular forms of acetylcholinesterase in human brain: alterations in dementia of the Alzheimer type. Ann Neurol 1986;19:246-52.
32. Perry EK, Tomlinson BE, Blessed G, et al. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. BMJ 1978;2:1457-9.
33. Bartus RT, Dean RL 3rd, Beer B, et al. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982;217:408-14.
34. Foster RH, Plosker GL. Donepezil. Pharmacoeconomic implications of therapy. Pharmacoeconomics 1999;16:99-114.
35. Mega MS, Masterman DM, O’Connor SM, Barclay TR, CummingsJL. The spectrum of behavioral responses to cholinesterase inhibitor therapy in Alzheimer disease. Arch Neurol 1999;56:1388-93.
36. Burns A, Rossor M, Hecker J, et al. The effects of donepezil in Alzheimer''s disease - results from a multinational trial. Dement Geriatr Cogn Disord 1999; 10, 237-244.
37. Whitehead A, Perdomo C, Pratt RD, Birks J, Wilcock GK, Evans JG. Donepezil for the symptomatic treatment of patients with mild to moderate Alzheimer''s disease: a meta-analysis of individual patient data from randomised controlled trials. Int J Geriatr Psychiatry 2004; 19: 624-633.
38. Darreh-Shori T, Meurling L, Pettersson T, et al. Changes in the activity and protein levels of CSF acetylcholinesterases in relation to cognitive function of patients with mild Alzheimer''s disease following chronic donepezil treatment. J Neural Transm 2006;113: 1791-1801.
39. Soreq H, Seidman S. Acetylcholinesterase-new roles for an old actor. Nat Rev Neurosci 2001;2: 294-302.
40. Kuhl DE, Minoshima S, Frey KA, et al. Limited donepezil inhibition of acetylcholinesterase measured with positron emission tomography in living Alzheimer cerebral cortex. Ann Neurol. 2000; 48:391–395.
41. Bohnen NI, Kaufer DI, Hendrickson R, et al. Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2005; 76:315–319.
42. Nozawa M, Ichimiya Y, Nozawa E, et al. Clinical effects of high oral dose of donepezil for patients with Alzheimer’s disease in Japan. Psychogeriatrics. 2009; 9:50–55.
43. Rigaud AS, Traykov L, Caputo L, et al. The apolipoprotein E epsilon4 allele and the response to tacrine therapy in Alzheimer’s disease. Eur J Neurol 2000;7:255-8.
44. Oddoze C, Michel BF, Lucotte G. Apolipoprotein E ε4 allele predicts a better response to donepezil therapy in Alzheimer’s disease. Alzheimer’s Reports 2000;3:213-6.
45. Aerssens J, Raeymaekers P, Lilienfeld S, et al. ApoE genotype: no influence on galantamine treatment efficacy nor on rate of decline in Alzheimer’s disease. Dement Geriatr Cogn Disord 2001;12:69-77.
46. Almkvist O, Jelic V, Amberla K, et al. Responder characteristics to a single oral dose of cholinesterase inhibitor: a double-blind placebocontrolled study with tacrine in Alzheimer patients. Dement Geriatr Cogn Disord 2001;12:22-32.
47. MacGowan SH, Wilcock GK, Scott M. Effect of gender and
apolipoprotein E genotype on response to anticholinesterase
therapy in Alzheimer’s disease. Int J Geriatr Psychiatry 1998;13:625-30.
48. Schneider LS, Lyness SA, Pawluczyk S, Gleason RP, Sloane
RB. Do blood pressure and age predict response to tacrine (THA) in Alzheimer’s disease? A preliminary report. Psychopharmacol
Bull 1991;27:309-14.
49. Rosen I. Electroencephalography as a diagnostic tool in dementia.
Dement Geriatr Cogn Disord 1997;8:110-6.
50. Farlow MR, Hake A, Messina J, Hartman R, Veach J, Anand R.
Response of patients with Alzheimer disease to rivastigmine
treatment is predicted by the rate of disease progression. Arch
Neurol 2001;58:417-22.
51. Sasaki M, Ehara S, Tamakawa Y, et al. MR anatomy of the substantia innominata and findings in Alzheimer disease: a preliminary report. AJNR Am J Neuroradiol 1995;16:2001-7.
52. Hanyu H, Asano T, Sakurai H, et al.MR analysis of the substantia innominata in normal aging, Alzheimer disease, and other types of dementia. AJNR Am J Neuroradiol 2002;23:27-32.
53. Hanyu H, Tanaka Y, Sakurai H, Takasaki M, Abe K. Atrophy
of the substantia innominata on magnetic resonance imaging
and response to donepezil treatment in Alzheimer’s disease.
Neurosci Lett 2002;319:33-6.
54. Alhainen K, Riekkinen PJ Sr. Discrimination of Alzheimer patients responding to cholinesterase inhibitor therapy. Acta Neurol Scand Suppl 1993;149:16-21.
55. Cummings JL, Mega M, Gray K, et al. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology 1994;44:2308-14.
56. Waldemar G, Hogh P, Paulson OB. Functional brain imaging with single-photon emission computed tomography in the diagnosis of Alzheimer’s disease. Int Psychogeriatr 1997;9(Suppl 1):223-7; discussion 247-52.
57. Saha GB, MacIntyre WJ, Go RT. Radiopharmaceuticals for brain imaging. Semin Nucl Med 1994;24:324-49.
58. Becker RE, Giacobini E. Mechanisms of cholinesterase inhibition in senile dementia of the Alzheimer type: clinical, pharmacological, and therapeutic aspects. Drug Development Res 1988;12:163-95.
59. Becker RE, Giacobini E. Pharmacokinetics and pharmacodynamic of acetylcholinesterase inhibition: can acetylcholine levels in the brain be improved in Alzheimer’s disease? Drug Development Res 1988;14:235-46
60. Kardon RH. Drop the Alzheimer’s drop test. Neurology 1998;50:588-91.
61. Naranjo CA, Fourie J, Herrmann N, et al. Probing peripheral and central cholinergic system responses. J Psychiatry Neurosci 2000;25:325-36.
62. Guillozet AL, Smiley JF, Mash DC, Mesulam MM. Butyrylcholinesterase in the life cycle of amyloid plaques. Ann Neurol 1997;42:909-18.
63. Mesulam MM, Geula C. Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia.Ann Neurol 1994;36:722-7.
64. Irie T, Fukushi K, Namba H, Iyo M, Tamagami H, Nagatsuka
S, et al. Brain acetylcholinesterase activity: validation of a PET
tracer in a rat model of Alzheimer’s disease. J Nucl Med 1996;
37:649-55.
65. Iyo M, Namba H, Fukushi K, Shinotoh H, Nagatsuka S, Sudo Y,
et al. Measurement of acetylcholinesterase by positron emission
tomography in the brains of healthy controls and patients with
Alzheimer’s disease. Lancet 1997;349:1805-9.
66. Kuhl DE, Koeppe RA, Minoshima S, et al. In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 1999;52:691–9.
67. Shinotoh H, Aotsuka A, Fukushi K, et al. Effect of donepezil on brain
acetylcholinesterase activity in patients with AD measured by PET. Neurology 2001;56:408–10.
68. Kaasinen V, Nagren K, Jarvenpaa T, et al. Regional effects of donepezil and rivastigmine on cortical acetylcholinesterase activity in Alzheimer’s disease. J Clin Psychopharmacol 2002;22:615–20.
69. Rogers SL, Farlow MR, Doody RS, et al. A 24-week, double-blind, placebo controlled trial of donepezil in patients with Alzheimer’s disease. Donepezil study group. Neurology 1998;50:136–45.
70. Kuhl DE, Minoshima S, Frey KA, et al. Limited donepezil inhibition of acetylcholinesterase measured with positron emission tomography in living Alzheimer cerebral cortex. Ann Neurol 2000;48:391–5.
71. Darreh-Shori T, Meurling L, Pettersson T, et al. Changes in the activity and protein levels of CSF acetylcholinesterases in relation to cognitive function of patients with mild Alzheimer''s disease following chronic donepezil treatment. J Neural Transm 2006;113:1791-1801.
72. Cummings JL. Alzheimer’s disease. N Engl J Med. 2004;351:56-67.
73. Doody RS, Stevens JC, Beck C, et al. Practice parameter: management of dementia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2001;56:1154-1166.
74. Small GW, Rabins PV, Barry PP, et al. Diagnosis and treatment of Alzheimer’s disease and related disorders: consensus statement of the American Association of Geriatric Psychiatry, the Alzheimer’s Association, and the American Geriatrics Society. JAMA 1997;278:1363-1371.
75. Rogers SL, Friedhoff LT. The efficacy and safety of donepezil in patients with Alzheimer’s disease: results of a US multicentre, randomized, doubleblind, placebo-controlled trial. The Donepezil Study Group. Dementia 1996;7: 293–303.
76. Soares JC, Gershon S. THA -- historical aspects, review of pharmacological properties and therapeutic effects. Dementia 1995;6:225–234.
77. Winblad B, Engedal K, Soininen H, et al. A 1-year, randomized, placebo-controlled study of donepezil in patients with mild to moderate AD. Neurology 2001;57:489–495.
78. Choi SH, Kim SY, Na HR, et al. Effect of ApoE genotype on response to donepezil in patients with Alzheimer''s disease.Dement Geriatr Cogn Disord. 2008;25:445-450.
79. MacGowan SH, Wilcock GK, Scott M. Effect of gender and apolipoprotein E genotype on response to anticholinesterase therapy in Alzheimer’s disease. Int J Geriatr Psychiatry. 1998;13:625–630.
80. Cacabelos R, Llovo R, Fraile C, Fernández-Novoa L. Pharmacogenetic aspects of therapy with cholinesterase inhibitors: the role of CYP2D6 in Alzheimer''s disease pharmacogenetics. Curr Alzheimer Res 2007;4:479-500
81. Pilotto A, Franceschi M, D''Onofrio G, et al. Effect of a CYP2D6 polymorphism on the efficacy of donepezil in patients with Alzheimer disease.Neurology. 2009;73:761-767.
82. Haywood WM, Mukaetova-Ladinska EB. Sex influences on cholinesterase inhibitor treatment in elderly individuals with Alzheimer''s disease. Am J Geriatr Pharmacother 2006;4:273-286.
83. Csernansky JG, Wang L, Miller JP, Galvin JE, Morris JC. Neuroanatomical predictors of response to donepezil therapy in patients with dementia. Arch Neurol. 2005;62:1718-1722.
84. Burns A, Rossor M, Hecker J, et al. The effects of donepezil in Alzheimer''s disease - results from a multinational trial. Dement Geriatr Cogn Disord. 1999;10:237-244.
85. Whitehead A, Perdomo C, Pratt RD, Birks J, Wilcock GK, Evans JG. Donepezil for the symptomatic treatment of patients with mild to moderate Alzheimer''s disease: a meta-analysis of individual patient data from randomised controlled trials. Int J Geriatr Psychiatry 2004;19:624-633.
86. McKhann,G, Drachman,D., Folstein,M., Katzman,R., Price,D., Stadlan,E.M. Clinical diagnosis of Alzheimer''s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer''s Disease. Neurology1984; 34:939-944.
87. Folstein MF, Folstein SE, McHugh PR. Mini-Mental State: A practical method for grading the cognitive state of patients for the clinicians. Journal of Psychiatric Research 1975;12:189–198.
88. Lin KN, Wang PN, Liu CY, Chen WT, Lee YC, Liu HC. Cut-off scores of the cognitive abilities screening instrument, Chinese version in screening of dementia. Dement Geriatr Cogn Disord 2002;14:176-182.
89. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology 1994;44:2308-2314.
90. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 1993;43:2412-2414.
91. Yeh HH, Yang YH, Ko JY, Chen SH. Sensitive analysis of donepezil in plasma by capillary electrophoresis combining oncolumn field-amplified sample stacking and its application in Alzheimer’s disease. Electrophoresis 2008;29:3649–3657.
92. Waller, D. G., Renwick, A. G., Hillier, K. (Eds), Medical Pharmacology and Therapeutics. 2nd ed., Elsevier Saunders, Oxford, UK, 2005, p. 156.
93. Hardman, J. G., Limbird, L. E., Gilman, A. G. (Eds),Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 10th ed., McGraw-Hill Medical Publishing Division, New York, 2001, p. 189.
94. Michaelis M.L. Drugs targeting Alzheimer''s disease: some things old and some things new. J Pharmacol Exp Ther.2003;304:897–904.
95. Tiseo P. J., Rogers S. L., Friedhoff L. T. Pharmacokinetic and pharmacodynamic profile of donepezil HCl following evening administration. Br J Clin Pharmacol. 1998;46 Suppl 1:13-18.
96. Farlow M.R. Pharmacokinetic profiles of current therapiesfor Alzheimer''s disease: implications for switching to galantamine. Clin Ther. 2001;23 Suppl A:A13-24.
97. Pappa H, Farrú R, Vilanova PO, Palacios M, Pizzorno MT. A new HPLC method to determine Donepezil hydrochloride in tablets. J Pharm Biomed Anal. 2002;27:177–182.
98. Yasui-Furukori N, Furuya R, Takahata T, Tateishi T. Determination of donepezil, an acetylcholinesterase inhibitor, in human plasma by high-performance liquid chromatography with ultraviolet absorbance detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;768:261-265.
99. Radwan MA, Abdine HH, Al-Quadeb BT, Aboul-Enein HY, Nakashima K. Stereoselective HPLC assay of donepezil enantiomers with UV detection and its application to pharmacokinetics in rats. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;830:114–119.
100. Matsui K,Oda Y,Ohe H, Tanaka S, Asakawa N.Direct determination of E2020 enantiomers in plasma by liquid chromatography-mass spectrometry and column-switching techniques. J Chromatogr A. 1995;694:209-218.
101. Matsui K, Oda Y, Nataka H, Yoshimura T. Simultaneous determination of donepezil (aricept) enantiomers in human plasma by liquid chromatography-electrospray tandem mass spectrometry.J Chromatogr B Biomed Sci Appl. 1999;729:147-155.
102. Lu Y, Wen H, Li W, Chi Y, Zhang Z. Determination of donepezil hydrochloride (E2020) in plasma by liquid chromatography-mass spectrometry and its application to pharmacokinetic studies in healthy, young, Chinese subjects. J Chromatogr Sci. 2004;42: 234–237.
103. Nakashima K, Itoh K, Kono M, Nakashima MN, Wada M. Determination of donepezil hydrochloride in human and rat plasma, blood and brain microdialysates by HPLC with a short C30 column.J Pharm Biomed Anal. 2006, 41, 201–206.
104. Wada M, Nishiwaki J, Yamane T, Ohwaki Y, Aboul-Enein HY, Nakashima K. Interaction study of aspirin or clopidogrel on pharmacokinetics of donepezil hydrochloride in rats by HPLC-fluorescence detection. Biomed Chromatogr. 2007;21:616–620.
105. Gotti R, Bertucci C, Andrisano V, Pomponio R, Cavrini V.Study of donepezil binding to serum albumin by capillary electrophoresis and circular dichroism. Anal Bioanal Chem. 2003;377:875–879.
106. Gotti R, Cavrini V, Pomponio R, Andrisano V. Analysis and enantioresolution of donepezil by capillary electrophoresis. J Pharm Biomed Anal. 2001;24: 863–870.
107. Chien R.L., Burgi D.S., Field amplified sample injection in high-performance capillary electrophoresis.J Chromatogr. 1991;559:141–152.
108. Cacabelos, R. Pharmacogenomics and therapeutic prospects in
Alzheimer’s disease. Exp. Opin. Pharmacother 2005;6:1967–1987.
109. Sramek JJ, Cutler NR. RBC Cholinesterase Inhibition: A Useful Surrogate Marker for Cholinesterase Inhibitor Activity in Alzheimer Disease Therapy? Alzheimer Disease and Associated Disorder 2000;14:216-227.
110. Rogers SL, Friedhoff LT, for the Donepezil study group. The efficacy and safety in patients with Alzheimer’s disease: results of a US multicentre, randomized, double-blind, placebo-controlled trail Dementia 1996;7:293-303.
111. Seltzer B, Zolnouni P, Nunez M, Goldman R, Kumar D, Ieni J, Richardson S; Donepezil "402" Study Group. Efficacy of donepezil in early-stage Alzheimer disease: a randomized placebo-controlled trial. Arch Neurol 2004;61:1852–1856.
112. Doody RS, Ferris SH, Salloway S, Sun Y, Goldman R, Watkins WE, Xu Y, Murthy AK. Donepezil treatment of patients with MCI: a 48-week randomized, placebo-controlled trial. Neurology 2009;72:1555-1561.
113. Wilkinson D, Schindler R, Schwam E, Waldemar G, Jones RW, Gauthier S, Lopes OL, Cummings J, Xu Y, Feldman HH. Effectiveness of donepezil in reducing clinical worsening in patients with mild-to-moderate alzheimer''s disease. Dement Geriatr Cogn Disord 2009;28:244-251.
114. Chen HH, Hu CJ. Genetic characteristics of dementia in Taiwan. Acta Neurol Taiwan 2006;15:161-169
115. Lin RT, Lai CL, Tai CT, Liu CK, Yen YY, Howng SL. Prevalence and subtypes of dementia in southern Taiwan: impact of age, sex, education, and urbanization. J Neurol Sci 1998;160:67-75.
116. Burns A, Yeates A, Akintade L, Del Valle M, Zhang RY, Schwam EM, Perdomo CA. Defining treatment response to donepezil in Alzheimer''s disease: responder analysis of patient-level data from randomized, placebo-controlled studies Drugs Aging 2008;25:707-714.
117. Burns A, Rossor M, Hecker J, Gauthier S, Petit H, Möller HJ, Rogers SL, Friedhoff LT. The effects of donepezil in Alzheimer''s disease - results from a multinational trial Dement Geriatr Cogn Disord 1999;10:237-244.
118. Lawrence J, Davidoff D, Katt-Lloyd D, Auerbach M, Hennen J. A pilot program of improved methods for community-based screening for dementia. Am J Geriatr Psychiatry 2001;9:205–211
119. Espino DV, Lichtenstein MJ, Palmer RF, Hazuda HP. Evaluation of the Mini-Mental State Examination''s internal consistency in a community-based sample of Mexican-American and European-American elders: results from the San Antonio Longitudinal Study of Aging. J Am Geriatr Soc 2004;52:822–827.
120. Lorentz W, Scanlan J, Borson S. Brief screening tests for dementia. Can J Psychiatry 2002;47:723–733.
121. Fujii D, Hishinuma E, Masaki K, Petrovich H, Ross GW, White L. Dementia screening: can a second administration reduce the number of false positives? Am J Geriatr Psychiatry 2003;11:462–465.
122. Brodaty H, Pond D, Kemp NM, et al. The GPCOG: a new screening test for dementia designed for general practice. J Am Geriatr Soc 2002;50:530–534.
123. Katzman R, Brown T, Fuld P, et al. Validation of a short orientation-memory-concentration test of cognitive impairment. Am J Psychiatry 1983;140:734–739.
124. Kuslansky G, Buschke H, Katz M, Sliwinski M, Lipton RB. Screening for Alzheimer''s disease: the memory impairment screen versus the conventional three-word memory test. J Am Geriatr Soc 2002;50:1086–1091.
125. Powlishta KK, Von Dras DD, Stanford A, et al. The clock drawing test is a poor screen for very mild dementia. Neurology 2002;59:898–903.
126. Yamamoto S, Mogi N, Umegaki H, et al. The clock drawing test as a valid screening method for mild cognitive impairment. Dem Geriatr Cogn Disord 2004;18:172–179.
127. Maeshima S, Osawa A, Maeshima E, et al. Usefulness of a cube-copying test in outpatients with dementia. Brain Inj 2004;18:889–898.
128. Storey JE, Rowland JT, Conforti DA, Dickson HG. The Rowland Universal Dementia Assessment Scale (RUDAS): a multicultural cognitive assessment scale. Int Psychogeriatr 2004;16:13–31.
129. Chen P, Ratcliff G, Belle, SH, Cauley JA, DeKosky ST, Ganguli M. Cognitive tests that best discriminate between presymptomatic AD and those who remain nondemented. Neurology 55:1847-1853,2000.
130. Galvin JE, Powlishta KK, Wilkins K, McKeel Jr DW, Storandt M, Grant E, Morris JC. Predictors of Preclinical Alzheimer Disease and Dementia: A Clinicopathologic Study. Arch Neurol. 2005;62:758-765.
131. Morris JC, McKeel DW, Storandt M, et al. Very mild Alzheimer’s disease: Informant-based clinical, psychometric and pathologic distinction from normal aging. Neurology1991;41:469-478.
132. Rubin EH, Storandt M, Miller JP, et al. A prospective study of cognitive function and onset of dementia in cognitively healthy elders. Arch Neurol 55:395-401,1998.
133. Carr DB, Gray S, Baty J, Morris JC. The value of informant versus individual’s complaints of memory impairment in early dementia. Neurology 55:1724-1726,2000.
134. Jorm A, Christensen H, Korten A, Jacomb P, Henderson A. Informant ratings of cognitive decline in old age: validation against change on cognitive tests over 7 to 8 years. Psychol Med 2000;30:981–985.
135. Morris JC, Berg L, Coben LA, Rubin EH, et al. Clinical Dementia Rating (CDR). In: Bergener M, Finkel SI, eds. Treating Alzheimer''s and other dementias: clinical applications of recent research advances. New York: Springer, 1995:338–346.
136. Tierney MC, Herrmann N, Geslani DM, Szalai JP. Contribution of informant and patient ratings to the accuracy of the Mini-Mental State Examination in predicting probable Alzheimer''s disease. J Am Geriatr Soc 2003;51:813–818.
137. Royall DR, Chiodo LK, Polk MJ. Misclassification is likely in the assessment of mild cognitive impairment. Neuroepidemiology 2004;23:185–191.
138. Storandt M, Grant EA, Miller JP, Morris JC. Longitudinal course and neuropathologic outcomes in original vs revised MCI and in pre-MCI. Neurology. 2006;67:467-73.
139. Galvin JE, Roe CM, Powlishta KK et al. The AD8 A brief informant interview to detect dementia. Neurology 2005;65:559-564.
140. Cruts M, Van Broeckhoven C. Presenilin mutations in Alzheimer''s disease. Hum Mutat. 1998;11:183-90.
141. Mehta KM, Yaffe K, Pérez-Stable EJ, Stewart A, Barnes D, Kurland BF, Miller BL. Race/ethnic differences in AD survival in US Alzheimer''s Disease Centers. Neurology. 2008;70:1163-70.
142. 1Scott Miners, 1Emma Ashby, 1Shabnam Baig,et al. Angiotensin-converting enzyme levels and activity in Alzheimer’s disease: differences in brain and CSF ACE and association with ACE1 genotypes. Am J Transl Res 2009;2:163-177.
143. Bertram L, McQueen M, Mullin K, Blacker D and Tanzi R. The AlzGene Database. Alzheimer Research Forum. Accessed [10th September 2007]*. 2007
144. Cheng CY, Hong CJ, Liu HC, et al. Study of the association between Alzheimer''s disease and angiotensin-converting enzyme gene polymorphism using DNA from lymphocytes. Eur Neurol. 2002 ; 47:26-9.

145. Hu J, Miyatake F, Aizu Y, Nakagawa H, Nakamura S, Tamaoka A, Takahash R, Urakami K, Shoji M. Angiotensin-converting enzyme genotype is associated with Alzheimer disease in the Japanese population. Neurosci Lett. 1999;277:65-7.
146. Wang HK, Fung HC, Hsu WC, et al. Apolipoprotein E, angiotensin-converting enzyme and kallikrein gene polymorphisms and the risk of Alzheimer''s disease and vascular dementia. J Neural Transm. 2006;113:1499-509.
147. Wang B, Jin F, Yang Z, et al. The insertion polymorphism in angiotensin-converting enzyme gene associated with the APOE epsilon 4 allele increases the risk of late-onset Alzheimer disease. J Mol Neurosci. 2006;30:267-71
148. Yang JD, Feng G, Zhang J, et al. Association between angiotensin-converting enzyme gene and late onset Alzheimer''s disease in Han chinese. Neurosci Lett. 2000;295:41-4.
149. Rigat B, Hubert C, Corvol P, Soubrier F. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1). Nucleic Acids Res. 1992; 20:1433.
150. Mattila KM, Rinne JO, Roytta M, et al. Dipeptidyl carboxypeptidase 1 (DCP1) and butyrylcholinesterase (BCHE) gene interactions with the apolipoprotein E epsilon4 allele as risk factors in Alzheimer''s disease and in Parkinson''s disease with coexisting Alzheimer pathology. J Med Genet. 2000; 37:766-770.
151. Lehmann DJ, Cortina-Borja M, Warden DR et al. Large Meta-Analysis Establishes the ACE Insertion-Deletion Polymorphism as a Marker of Alzheimer’s Disease. Am J Epidemiol 2005;162:305–317.
152. Elkins JS, Douglas VC, Johnston SC. Alzheimer disease risk and genetic variation in ACE: A meta-analysis. Neurology. 2004;62:363–368.
153. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism of the human angiotensin converting enzyme gene accounting for half of the variance of serum enzyme level. J Clin Invest. 1990;86:1343-46.
154. Arregui A, Perry EK, Rossor M, Tomlinson BE. Angiotensin converting enzyme in Alzheimer’s disease increased activity in caudate nucleus and cortical area. J Neurochem 1982;38:1490-1492.
155. Barenes NM, Cheng CH, Costall B, Naylor RJ, Williams TJ, Wischik CM. Angiotensin converting enzyme density is increased in temporal cortex from patients with Alzheimer’s disease. Eur J Pharmacol. 1991;200:289-292.
156. Savasken E, Hock C, Olivier G, et al. Cortical alterations of angiotensin converting enzyme, angiotensinII, and AT1 receptor in Alzheimer’s dementia. Neurobiol Aging. 2001;22:541-546.
157. Zubenko GS, Volicer L, Direnfeld LK, Freeman M, Langlais PJ, Nixon RA. Cerebrospinal fluid levels of angiotensin-converting enzyme in Alzheimer''s disease, Parkinson''s disease and progressive supranuclear palsy. Brain Res. 1985;328:215-21.
158. Hemming ML, Selkoe DJ. Amyloid Protein Is Degraded by Cellular Agiotensin Converting Enzyme (ACE) and Elevated by an ACE Inhibitor. J Biol Chem. 2005;280:37644–37650.
159. Hu J, Igarashi A, Kamata M, Nagagawa H. Angiotensin-converting Enzyme Degrades Alzheimer Amyloidβ-Peptide (Aβ); Retards Aβ Aggregation, Deposition, Fibril Formation; and Inhibits Cytotoxicity. J Biol Chem. 2001;276:47863–47868.
160. Oba R, Igarashi A, Kamata M, Nagata K, Takano S, Nakagawa H. The N-terminal active centre of human angiotensin converting enzyme degrades Alzheimer amyloid β-peptide. European Journal of Neuroscience. 2005;21:733–740.
161. Seripa D, Forno GD, Matera MG, et al. Methylenetetrahydrofolate reductase and angiotensin converting enzyme gene polymorphisms in two genetically and diagnostically distinct cohort of Alzheimer patients. Neurobiol Aging. 2003;24:933-9.
162. Farrer LA, Sherbatich T, Keryanov SA, et al. Association between angiotensin-converting enzyme and Alzheimer disease. Arch Neurol. 2000;57:210-214.
163. Wang HK, Fung HC, Hsu WC, et al. Apolipoprotein E, angiotensin-converting enzyme and kallikrein gene polymorphisms and the risk of Alzheimer''s disease and vascular dementia. J Neural Transm. 2006;113:1499-509.
164. Frith, M. C., Pheasant, M., & Mattick, J. S. The amazing complexity of the human transcriptome. Eur J Hum Genet. 2005;13: 894-897.
165. Orgel, L. E. & Crick, F. H. Selfish DNA: the ultimate parasite. Nature 1980; 284: 604-607.
166. Mattick JS, Makunin IV. Non-coding RNA.Hum Mol Genet. 2006;15:R17-R29.
167. Hasler, J. & Strub, K. Alu elements as regulators of gene expression. Nucleic acids research 2006; 34: 5491-5497.
168. Sorek, R., Ast, G., & Graur, D. Alu-containing exons are alternatively spliced. Genome research 2002;12:1060-1067.
169. Kim, D. D., Kim, T. T., Walsh, T., Kobayashi, Y. et al. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome research. 2004;14:1719-1725.
170. Levanon, E. Y., Eisenberg, E., Yelin, R. et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nature biotechnology 2004;22: 1001-1005.
171. Athanasiadis, A., Rich, A., Maas, S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS biology 2004;2:e391.
172. Chu WM, Ballard R, Carpick BW, Williams BR, Schmid CW. Potential Alu function: regulation of the activity of double-stranded RNA-activated kinase PKR. Molecular and cellular biology. 1998;18: 58-68.
173. Rubin C.M., Kimura R.H., Schmid C.W. Selective stimulation of translational expression by Alu RNA. Nucleic acids research.2002;30: 3253-3261.
174. Tiret L, Rigat B, Visvikis S, et al. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels.Am J Hum Genet. 1992;51:197-205.
175. Mondorf UF, Russ A, Wiesemann A, Herrero M, Oremek G, Lenz, T. Contribution of angiotensin I converting enzyme gene polymorphism and angiotensinogen gene polymorphism to blood pressure regulation in essential hypertension. Am J Hypertens. 1998;11:174-183.
176. Lindpaintner K, Pfeffer MA, Kreutz R. et al. A prospective evaluation of an angiotensin-converting-enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med. 1995;332:706-711.
177. Lei, H., Day, I. N., Vorechovsky, I. Exonization of AluYa5 in the human ACE gene requires mutations in both 3'' and 5'' splice sites and is facilitated by a conserved splicing enhancer. Nucleic acids research.2005;33:3897-3906.
178. Kehoe PG, Russ C, McIloryS, et al. Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease.Nat Genet. 1999;21:71-72


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊