跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 19:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘穎
研究生(外文):Ying Pan
論文名稱:PROMETHEE 模糊多準則決策於區間值直覺模糊環境之發展
論文名稱(外文):The Extension of PROMETHEE Decision Making Method under Interval-Valued Intuitionistic Fuzzy Environment
指導教授:陳亭羽陳亭羽引用關係
指導教授(外文):T. Y. Chen
學位類別:碩士
校院名稱:長庚大學
系所名稱:工商管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:73
中文關鍵詞:區間值直覺模糊PROMETHEE區間值直覺模糊集合模糊決策區間值直覺模糊概似函數
外文關鍵詞:IVIF-PROMETHEEinterval-valued intuitionistic fuzzy setsfuzzy decision-makingIVIF score function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:774
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去PROMETHEE於模糊環境的研究當中,有關語意的資料表示方式,皆藉由語意尺度(linguistic scale)轉換為三角模糊數(TFN)。不同於三角模糊數,區間值直覺模糊數的區間表示方式,更能完整的表現數值本身的特性。此外,使用區間值直覺模糊數亦能考量到一些不確定性因素。
本研究的資料表示方式以區間值直覺模糊數為主,並應用於PROMETHEE架構當中,建立一個較能應用於現實活中,並能表達不確定性的排序模型。首先,決策者需先評估方案在各準則下的表現,並藉由語意尺度轉換成區間值直覺模糊數。而各準則的權重則同樣藉由語意尺度對應出其屬於的區間值直覺模糊數值。而本文所採取的語意尺度皆為先前一些研究文獻當中所衡量的結果,並加以修改而成。PROMETHEE的主要精神即藉由方案間的兩兩比較,來進行方案排序上的演算。接著,利用偏好函數當中的閾值(threshold)對兩兩比較的方案給予參數。最後再加入權重,獲得到方案兩兩比較後的部分排序(PROMOTHEE I)以及完整排序(PROMOTHEE II)。
本研究中,各準則下的方案資料皆由決策者所評估。而在區間值直覺模糊的資料型態表示下,可較能貼切的表達決策者的觀點。為了能使得各方案做排序的動作,區間值直覺模糊概似函數(IVIF score function)是用來解決區間值直覺模糊數難以做比較的問題。
本研究例舉了兩個案例,皆能在區間值直覺模糊環境中做有效的應用。兩個案例皆分別對區間值直覺模糊權重以及區間值直覺模糊PROMETHEE的可行性得到了應證。因此,本研究證實區間值直覺模糊權重以及區間值直覺模糊PROMETHEE的結合運用是可行的。
In the past, research pertaining to the fuzzy preference ranking organization method for enrichment evaluation F-PROMETHEE, linguistic data has been chiefly transformed into triangular fuzzy numbers (TFNs). Different from a TFN, the interval-valued intuitionistic fuzzy (IVIF) number is able to more completely present its natural features. In addition, in specific contexts, we can also consider some uncertainty elements by using IVIF numbers.
This study expresses the input data as IVIF sets which are applied within the framework of PROMETHEE. First, decision makers (DMs) need to evaluate the alternatives with respect to each criterion; then, these alternatives are switched from linguistic numbers into IVIF numbers. The weights of the criteria are also expressed as IVIF sets switched from a linguistic scale. The linguistic scales used in our study are modified from earlier works in the literature. Notably, the main spirit of PROMETHEE involves deviations among the alternatives. The parameters are taken from a pair-wise comparison of alternatives corresponding to the thresholds of the preference function. After integrating the weights of the criteria, we can obtain the final partial outranking by PROMETHEE I and a complete outranking by PROMOTHEE II.
This study considers the opinions of the DMs, who provide data with respect to each alternative. With the use of IVIF linguistic scales, the intensities of the alternative weights can be described. In order to outrank the alternatives, an IVIF score function is used to avoid specific difficulties when comparing IVIF numbers.
This study exemplifies two cases which both can be applied within the IVIF environment. Both cases investigate IVIF-weight and IVIF-PROMETHEE, respectively. Therefore, this study confirms that the cooperation of IVIF-weight and IVIF-PROMETHEE is feasible in this context.
論文指導教授推薦書
論文口試委員審定書
長庚大學博碩士論文著作授權書 III
誌謝 IV
摘要 V
Abstract VI
Contents VIII
List of Tables X
List of Figures XI
Chapter I. Introduction 1
1.1 Background 1
1.2 Research Motivation 2
1.3 Research Purpose 3
1.4 Research Flow 4
Chapter II. Literature Review 5
2.1 The PROMETHEE Family 5
2.2 The Fuzzy PROMETHEE 8
2.3 The Applications of F-PROMETHEE 11
2.4 PROMETHEE I &; PROMETHEE II 19
2.5 The IVIF-PROMETHEE Method 20
Chapter Ⅲ. Methodology 23
3.1 Related Definitions of IVIF Set 23
3.2 Preference Function 25
3.3 The Proposed Method 28
3.4 Algorithm 31
Chapter Ⅳ. Illustrative example 34
4.1 An Application for a Manufacturing Company Finding Outsourcing Suppliers 34
4.2 A Case of Finding Outsourcing Construction for New Building 44
4.3 Discussion 50
Chapter V. Conclusions and Suggestions 52
5.1 Conclusions 52
5.2 Suggestions 53
References 55

List of Tables
Table 2.1 Application of Different PROMETHEE Methods 8
Table 2.2 The Application Area of F-PROMETHEE 17
Table 4.1 Linguistic Scale for Alternatives Evaluation 35
Table4.2 Alternatives Linguistic Evaluations by DMs 36
Table 4.3 Importance Weight as Linguistic Variables 36
Table 4.4 IVIF Set Decision Matrix (Example 1) 37
Table 4.5 Parameters for PROMETHEE Analysis 38
Table 4.6 Positive, Negative Preference Flows, and Net Flows (Example 1) 40
Table 4.7 Alternatives’ Leaving and Entering Flows (Example 1) 42
Table 4.8 The aggregated IVIF set matrix (Example 2) 45
Table 4.9 The Weights of Criteria (Example 2) 47
Table 4.10 Parameters for PROMETHEE Analysis (Example 2) 47
Table 4.11 Positive, Negative Preference Flows, and Net Flows (Example 2) 48
Table 4.12 Alternatives’ Leaving and Entering Flows (Example 2) 49
Table 4.13 Research Comparisons 51

List of Figures
Figure 1.1 Research Flow Chart 4
Figure 3.1 Types of Preference Functions P(d) 26
Figure 4.1 Partial Preorder—Value Outranking Graph (Example 1) 40
Figure 4.2 Complete Preorder—Value Outranking Graph (Example 1) 41
Figure 4.3 Partial Preorder—Value Outranking Graph (Example 2) 48
Figure 4.4 Complete Preorder—Value Outranking Graph (Example 2) 48
1.Abdullah, L., &; Wan Ismail, W. K. (2012). Hamming Distance in Intuitionistic Fuzzy Sets and Interval-Valued Intuitionistic Fuzzy Sets: A Comparative Analysis. Advances in Computational Mathematics and its Applications. 1(1), 7-11.
2.Albadvi, A., Chaharsooghi, S.K., &; Esfahanipour, A. (2007). Decision making in stock trading: An application of PROMETHEE. European Journal of Operational Research. 177(2), 673–683.
3.Aloini, D., Dulmin R., &; Mininno, V. (2009, November). A Hybrid Fuzzy-PROMOTHEE Method for Logistic Service selection: Design of a Decision Support Tool. Intelligent Systems Design and Applications. Symposium conducted at the meeting of the International Swaps and Derivatives Association, Pisa, Italy.
4.Araz, C., &; Irem, O. (2005). A Multicriteria Sorting Procedure for Financial Classification Problems: The Case of Business Failure Risk Assessment. Intelligent Data Engineering and Automated Learning-IDEAL 2005, Lecture Notes in Computer Science. 3578, 563-570.
5.Atanassov, K. (1989). Interval-Valued Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems. 31(3), 343-349.
6.Balali, V., Zahraie, B., &; Roozbahani, A. (2012). Integration of ELECTRE III and PROMETHEE II Decision Making Methods with Interval Approach: Application in Selection of Appropriate Structural Systems. Journal of Computing in Civil Engineering. doi: 10.1061/(ASCE)CP.1943-5487.0000254.
7.Behzadian, M., Kazemzadeh, R. B., Albadvi, A., &; Aghdasi, M. (2010). PROMETHEE: A Comprehensive Literature Review on Methodologies and Applications. European Journal of Operational Research. 200(1), 198–215.
8.Behzadian, M., Hosseini-Motlagh, S. M., Ignatius, J., Goh, M., &; Sepehri, M. M. (2013). PROMETHEE Group Decision Support System and the House of Quality. Group Decision and Negotiation, Springer Netherlands. 22(2), 189-205.
9.Bilsel, R. U., Büyüközkan, G., &; Ruan, D. (2006). A fuzzy preference‐ranking model for a quality evaluation of hospital web sites. International Journal of Intelligent Systems, 21(11), 1181-1197.
10.Boran, F. E., Genç, S., Kurt, M., &; Akay, D. (2009). A Multi-Criteria Intuitionistic Fuzzy Group Decision Making for Supplier Selection with TOPSIS Method. Expert Systems with Applications. 36(8), 11363-11368.
11.Brans, J.P., (1982). L’ingéniérie de la décision. Elaboration d’instruments d’aide à la décision. Méthode PROMETHEE. In: Nadeau, R., Landry, M. (Eds.), L’aide à la décision: Nature, instruments et perspectives d’avenir, Presses de l’Université Laval, Québec, Canada.
12.Brans, J. P., &; Mareschal, B. (1986). How to Decide with PROMETHEE. ULB and VUB Brussels Free Universities.
13.Brans, J. P. &; Mareschal, B. (1992). PROMETHEE V: MCDM problems with segmentation constraints. Retrieved from: http://ideas.repec.org/p/ulb/ulbeco/2013-9341.html.
14.Brans, J. P., &; Mareschal, B. (2005). PROMETHEE Methods. International Series in Operations Research &; Management Science. 78, 163-186. doi: 10.1007/0-387-23081-5_5.
15.Brans, J. P., Vincke, P., &; Mareschal, B. (1986). How to Select and How to Rank Projects: The PROMETHEE Method. European Journal of Operational Research. 24(2), 228-238.
16.Bustince, H., &; Burillo, P. (1995). Correlation of Interval-Valued Intuitionistic Fuzzy Set. Fuzzy Sets and Systems. 74(2), 237-244.
17.Chandana, S., &; Leung, H. (2010, July). Context-Aware Collective Decision Making Based on Fuzzy Outranking. Fuzzy Systems (FUZZ). Symposium conducted at the meeting of the IEEE International Communications Conf., Barcelona, Canada.
18.Chen, Y. L., &; Cheng, L. C. (2010). An Approach to Group Ranking Decisions in a Dynamic Environment. Decision Support Systems. 48(4), 622-634.
19.Chen, S. J. J., Hwang, C. L., Beckmann, M. J., &; Krelle, W. (1992). Fuzzy Multiple Attribute Decision Making: Methods and Applications. New York: Springer-Verlag New York, Inc.
20.Chen, Y. H., Wang, T. C., &; Wu, C. Y. (2011). Strategic Decisions Using the Fuzzy PROMETHEE for IS Outsourcing. Expert Systems with Applications. 38(10), 13216–13222.
21.Dağdeviren, M. (2008). Decision making in equipment selection: an integrated approach with AHP and PROMETHEE. Journal of Intelligent Manufacturing. 19(4), 397-406.
22.Davarzani, H., &; Khorheh, M.A. (2013). A Novel Application of Intuitionistic Fuzzy Sets Theory in Medical Science: Bacillus Colonies Recognition. Artificial Intelligence Research. 2(2), 1.
23.Dhouib, D., &; Elloumi, S. (2011). A New Multi-Criteria Approach Dealing with Dependent and Heterogeneous Criteria for End-of-Life Product Strategy. Applied Mathematics and Computation. 218(5), 1668–1681.
24.Dulmin, R., &; Mininno, V. (2003). Supplier Selection Using a Multi-Criteria Decision Aid Method. Journal of Purchasing &; Supply Management. 9(4), 177–187.
25.El-Wahed, W. F. A. (2008). Intelligent Fuzzy Multi-Criteria Decision Making: Review and Analysis. Fuzzy Multi-Criteria Decision Making, Springer US. 16, 19-50.
26.Ferna´ ndez-Castro, A.S., &; Jime´nez, M. (2004). PROMETHEE: an Extension through Fuzzy Mathematical Programming. Journal of the Operational Research Society. 56(1), 119–122.
27.Figueira, J., Greco, S., &; Ehrgott, M. (2005). Multiple criteria decision analysis: state of the art surveys (163-189). New York: Springer International Series.
28.Gervásio, H., &; Simões da Silva, L. (2012). A Probabilistic Decision-Making Approach for the Sustainable Assessment of Infrastructures. Expert Systems with Applications. 39(8), 7121-7131.
29.Geldermann, J., Spengler, T., &; Rentz, O. (2000). Fuzzy Outranking for Environmental Assessment. Case Study: Iron and Steel Making Industry. Fuzzy Sets and Systems. 115(1), 45-65.
30.Goumas, M., &; Lygerou, V. (2000). An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects. European Journal of Operational Research. 123(3), 606–613.
31.Gupta, M. (2012, March). Group Decision Making in Fuzzy Environment. Computational Intelligence for Financial Engineering &; Economics (CIFEr). Symposium conducted at the meeting of the IEEE International Communications Conf., New York, USA.
32.Gupta, R., Sachdeva, A., &; Bhardwaj, A. (2012). Selection of Logistic Service Provider Using Fuzzy PROMETHEE for a Cement Industry. Journal of Manufacturing Technology Management. 23(7), 899-921.
33.Halim, A., Sudrajat, A., Sunandar, A., Arthana, I. K. R., Megawan, S., &; Mursanto, P. (2011, December). Analytical Hierarchy Process and PROMETHEE Application in Measuring Object Oriented Software Quality. Advanced Computer Science and Information System (ICACSIS). Symposium conducted at the meeting of the IEEE International Communications Conf., Jakarta, Indonesia.
34.Hermans, C., Ericksonb, J., Noordewierc, T., Sheldond, A., &; Klinee, M. (2007). Collaborative Environmental Planning in River Management: An Application of Multicriteria Decision Analysis in the White River Watershed in Vermont. Journal of Environmental Management. 84(4), 534–546.
35.Herrera, F., &; Herrera-Viedma, E. (2000). Linguistic Decision Analysis: Steps for Solving Decision Problems under Linguistic Information. Fuzzy Sets and Systems. 115(1), 67-82.
36.Ho, C.Y. (2006). Applying Fuzzy Multi-Criteria Decision-Making for Evaluating ERP System Development Methods and Implementation Strategies. Institute of Information Management, Univ. I-Shou, Kaohsiung.
37.Hong, D. H., &; Choi, C. H. (2000). Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy sets and systems, 114(1), 103-113.
38.Hsu, T.H., &; Lin, L. Z. (2012). Using Fuzzy Preference Method for Group Package Tour Based on the Risk Perception. Group Decision and Negotiation. doi: 10.1007/s10726-012-9313-7.
39.Hu, Y. C., &; Chen, H. C. (2011). Integrating Multicriteria PROMETHEE II Method into a Single-Layer Perceptron for Two-Class Pattern Classification. Neural Computing and Applications. 20(8), 1263–1271.
40.Izadikhah, M. (2012). Group Decision Making Process for Supplier Selection with TOPSIS Method under Interval-Valued. Advances in Fuzzy Systems, 2012(2).
41.Jensen, T. S., Lerche, D. B., &; Sørensen, P. B. (2003). Ranking Contaminated Sites Using a Partial Ordering Method. Environmental Toxicology and Chemistry. 22(4), 776–783.
42.Jlassi, J., El Mhamedi, A., &; Chabchoub, H. (2011). Technical Note: The Improvement of the Performance of the Emergency Department: Application of Simulation Model and Multiple Criteria Decision Method. Journal of Industrial Engineering International. 7(12), 60-71.
43.Lateef-Ur-Rehman, A. U. R. (2013). Manufacturing Configuration Selection Using Multicriteria Decision Tool. The International Journal of Advanced Manufacturing Technology. 65(5-8), 625-639.
44.Lee, Y. C., Hong, T. P., &; Wang, T. C. (2008). Multi-Level Fuzzy Mining with Multiple Minimum Supports. Expert Systems with Applications. 34(1), 459-468.
45.Li, D. F. (2010). TOPSIS-Based Nonlinear-Programming Methodology for Multiattribute Decision Making with Interval-Valued Intuitionistic Fuzzy Sets. IEEE Transactions on Fuzzy Systems. 18(2), 299-311.
46.Liu, J., Deng, X., Wei, D., Li, Y., &; Deng, Y. (2012, May). Multi-Attribute Decision-Making Method Based on Interval-Valued Intuitionistic Fuzzy Sets and D-S Theory of Evidence. Control and Decision Conference (CCDC). Symposium conducted at the meeting of the IEEE International Communications Conf., Taiyuan, China.
47.Macharis, C., Brans, J.P., &; Mareschal, B. (1998). The GDSS PROMEHTEE procedure”, Journal of Decision Systems. 7, 283–307.
48.Özerol, G., &; Karasakal, E. (2008). Interactive Outranking Approaches for Multicriteria Decision-Making Problems with Imprecise Information. Journal of the Operational Research Society. 59(9), 1253–1268.
49.Park, D. G., Kwun, Y. C., Park, J. H., &; Park, I. Y. (2009). Correlation Coefficient of Interval-Valued Intuitionistic Fuzzy Sets and Its Application to Multiple Attribute Group Decision Making Problems. Mathematical and Computer Modelling. 50(9-10), 1279-1293.
50.Qu, S., Li, H., &; Guo, X. (2011, August). Application of Interval-PROMETHEE Method for Decision Making in Investing. Operations Research and Its Applications. Symposium conducted at the meeting of the Tenth Operations Research and Its Applications (ISORA2011), Dunhuang, China.
51.Rao, J. R., Tiwari, R. N., &; Mohanty, B. K. (1988). Preference Structure on Alternatives and Judges in A Group Decision Problem- A Fuzzy Approach. International Journal Systems Science, 19(9), 1795-1811.
52.Rasa, E. (2009). Multi-Criteria Decision Based Evaluation of Municipal Infrastructure Projects (Master’s thesis, Iran University). Retrieved from: https://circle.ubc.ca/bitstream/handle/2429/43290/ubc_2012_fall_rasa_eghbal.pdf?sequence=1.
53.Roozbahani, A., Zahraie, B., &; Tabesh, M. (2012). PROMETHEE with Precedence Order in the Criteria (PPOC) as A New Group Decision Making Aid: An Application in Urban Water Supply Management. Water Resources Management. 26(12), 3581-3599.
54.Safari, H., Fagheyi, M. S., Ahangari, S. S., &; Fathi, M. R. (2012). Applying PROMETHEE Method Based on Entropy Weight for Supplier Selection. Business management and strategy, 3(1), 97-106.
55.San Cristobal, J.R. (2012). Critical Path Definition Using Multi-Criteria Decision Making: PROMETHEE Method. Journal of Management in Engineering. 29(2), 158-163.
56.Shakhsi-Niaei, M., Torabi, S. A., &; Iranmanesh, S. H. (2011). A Comprehensive Framework for Project Selection Problem under Uncertainty and Real-World Constraints. Computers &; Industrial Engineering, 61(1), 226–237.
57.Singpurwalla, N.D., &; Booker, J.M. (2004). Membership Functions and Probability Measures of Fuzzy Sets. Journal of the American Statistical Association. 99(467), 867-877.
58.Shirinfar, M. &; Haleh, H. (2011). Supplier Selection and Evaluation by Fuzzy Multi-Criteria Decision Making Methodology. International Journal of Industrial Engineering &; Production Research. 22(4), 271-280.
59.Szmidt, E. &; Kacprzyk, J. (2012, April). On an Enhanced Method for a More Meaningful Pearson’s Correlation Coefficient between Intuitionistic Fuzzy Sets. Artificial Intelligence and Soft Computing (ICAISC). Symposium conducted at the meeting of the 11th International Conf. ICAISC 2012, Zakopane, Poland.
60.Treitz, M. (2006). Production Process Design Using Multi-Criteria Analysis. doi: http://dx.doi.org/10.5445/KSP/1000005289.
61.Turcksin, L., Bernardini, A., &; Macharis, C. (2011). A Combined AHP-PROMETHEE Approach for Selecting the Most Appropriate Policy Scenario to Stimulate a Clean Vehicle Fleet. Procedia-Social and Behavioral Sciences, 20, 954-965.
62.Vinodh, S., &; Jeya, G. R. (2012). PROMETHEE Based Sustainable Concept Selection. Applied Mathematical Modelling. 36(11), 5301–5308.
63.Wang, W., &; Liu, X. (2013). Interval-valued intuitionistic fuzzy hybrid weighted averaging operator based on Einstein operation and its application to decision making. Journal of Intelligent &; Fuzzy Systems. 25(2), 279-290.
64.Wang, W., &; Xin, X. (2005). Distance Measure between Intuitionistic Fuzzy Sets. Pattern Recognition Letters. 26(13), 2063-2069.
65.Wang, X. (2008). Fuzzy Number Intuitionistic Fuzzy Arithmetic Aggregation Operators. International Journal of Fuzzy Systems. 10(2), 104-111.
66.Wang, Z. J., &; Li, K. W. (2012). An Interval-Valued Intuitionistic Fuzzy Multiattribute Group Decision Making Framework with Incomplete Preference over Alternatives. Expert Systems with Applications. 39(18), 13509–13516.
67.Wang, Z., Wang, W., &; Lie, K. W. (2008, July). Multi-Attribute Decision Making Models and Methods under Interval-Valued Intuitionistic Fuzzy Environment. Symposium conducted at the meeting of the Control and Decision Conf. (CCDC), Shandong, China.
68.Wei, C. P., Wang, P., &; Zhang, Y. Z. (2011). Entropy, Similarity Measure of Interval-Valued Intuitionistic Fuzzy Sets and Their Applications. Information Sciences. 181(19), 4273-4286.
70.Xu, Z. S. (2007). Methods for Aggregating Interval-Valued Intuitionistic Fuzzy Information and Their Application to Decision Making. (Doctoral Dissertation). Retrieved from Control and Decision 22(2).
71.Xu, Z. S. (2010). A Method Based on Distance Measure for Interval-Valued Intuitionistic Fuzzy Group Decision Making. Information Sciences. 180(1-2), 181-190.
72.Xu, Y. (2011). Standard Deviation Method for Risk Evaluation in Failure Mode under Interval-Valued Intuitionistic Fuzzy Environment. Modeling Risk Management for Resources and Environment in China, Computational Risk Management. doi: 10.1007/978-3-642-18387-4_61.
73.Xu, B., &; Ouenniche, J. (2012). Performance Evaluation of Competing Forecasting Models: A Multidimensional Framework Based on MCDA. Expert System with Applications. 39(9), 8312–8324.
74.Yager, R. (1981). A Procedure for Ordering Fuzzy Subsets of the Unit Interval”, Information Science, 24(2), 143-161.
75.Ye, J. (2013). A Linear Programming Method Based on an Improved Score Function for Interval-Valued Intuitionistic Fuzzy Multicriteria Decision Making. The Engineering Economist. doi: 10.1080/0013791X.2012.760695.
76.Yilmaz, B., &; Dag˘deviren, M. (2011). A Combined Approach for Equipment Selection: F-PROMETHEE Method and Zero–One Goal Programming. Expert Systems with Applications. 38(9), 11641–11650.
77.Yu, D. (2012). Interval-Valued Intuitionistic Fuzzy Prioritized Operators and Their Application in Group Decision Making. Knowledge-Based Systems. 30, 57-66.
78.Zadeh, L.A. (1965). Fuzzy Sets. Information and Control. 8(3), 338-353.
79.Zhang, Q. S., Jiang, S., Jia, B., &; Luo, S. (2010). Some Information Measures for Interval-Valued Intuitionistic Fuzzy Sets. Information Sciences. 180(24), 5130-5145.
80.Zhang, K., Kluck, C., &; Achari, G. (2009). A Comparative Approach for Ranking Contaminated Sites Based on the Risk Assessment Paradigm Using Fuzzy PROMETHEE. Environmental Management. 44(5), 952-967.
81.Zhao, X., Tang, S., Yang, S., &; Huang, K. (in press). Extended VIKOR Method based on Cross-Entropy for Interval-Valued Intuitionistic Fuzzy Multiple Criteria Group Decision Making. Journal of Intelligent &; Fuzzy Systems. Retrieved from: http://iospress.metapress.com/content/y183t5251mqh5133/.
82.Zhang, J. L., &; Qi, X. W. (2012). Induced Interval-Valued Intuitionistic Fuzzy Hybrid Aggregation Operators with TOPSIS Order-Inducing Variables. Journal of Applied Mathematics, 2012. doi:10.1155/2012/245732.
83.Zhang, Y. &; Wang, Y. (2012, July). Ranking Alternatives Expressed with Interval-Valued Intuitionistic Fuzzy Set. Information Fusion (FUSION). Symposium conducted at the meeting of the IEEE International Conf., Singapore.
84.Zhang, Q., Xing, H., Liu, F., &; Huang, Y. (in press). An Enhanced Grey Relational Analysis Method for Interval-Valued Intuitionistic Fuzzy Multiattribute Decision Making. Journal of Intelligent &; Fuzzy Systems. Retrieved from: http://iospress.metapress.com/content/j804585745547430/.
85.Ziolkowska, J.R. (2012, August). A Fuzzy Multi-Criteria Approach for Evaluating Biofuels Feedstocks. Fuzzy Information Processing Society (NAFIPS). Symposium conducted at the meeting of the 2012 Annual Meeting of the North American, Berkeley, USA.
86.Zopounidis, C., &; Doumpos, M. (2004). Multi-Criteria Decision Aid in Classification Problems. EURO Working Group Multicriteria Decision Aiding (EWG-MCDA), Opinion Makers Section, 3(10). Retrieved from:
http://www.inescc.pt/~ewgmcda/OpZopounidisDoumpos.html.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top