跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 12:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王善立
研究生(外文):Shan-Li Wang
論文名稱:酵母菌HTL1基因剔除影響染色質重塑複合物之結構與細胞功能的探討
論文名稱(外文):Study of the structural and functional effects of the ∆htl1 mutant in the Saccharomyces cerevisiae RSC complex
指導教授:鄭明媛
指導教授(外文):Ming-Yuan Cheng
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生命科學暨基因體科學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:105
中文關鍵詞:酵母菌細胞璧完整性基因調控
外文關鍵詞:yeastRSCHTL1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
出芽酵母菌染色質重塑複合物(RSC complex)具有利用水解三磷酸腺苷(ATP)產生能量進而改變染色質結構的能力。從個別單元突變株的研究中,已知染色質重塑複合物參與多項細胞功能,包括轉錄作用、姐妹染色體連結、去氧核醣核酸損壞修補和細胞壁完整性維持。本論文中探討的HTL1基因是一個染色質重塑複合物的非必須單元,之前的研究發現,HTL1基因剔除會造成單倍體酵母菌染色數增加,以及在致死溫度生長時出現細胞生長週期停滯在G2/M時期。為了進一步研究染色質重塑複合物的細胞功能,我們探討了HTL1基因剔除株在上述部份細胞功能以及染色質重塑複合物結構的影響。結果分為三部份,在第一部份,我們探討HTL1基因剔除株中細胞壁完整性的缺陷。結果顯示HTL1基因剔除株具有細胞壁完整性缺陷的特徵,而且此細胞壁完整性缺陷可以被等壓濃度的山梨醇(sorbitol)拯救,然而染色質重塑複合物結構上受到HTL1基因剔除後的影響並不會因此恢復。第二部份我們探討了HTL1基因剔除株有絲分裂期停滯的機轉,結果顯示HTL1基因剔除株的有絲分裂期停滯受紡錘絲檢查點(spindle checkpoint)影響,另外,細胞壁完整性缺陷也影響HTL1基因剔除株有絲分裂的進行。第三部份我們探討CHA1基因在HTL1基因剔除株的表現。CHA1是一月安基酸代謝相關基因,在絲月安酸(serine)或蘇月安酸(therine)存在時,CHA基因會大量表現,平時則受抑制,然而在染色質重塑複合物單元RSC8基因表現受抑制後,CHA1的表現抑制作用也消失。我們的實驗結果顯示,雖然結構上,HTL1基因剔除株會造成Rsc8蛋白質單元容易與染色質重塑複合物分離,但CHA1的抑制作用在HTL1基因剔除株中並沒有消失,甚至有強化的現象。以上結果顯示,HTL1基因在細胞壁完整性維持與有絲分裂週期的功能上與其他單元不同,而且HTL1基因剔除對染色質重塑複合物結構與功能的影響也似乎不一致。
The Saccharomyces cerevisiae RSC (remodel the structure of chromatin) complex is a chromatin remodeler that hydrolyzes ATP as energy to mediate the chromatin structure. RSC plays a role in the cellular function of transcriptional regulation, sister chromatids cohesion, DNA damage repair and cell wall integrity. The HTL1 (high temperature lethal) gene encodes a nonessential subunit of the RSC complex. Deletion of HTL1 causes increased ploidy at the permissive temperature, and the ∆htl1 mutant accumulates in the cell cycle at the G2/M phase at restrictive temperatures. In this thesis, we investigated the cellular function of the HTL1 gene. The results are described in three chapters. In chapter 1, we explored the defect in cell wall integrity in the ∆htl1 mutant. The HTL1 gene has been shown to genetically interact with the PKC1 pathway, the signaling pathway important for the biogenesis and stress response of yeast cell wall; however, a characteristic defect in cell wall integrity has not been explored in the ∆htl1 single mutants. We show that the ∆htl1 mutant is sensitive to agents that cause cell wall stress; in addition, various phenotypes of htl1 cells, including a defect in cell wall integrity and the mitotic arrest are rescued by the presence of osmotic stabilizer such as sorbitol. We also show that the aberrant structure of the RSC complex in the ∆htl1 mutant is not consistent with the increasing severity of the phenotypes of ∆htl1 cells as the temperature increases. In chapter 2, we explored the mechanism of mitotic arrest in the ∆htl1 mutant. The results show that the mitotic arrest in ∆htl1 cells is dependent on the spindle assembly checkpoint; in addition, the mitotic arrest in the ∆htl1 mutant is partially caused by the defect in the cell wall integrity. In chapter 3, we explored the regulation of CHA1 gene, which encodes the catabolic L-serine deaminase. A previous study showed that the transcriptional expression of CHA1 gene was de-repressed when Rsc8p and Sth1p, two major RSC components, had been depleted. However, our results show that CHA1 is persistently repressed in the ∆htl1 mutant during prolonged incubation under the repressive condition. Furthermore, the RSC complex associates with the CHA1 locus whether serine is present or not, and the association between the RSC complex and the CHA1 locus is enhanced in ∆htl1 cells. Taken together, our present findings suggest that HTL1 may play a role different from that of other RSC components in terms of cell wall integrity and the G2/M transition. The results also suggest that the defects in cell wall integrity and the G2/M transition of the ∆htl1 mutant are interconnected. Moreover, the functional and structural effects of the ∆htl1 mutant on the RSC complex do not seem to be coordinated.
中文摘要 iv
Abstract v
Introduction 1
Chapter 1. Cell wall integrity in the ∆htl1 mutant 6
Introduction 6
Results 8
1. The characteristics of cell wall defect that occur in the ∆htl1 mutant 8
2. The characteristic defect in cell wall integrity of the ∆htl1 mutant is temperature-dependent 9
3. Htl1p interacts with the Rsc1 and Rsc2 sub-complexes 9
4. Rsc8p and Rsc58p partially disassemble from the RSC complex in Δhtl1 yeast cells examined by the sucrose gradient analysis 10
5. Sorbitol does not restore the disassociation of Rsc8p from RSC complexes in the ∆htl1 mutant 11
6. Temperature and CFW sensitivities of the ∆htl1 mutant are not suppressed by over-expression of the PKC1 gene 12
7. Expression of MAP kinase SLT2 is up-regulated in ∆htl1 cells 13
8. Transcriptional change in the ∆htl1 and GAL1-HTL1 cells 14
Discussion 16
Chapter 2. Ploidy shift and cell cycle progression in the ∆htl1 mutant 19
Introduction 19
Results 21
1. Ploidy of ∆htl1 yeast haploid cells increases to 2N DNA content 21
2. Ploidy increase of the ∆htl1 mutant is temperature-dependent and is suppressed by 1 M sorbitol 21
3. The accumulation of 2N DNA content in the Htl1p-depleted cell at restrictive temperature remains prominent in the ∆mad1 background 22
4. Accumulation of phosphorylated Scc1p in ∆htl1 cells is moderated by the deletion of MAD1 24
5. Sister chromatids cohesion in ∆htl1 yeast cells 25
6. Structure of CEN3 element in the ∆htl1 mutant 27
7. Structure of CEN3 element in the GAL1-HTL1 cell 28
8. G2/M arrest of the htl1 mutant is relieved by the ∆slt2 28
Discussion 30
Chapter 3. Expression of CHA1 gene in the ∆htl1 mutant 32
Introduction 32
Results 34
1. The nucleosome pattern of CHA1 gene tends to remain in a repressed state in the ∆htl1 mutant after prolonged incubation in the presence of serine 34
2. The extent of association between the RSC complex and CHA1 gene is enhanced in the ∆htl1 mutant 35
3. The extent of chromatin-association of the RSC complex is enhanced in the ∆htl1 cell 37
Discussion 39
Materials and methods 43
References 57
List of figures…………………………………………………………………..........64
1. The osmotic stabilizer sorbitol suppresses the CFW sensitivity of the ∆htl1 mutant……………………………………………...………………………..64
2. CFW sensitivity of the ∆htl1 and ∆rsc7 mutants is temperature-dependent…………………………………………………….65
3. Htl1p is associated with both the RSC1 and RSC2 subcomplexes………66
4. Integrity of the RSC complex in the ∆htl1 and ∆rsc7 mutants…………..67
5. Integrity of the RSC complex in the ∆htl1 mutant………………………..68
6. Rsc8p is disassembled from RSC complexes in the ∆htl1 and ∆rsc7 mutants……………………………………………………………………...69
7. 1 M Sorbitol does not restore the disassociation of Rsc8p from RSC complexes in the ∆htl1 mutant……………………………………………..70
8. The CFW and temperature sensitivity of the ∆htl1 mutant are not rescued by over-expression of PKC1……………………………………………...…71
9. Expression of MAP kinase Slt2p is up-regulated in the ∆htl1 mutant…..72
10. Ploidy of the ∆htl1 mutant in the background of S288C and W303 is increased………………………………………………………………….…73
11. DNA content of different yeast strains……………………………...……74
12. Ploidy increase of the ∆htl1 mutant is temperature-dependent and is suppressed by 1 M sorbitol…………………………………………………75
13. Changes of DNA content in the ∆htl1 mutant at restrictive temperature………………………………………………………………....76
14. Changes of cell cycle in the ∆htl1 mutant at restrictive temperature….77
15. Depletion of RSC subunits as examined by Western blotting………….78
16. Changes in the DNA content on the depletion of Htl1p in ∆mad1 or ∆bub2 backgrounds…………………………………………………………80
17. Changes in the DNA content on the depletion of Htl1p in the ∆mad1 background………………………………………………………………….81
18. Changes in the DNA content on the depletion of Sth1p in ∆mad1 or ∆bub2 backgrounds…………………………………………………………82
19. Changes in the DNA content on the depletion of Rsc8p in ∆mad1 or ∆bub2 backgrounds…………………………………………………………83
20. Accumulation of hyperphosphorylated Scc1p in htl1 cells is relieved in a ∆mad1 background…………………………………………………………84
21. Cohesion of sister chromatids is prematurely separated in the ∆htl1 mutant…………………………………………………………………….....85
22. Separation of sister chromatids is delayed in the ∆htl1 mutant………..86
23. Nucleosome pattern analysis of CEN3 franking region………………...87
24. Nucleosome pattern analysis of CEN3 franking region………………...89
25. Nucleosome pattern analysis of CEN3 franking region………………...90
26. Restriction enzyme accessibility of CEN3 element……………………...91
27. Accumulation of phosphorylated Scc1p of the ∆htl1 mutant is rescued by 1M sorbitol………………………………………………………………….92
28. Mitotic arrest of the ∆htl1 mutant is rescued by the deletion of SLT2…93
29. The nucleosome pattern of CHA1 gene tends to remain in a repressed state in the ∆htl1 mutant after prolonged incubation in the presence of serine…………………………………………………………………….…...94
30. Interaction between RSC complex and CHA1 gene examined by chromatin immunoprecipitation (ChIP)……………………………….….95
31. Extent of chromatin association of the RSC complex is increased in the ∆htl1 mutant………………………………………………………………....96
32. Construction of pRS306-CHA1-HA……………………………………...97
33. Expression of Cha1p in the serine present or not……………………......98
List of tables…………………………………………………………………………99
I. List of ORFs whose transcripts are induced at least 4-fold on the depletion of Htl1p…………………………………………………………...99
II. List of ORFs whose transcripts are reduced at least 1.17-fold on the depletion of Htl1p………………………………………………………….100
III. List of ORFs whose transcripts are induced at least 2-fold in the ∆htl1………………………………………………………………………...102
IV. List of ORFs whose transcripts are reduced at least 0.75-fold in the ∆htl1………………………………………………………………………...103
V. Chromosome gain analysis of the ∆htl1 mutant………………………...104
Appendix…………………………………………...………………………………105
Figure A1. Components of the RSC complex and genetic interaction between HTL1 and RSC components……………………………………….105

Angus-Hill, M. L., Schlichter, A., Roberts, D., Erdjument-Bromage, H., Tempst, P. and Cairns, B. R. (2001). A Rsc3/Rsc30 zinc cluster dimer reveals novel roles for the chromatin remodeler RSC in gene expression and cell cycle control. Mol Cell 7, 741-51.
Askree, S. H., Yehuda, T., Smolikov, S., Gurevich, R., Hawk, J., Coker, C., Krauskopf, A., Kupiec, M. and McEachern, M. J. (2004). A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci U S A 101, 8658-63.
Asturias, F. J., Chung, W. H., Kornberg, R. D. and Lorch, Y. (2002). Structural analysis of the RSC chromatin-remodeling complex. Proc Natl Acad Sci U S A 99, 13477-80.
Baetz, K. K., Krogan, N. J., Emili, A., Greenblatt, J. and Hieter, P. (2004). The ctf13-30/CTF13 genomic haploinsufficiency modifier screen identifies the yeast chromatin remodeling complex RSC, which is required for the establishment of sister chromatid cohesion. Mol Cell Biol 24, 1232-44.
Bennett, C. B., Lewis, L. K., Karthikeyan, G., Lobachev, K. S., Jin, Y. H., Sterling, J. F., Snipe, J. R. and Resnick, M. A. (2001). Genes required for ionizing radiation resistance in yeast. Nat Genet 29, 426-34.
Berger, S. L. (2001). Molecular biology. The histone modification circus. Science 292, 64-5.
Bermejo, C., Rodriguez, E., Garcia, R., Rodriguez-Pena, J. M., Rodriguez de la Concepcion, M. L., Rivas, C., Arias, P., Nombela, C., Posas, F. and Arroyo, J. (2008). The sequential activation of the yeast HOG and SLT2 pathways is required for cell survival to cell wall stress. Mol Biol Cell 19, 1113-24.
Boyer, L. A., Langer, M. R., Crowley, K. A., Tan, S., Denu, J. M. and Peterson, C. L. (2002). Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Mol Cell 10, 935-42.
Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P. and Boeke, J. D. (1998). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115-32.
Bungard, D., Reed, M. and Winter, E. (2004). RSC1 and RSC2 are required for expression of mid-late sporulation-specific genes in Saccharomyces cerevisiae. Eukaryot Cell 3, 910-8.
Cairns, B. R., Lorch, Y., Li, Y., Zhang, M., Lacomis, L., Erdjument-Bromage, H., Tempst, P., Du, J., Laurent, B. and Kornberg, R. D. (1996). RSC, an essential, abundant chromatin-remodeling complex. Cell 87, 1249-60.
Cairns, B. R., Schlichter, A., Erdjument-Bromage, H., Tempst, P., Kornberg, R. D. and Winston, F. (1999). Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains. Mol Cell 4, 715-23.
Campsteijn, C., Wijnands-Collin, A. M. and Logie, C. (2007). Reverse genetic analysis of the yeast RSC chromatin remodeler reveals a role for RSC3 and SNF5 homolog 1 in ploidy maintenance. PLoS Genet 3, e92.
Cao, Y., Cairns, B. R., Kornberg, R. D. and Laurent, B. C. (1997). Sfh1p, a component of a novel chromatin-remodeling complex, is required for cell cycle progression. Mol Cell Biol 17, 3323-34.
Chai, B., Hsu, J. M., Du, J. and Laurent, B. C. (2002). Yeast RSC function is required for organization of the cellular cytoskeleton via an alternative PKC1 pathway. Genetics 161, 575-84.
Chai, B., Huang, J., Cairns, B. R. and Laurent, B. C. (2005). Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev 19, 1656-61.
Chan, C. S. and Botstein, D. (1993). Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics 135, 677-91.
Clotet, J., Escote, X., Adrover, M. A., Yaakov, G., Gari, E., Aldea, M., de Nadal, E. and Posas, F. (2006). Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity. EMBO J 25, 2338-46.
Conde, R., Cueva, R. and Larriba, G. (2007). Rsc14-controlled expression of MNN6, MNN4 and MNN1 regulates mannosylphosphorylation of Saccharomyces cerevisiae cell wall mannoproteins. FEMS Yeast Res 7, 1248-55.
Da, G., Lenkart, J., Zhao, K., Shiekhattar, R., Cairns, B. R. and Marmorstein, R. (2006). Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes. Proc Natl Acad Sci U S A 103, 2057-62.
Damelin, M., Simon, I., Moy, T. I., Wilson, B., Komili, S., Tempst, P., Roth, F. P., Young, R. A., Cairns, B. R. and Silver, P. A. (2002). The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in response to stress. Mol Cell 9, 563-73.
Eissenberg, J. C. (2001). Molecular biology of the chromo domain: an ancient chromatin module comes of age. Gene 275, 19-29.
Floer, M., Wang, X., Prabhu, V., Berrozpe, G., Narayan, S., Spagna, D., Alvarez, D., Kendall, J., Krasnitz, A., Stepansky, A., Hicks, J., Bryant, G. O. and Ptashne, M. (2010). A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding. Cell 141, 407-18.
Florio, C., Moscariello, M., Ederle, S., Fasano, R., Lanzuolo, C. and Pulitzer, J. F. (2007). A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex. Gene 395, 72-85.
Gangaraju, V. K. and Bartholomew, B. (2007). Mechanisms of ATP dependent chromatin remodeling. Mutat Res 618, 3-17.
Garcia, R., Bermejo, C., Grau, C., Perez, R., Rodriguez-Pena, J. M., Francois, J., Nombela, C. and Arroyo, J. (2004). The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J Biol Chem 279, 15183-95.
Garcia, R., Rodriguez-Pena, J. M., Bermejo, C., Nombela, C. and Arroyo, J. (2009). The high osmotic response and cell wall integrity pathways cooperate to regulate transcriptional responses to zymolyase-induced cell wall stress in Saccharomyces cerevisiae. J Biol Chem 284, 10901-11.
Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., O'Shea, E. K. and Weissman, J. S. (2003). Global analysis of protein expression in yeast. Nature 425, 737-41.
Govind, C. K., Yoon, S., Qiu, H., Govind, S. and Hinnebusch, A. G. (2005). Simultaneous recruitment of coactivators by Gcn4p stimulates multiple steps of transcription in vivo. Mol Cell Biol 25, 5626-38.
Helliwell, S. B., Schmidt, A., Ohya, Y. and Hall, M. N. (1998). The Rho1 effector Pkc1, but not Bni1, mediates signalling from Tor2 to the actin cytoskeleton. Curr Biol 8, 1211-4.
Hohmann, S. (2002). Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66, 300-72.
Hsiao, H.-I. (2010). Study of CIN8 that involved in rescuing the polyploidy phenotype of htl1 mutation, Department of life sciences and institute of genome sciences, Yang-Ming university.
Hsu, J. M., Huang, J., Meluh, P. B. and Laurent, B. C. (2003). The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation. Mol Cell Biol 23, 3202-15.
Huang, J., Hsu, J. M. and Laurent, B. C. (2004). The RSC nucleosome-remodeling complex is required for Cohesin's association with chromosome arms. Mol Cell 13, 739-50.
Huang, T. (2000). Functional analysis of yeast SHL1 gene, School of life science, Institute of genetics, National Yang-Ming University.
Kanemaki, M., Sanchez-Diaz, A., Gambus, A. and Labib, K. (2003). Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo. Nature 423, 720-4.
Kim, K. Y. and Levin, D. E. (2010). Transcriptional reporters for genes activated by cell wall stress through a non-catalytic mechanism involving Mpk1 and SBF. Yeast 27, 541-8.
Knop, M., Siegers, K., Pereira, G., Zachariae, W., Winsor, B., Nasmyth, K. and Schiebel, E. (1999). Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 963-72.
Kohrer, K. and Domdey, H. (1991). Preparation of high molecular weight RNA. Methods Enzymol 194, 398-405.
Kuo, M. H. and Allis, C. D. (1999). In vivo cross-linking and immunoprecipitation for studying dynamic Protein:DNA associations in a chromatin environment. Methods 19, 425-33.
Lagorce, A., Hauser, N. C., Labourdette, D., Rodriguez, C., Martin-Yken, H., Arroyo, J., Hoheisel, J. D. and Francois, J. (2003). Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem 278, 20345-57.
Lanzuolo, C., Ederle, S., Pollice, A., Russo, F., Storlazzi, A. and Pulitzer, J. F. (2001). The HTL1 gene (YCR020W-b) of Saccharomyces cerevisiae is necessary for growth at 37 degrees C, and for the conservation of chromosome stability and fertility. Yeast 18, 1317-30.
Lemmon, M. A., Ferguson, K. M. and Schlessinger, J. (1996). PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell 85, 621-4.
Lengronne, A., Katou, Y., Mori, S., Yokobayashi, S., Kelly, G. P., Itoh, T., Watanabe, Y., Shirahige, K. and Uhlmann, F. (2004). Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430, 573-8.
Leschziner, A. E., Saha, A., Wittmeyer, J., Zhang, Y., Bustamante, C., Cairns, B. R. and Nogales, E. (2007). Conformational flexibility in the chromatin remodeler RSC observed by electron microscopy and the orthogonal tilt reconstruction method. Proc Natl Acad Sci U S A 104, 4913-8.
Levin, D. E. (2005). Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69, 262-91.
Levin, D. E. and Bartlett-Heubusch, E. (1992). Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J Cell Biol 116, 1221-9.
Longtine, M. S., McKenzie, A., 3rd, Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., Philippsen, P. and Pringle, J. R. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953-61.
Lu, Y. M., Lin, Y. R., Tsai, A., Hsao, Y. S., Li, C. C. and Cheng, M. Y. (2003). Dissecting the pet18 mutation in Saccharomyces cerevisiae: HTL1 encodes a 7-kDa polypeptide that interacts with components of the RSC complex. Mol Genet Genomics 269, 321-30.
Michaelis, C., Ciosk, R. and Nasmyth, K. (1997). Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35-45.
Moreira, J. M. and Holmberg, S. (1998). Nucleosome structure of the yeast CHA1 promoter: analysis of activation-dependent chromatin remodeling of an RNA-polymerase-II-transcribed gene in TBP and RNA pol II mutants defective in vivo in response to acidic activators. EMBO J 17, 6028-38.
Moreira, J. M. and Holmberg, S. (1999). Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC. Embo J 18, 2836-44.
Narlikar, G. J., Fan, H. Y. and Kingston, R. E. (2002). Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475-87.
Ng, H. H., Robert, F., Young, R. A. and Struhl, K. (2002). Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex. Genes Dev 16, 806-19.
Owen, D. J., Ornaghi, P., Yang, J. C., Lowe, N., Evans, P. R., Ballario, P., Neuhaus, D., Filetici, P. and Travers, A. A. (2000). The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. Embo J 19, 6141-9.
Parnell, T. J., Huff, J. T. and Cairns, B. R. (2008). RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J 27, 100-10.
Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., Bragado-Nilsson, E., Wilm, M. and Seraphin, B. (2001). The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218-29.
Qiu, H., Eifert, J., Wacheul, L., Thiry, M., Berger, A. C., Jakovljevic, J., Woolford, J. L., Jr., Corbett, A. H., Lafontaine, D. L., Terns, R. M. and Terns, M. P. (2008). Identification of genes that function in the biogenesis and localization of small nucleolar RNAs in Saccharomyces cerevisiae. Mol Cell Biol 28, 3686-99.
Robinson, J. S., Klionsky, D. J., Banta, L. M. and Emr, S. D. (1988). Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 8, 4936-48.
Romeo, M. J., Angus-Hill, M. L., Sobering, A. K., Kamada, Y., Cairns, B. R. and Levin, D. E. (2002). HTL1 encodes a novel factor that interacts with the RSC chromatin remodeling complex in Saccharomyces cerevisiae. Mol Cell Biol 22, 8165-74.
Roth, S. Y., Denu, J. M. and Allis, C. D. (2001). Histone acetyltransferases. Annu Rev Biochem 70, 81-120.
Saha, A., Wittmeyer, J. and Cairns, B. R. (2002). Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes Dev 16, 2120-34.
Sanchez-Diaz, A., Kanemaki, M., Marchesi, V. and Labib, K. (2004). Rapid depletion of budding yeast proteins by fusion to a heat-inducible degron. Sci STKE 2004, PL8.
Schagger, H. and von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166, 368-79.
Sengupta, S. M., VanKanegan, M., Persinger, J., Logie, C., Cairns, B. R., Peterson, C. L. and Bartholomew, B. (2001). The interactions of yeast SWI/SNF and RSC with the nucleosome before and after chromatin remodeling. J Biol Chem 276, 12636-44.
Shen, X., Mizuguchi, G., Hamiche, A. and Wu, C. (2000). A chromatin remodelling complex involved in transcription and DNA processing. Nature 406, 541-4.
Shim, E. Y., Ma, J. L., Oum, J. H., Yanez, Y. and Lee, S. E. (2005). The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. Mol Cell Biol 25, 3934-44.
Soutourina, J., Bordas-Le Floch, V., Gendrel, G., Flores, A., Ducrot, C., Dumay-Odelot, H., Soularue, P., Navarro, F., Cairns, B. R., Lefebvre, O. and Werner, M. (2006). Rsc4 connects the chromatin remodeler RSC to RNA polymerases. Mol Cell Biol 26, 4920-33.
Szerlong, H., Saha, A. and Cairns, B. R. (2003). The nuclear actin-related proteins Arp7 and Arp9: a dimeric module that cooperates with architectural proteins for chromatin remodeling. EMBO J 22, 3175-87.
Treich, I. and Carlson, M. (1997). Interaction of a Swi3 homolog with Sth1 provides evidence for a Swi/Snf-related complex with an essential function in Saccharomyces cerevisiae. Mol Cell Biol 17, 1768-75.
Tsuchiya, E., Hosotani, T. and Miyakawa, T. (1998). A mutation in NPS1/STH1, an essential gene encoding a component of a novel chromatin-remodeling complex RSC, alters the chromatin structure of Saccharomyces cerevisiae centromeres. Nucleic Acids Res 26, 3286-92.
Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. and Nasmyth, K. (2000). Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375-86.
Wang, S.-L. (2003). Study of the relationship between yeast Htl1p and RSC complex, School of life science, Institute of genetics, National Yang-Ming Univeristy.
Wilson, B., Erdjument-Bromage, H., Tempst, P. and Cairns, B. R. (2006). The RSC chromatin remodeling complex bears an essential fungal-specific protein module with broad functional roles. Genetics 172, 795-809.
Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J. D., Bussey, H., Chu, A. M., Connelly, C., Davis, K., Dietrich, F., Dow, S. W., El Bakkoury, M., Foury, F., Friend, S. H., Gentalen, E., Giaever, G., Hegemann, J. H., Jones, T., Laub, M., Liao, H., Liebundguth, N., Lockhart, D. J., Lucau-Danila, A., Lussier, M., M'Rabet, N., Menard, P., Mittmann, M., Pai, C., Rebischung, C., Revuelta, J. L., Riles, L., Roberts, C. J., Ross-MacDonald, P., Scherens, B., Snyder, M., Sookhai-Mahadeo, S., Storms, R. K., Veronneau, S., Voet, M., Volckaert, G., Ward, T. R., Wysocki, R., Yen, G. S., Yu, K., Zimmermann, K., Philippsen, P., Johnston, M. and Davis, R. W. (1999). Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901-6.
Wong, M. C., Scott-Drew, S. R., Hayes, M. J., Howard, P. J. and Murray, J. A. (2002). RSC2, encoding a component of the RSC nucleosome remodeling complex, is essential for 2 microm plasmid maintenance in Saccharomyces cerevisiae. Mol Cell Biol 22, 4218-29.
Yaakov, G., Duch, A., Garcia-Rubio, M., Clotet, J., Jimenez, J., Aguilera, A. and Posas, F. (2009). The stress-activated protein kinase Hog1 mediates S phase delay in response to osmostress. Mol Biol Cell 20, 3572-82.
Yang, Y.-H. (2009). Identification and characterization of genes that rescue the ployploidy phenotype of yeast htl1 mutantion, Department of life sciences and institute of genome sciences, National Yang-Ming university.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊