[1]陳健尉,「生物晶片之生技應用」,台灣生物科技產學論壇,國立中興大學,台中市,民國九十二年。
[2]陳健尉,「生物晶片在生物醫學上之應用」,生物科技新知研習會,國立中興大學,台中市,民國九十三年八月。
[3]盧信智,「應用卵巢癌之微陣列晶片分析基因表現量及調控路徑」,國立台灣大學電機工程系碩士論文,民國九十五年六月。
[4]莊麗月,楊正宏,杜崇睿,張學偉,「GA-PSO用於基因表現資料的特徵選取」,2006數位科技與創新管理國際研討會,華梵大學,台北縣,民國九十五年六月。
[5]黃彥博,「智慧型混合系統應用於卵巢癌之微陣列基因篩選與分類 」,華梵大學資訊管理系碩士論文,民國九十六年六月。[6]郭俊利,「針對生物微晶片資料利用決策樹選取關鍵基因 」,國立中央大學資訊工程研究碩士論文,民國九十五年六月。[7]盧信智,「應用卵巢癌之微陣列晶片分析基因表現量及調控路徑」,國立台灣大學電機工程系碩士論文,民國九十五年六月。
[8]李維平、江正文,運用活化策略改良粒子群演算法求解成效,先進工程學刊,第八卷第四期,第283-293頁,民國九十六年十月。
[9]許盛家、林詩偉、陳士杰,「應用粒子群演算法為基礎之決策樹演算法於人員績效分類預測-以某科技公司為例」,2008系統科學與工程會議,2008年6月6-7日,宜蘭大學,(2008) .
[10]Kieff, F. Scott、Olin, John M., “Perspectives on Properties of the Human Genome Project ”, Lightning Source Inc, U.S.A, 2003, Chapter 1.
[11]Fodor S. P. A., “Massively parallel genomics”, Science Vol. 277, 1997, pp. 393-395.
[12]Fodor S. P. A., Read J. L., Pirrung M.C., Stryer L., Lu A. T. and Solas D., “Light-directed, spatially addressable parallel chemical synthesis”, Science Vol. 251, 1991, pp. 767-773.
[13]Fodor S. P. A., Rava R. P., Huang X. C., Pease A. C., Holmes C. P. and Adams C. L., “Multiplexed biochemical assays with biological chips”, Nature Vol. 364, 1993, pp. 555-556.
[14]Derisi J., Penland L., Brown P. O., Bittner M. L., Meltzer PS, Ray M., Chen Y., Su Y. A., and Trent J. M., “Use of a cDNA microarray to analyze gene expression patterns in human cancer”, Nature Genetics Vol. 14, 1996, pp. 457-460.
[15]Derisi J. L., Iyer V. R. and Brown P. O., “Exploring the metabolic and genetic control of gene expression on a genomic scale”, Science Vol. 278, 1997, pp. 680-686.
[16]Schena M., Shalon D., Davis R. W. and Brown P. O. “Quantitative monitoring of gene expression patterns with a complementary DNA microarray”, Science Vol. 270, 1995, pp. 467-470.
[17]Velculescu V. E., Z. L., Vogelstein B. and Kinzler K. W. “Serial analysis of gene expression”, Science Vol. 270, 1995, pp. 484-487.
[18]Zhang L., Zhou W., Velculescu V. E., Kern S. E., Hruban R. H., Hamilton S. R., Vogelstein B. and Kinzler K. W. “Gene expression profiles in normal and cancer cells”, Science Vol. 276, 1997, pp. 1268-1272.
[19]Quinlan, J. Ross, “C4.5: Programs For Machine Learning”, Morgan, San Mateo, CA, 1993.
[20]Schapire, R.E.,“The strength of weak learnability”, Machine Learning, Vol. 5, No. 2, 1990, pp. 197-227.
[21]Freund, Y. , “Boosting a weak learning algorithm by majority”, Information and Computation Vol. 121, 1995, No. 2, pp. 256-285.
[22]Freund, Y. and Robert E. Schapire.,“A Decision-Theoretic Generalization of On-
Line Learning and an Application to Boosting”, Journal of Computer and System Sciences Vol. 55, No.1, 1997, pp. 119-139.
[23]Eberhart, R. C., and Kennedy, J.,“A New Optimizer Using Particle Swarm Theory”, Proc. Sixth International Symposium on Micro Machine and Human Science, Japan, 1995, pp. 39-43.
[24] Kennedy, J., and Eberhart, R. C., “Particle Swarm Optimization”, Proc. IEEE International Conf. Neural Networks Vol. 4, 1995, pp. 1942-1948.
[25]Eberhart, R. C., and Shi, Y.,“Particle Swarm Optimization: Developments, Applications and Resources”, Proc. IEEE Int. Conf. On Evolutionary Computation Vol. 1, 2001, pp. 81-86.
[26]Bertucci F., Bernard K., Loriod B., Chang Y. C., Granjeaud S., Birnbaum D., Nguyen C., Peck K. and Jordan B. R.: Sensitivity issues in DNA array-based expression measurements and performance of nylon microarrays for small samples. Human Molecular Genetics Vol. 8, 1999, pp. 1715-1722.
[27]Kennedy, J., and Eberhart, R. C.,“Empirical Study of Particle Swarm Optimization”, Proceedings of the 1999 Congress on Evolutinary Computation Vol. 3, 1999.