跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/10/07 13:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪振庭
研究生(外文):Chen-Ting Hung
論文名稱:膨脹性石墨之製備與電性研究
論文名稱(外文):Fabrication and Electrical Properties of Exfoliated Graphite
指導教授:郭文雄郭文雄引用關係
指導教授(外文):Wen-Shyong Kuo
學位類別:碩士
校院名稱:逢甲大學
系所名稱:航太與系統工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:89
中文關鍵詞:共振腔直流充放電測試超級電容膨脹石墨
外文關鍵詞:Exfoliated graphiteSupercapacitorGalvan static charge and dischargeWaveguide resonator
相關次數:
  • 被引用被引用:1
  • 點閱點閱:526
  • 評分評分:
  • 下載下載:99
  • 收藏至我的研究室書目清單書目收藏:1
本論文利用三極式電容器及電化學測試電池對試片進行直流充放電測試,比較有無壓錠及有無經超音波震盪的膨脹石墨之充、放電比電容量,以評估是否能將膨脹石墨應用於超級電容之電極。另一測試為,將膨脹石墨與環氧樹脂混合,經過顆粒分離機處理製成複合材料, 利用共振腔測量法測試此材料在頻率6∼15 GHz間之吸波效能,並比較不同EG含量(重量百分比0 %∼5 %)與不同試片厚度(1、2、2.5、3 mm)對吸波效能之影響。
經實驗後得知,不管是否經過震盪,未壓錠之試片其充、放電比電容量可達壓錠過後之試片的50倍以上;經震盪且壓錠的試片效能優於未震盪有壓錠之試片,但經震盪未壓錠的試片效能卻低於未震盪且未壓錠之試片。吸波效能實驗得知此種膨脹石墨與環氧樹脂之複合材料沒辦法有效吸收電磁波,改變EG含量或試片厚度,在本實驗中皆無法明顯增加其吸波效能。
In this thesis, we employed three-electrode electrochemical system and electrochemical half-cell to measure the Galvan static charge and discharge based on the exfoliated graphite (EG). Measurements were taken on the capacitance of uncompressed, compressed, sonicated, and unsonicated samples. In the other experiment, the EG was mixed with epoxy resin to produce composites, and measured the radar absorptive in the frequency ranges of 6-15 GHz by waveguide resonator. Then we examined the effect of the radar absorption with the different content of EG (with EG weight percentage 0%-5%) and the different thickness of the samples (1, 2, 2.5, 3 mm). The experimental data shows that the capacitance of the uncompressed samples is 50 times higher than the capacitance of the compressed samples. The efficiency of the sonicated and compressed samples is better than those without sonication. But the efficiency of the sonicated and uncompressed samples is lower than it was not sonicated. In the other experiment, we know that this type of composite is unable to absorb electromagnetic wave effectively. No matter what we changed the content of EG or the thickness of the samples, it can’t increase the radar absorption significantly in this research.
致謝.............................................................................................................i
中文摘要....................................................................................................ii
英文摘要.................................................................................................. iii
目錄...........................................................................................................iv
圖目錄.....................................................................................................viii
表目錄.......................................................................................................xi

第一章 前言............................................................................................1
1.1 膨脹石墨介紹............................................................................1
1.2 超級電容簡介............................................................................4
1.3 碳材料在超級電容的應用........................................................6
1.4 雷達吸波材料............................................................................7
1.4.1 雷達吸波材料簡介...........................................................7
1.4.2 雷達吸波材料發展歷史...................................................8
1.4.3 雷達吸波材料之分類.....................................................11
1.4.3.1 干涉型吸波材料..................................................11
1.4.3.2 吸收型吸波材料..................................................12
1.4.3.3 結構型吸波材料..................................................13
1.4.3.4 塗覆型吸波材料..................................................14

第二章 理論說明與文獻回顧..............................................................16
2.1 電雙層的基本觀念與結構......................................................16
2.1.1 電雙層的電性原理.........................................................16
2.1.2 Helmholtz電雙層模型....................................................17
2.1.3 Stern電雙層模................................................................19
2.1.4 電雙層電容之構造.........................................................21
2.1.4.1 電極材料..............................................................21
2.1.4.2 電解液材料..........................................................21
2.1.4.3 隔離膜材料..........................................................23
2.1.4.4 集電板材料..........................................................23
2.1.4.5 包裝材料..............................................................23
2.2 三極式電容器..........................................................................24
2.3 直流充放電測試簡介..............................................................24
2.4 基本電磁波吸波理論..............................................................25
2.4.1 電磁波波傳基本理論.....................................................25
2.4.1.1 在自由空間之傳遞..............................................27
2.4.1.2 在均質介質之傳遞..............................................28
2.4.1.3 在非均質介質之傳遞..........................................30
2.4.2 介電常數與導磁率.........................................................31
2.4.3 分析單層吸波材料性能之公式.....................................32
2.5 複合材料電磁參數量測方法..................................................34

第三章 實驗..........................................................................................36
3.1 實驗流程..................................................................................36
3.2 膨脹石墨之製備......................................................................37
3.2.1 實驗材料.........................................................................37
3.2.2 實驗設備.........................................................................37
3.2.3 實驗步驟.........................................................................39
3.3 超音波震盪..............................................................................42
3.3.1 實驗材料.........................................................................42
3.3.2 實驗設備.........................................................................42
3.3.3 實驗步驟.........................................................................43
3.4 壓錠..........................................................................................43
3.5 電容器組裝..............................................................................44
3.6 直流充放電測試......................................................................46
3.7 吸波測試之試片製作..............................................................47
3.7.1 實驗材料.........................................................................47
3.7.2 實驗設備.........................................................................47
3.7.3 實驗步驟.........................................................................47
3.8 共振腔測量法之測試..............................................................49

第四章 結果討論..................................................................................53
4.1 直流充放電測試......................................................................53
4.1.1 充放電比電容量.............................................................53
4.1.2 數據整理.........................................................................53
4.1.3 結果分析.........................................................................60
4.2 共振腔測量法..........................................................................62
4.2.1 相關公式推導.................................................................62
4.2.2 材料之複數介電常數.....................................................63
4.2.3 材料之吸波效能.............................................................69

第五章 結論..........................................................................................73

參考文獻..................................................................................................74

作者簡介..................................................................................................77
1.A. Burke, Journal of Power Sources, p.37-50, 2000.
2.吉田昭彥, DENKI KAGAKU 66 No.9, p.884-890, 1998.
3.J. P. Randin and E. Yeager, J. Electrochem. Soc., 118, 1971.
4.H. H. Bauer, M. S. Spritzer, and P. J. Elving, J. Electroanal. Chem., 17, 299, 1968.
5.J. P. Randin and E. Yeager, J. Electroanal. Chem., 58, 313, 1975.
6.Choi, H.D., Shim, H.W., Cho, K.Y., Lee, H.J., and Park, C.S., "Electromagnetic and Electromagnetic Wave-Absorbing Properties of the SrTiO3-Epoxy Composite," J. Applied Poymer Sci., Vol. 72, p.75-83, 1999.
7.Vinoy, K.J. and Jha, R.M., Radar Absorbing Materials. USA: Kluwer Academic, 1997.
8.Wu, F. and Whites, K.W., "Quasi-Static Effective Permittivity of Periodic Composites Containing Complex Shaped Dielectric Particles," IEEE Antennas and Propagation, Vol. 49, p.1174-1182, 2001.
9.Knott, E.F., Shaeffer, J.F., and Tuley, M.T., Radar Cross Section. London: Artech House, 1993.
10.Tsang, L., Kong, J.A., and Shin, R.T., Theory of Microwave Remote Sensing: John Wiley & Sons, Inc., 1985.
11.Emerson, William H., "Wlectromagnetic Wave Absorbers and Anechoic Chambers Through the years," IEEE transactions on antennas and propagation, Vol. Ap-21, 1973.
12.Salisbury, W.W., "Absorbent body for electromagnetic waves," U.S. Patent 2, p.599-944, 1952.
13.Schade, H.A., "Schornsteinfeger U.S. tech. Mission to Europe," Tech. Report 90-45, AD-47746, 1945.
14.MacFarlane, G.G., "Radar camouflage research and development by the Germans," Tech. Report T.1905, M/99, TRE, 1945.
15.歩文博, 徐洁, 丘泰, "吸波材料基礎理論的探討及展望," 江蘇陶瓷, 第34卷, 第2期, p.1-4, 2001.
16.孫占紅,郭春豔, "複合材料夾層吸波結構",航空製造技術, Vol. 1, p.38-41, 2002.
17.官霆,孫良新,黃建云,李黎, 軍用飛機雷達吸波結構複合材料研究進展,宇航材料工藝, Vol. 1, p.10-12, 2003.
18.Hamann, C.H., Hamnett, A., Vielstich, W., ”Electrochemistry”, Wiley-Vch, New York, 1998.
19.Young, H. D., Physics, Addison-Wesley Publishing Co.: New York, 1992.
20.工研院材料所超高電容計畫, 工業材料, 166期, p.113, 2000.
21.Takeshi Morimoto, Kazuya Hiratsuka, Yasuhiro Sanada, Kaname Kurihara, Mat. Res. Soc. Symp. Proc., Vol. 393, p.397, 1995.
22.李保賢, 多層吸波複合材料之最佳化設計, 逢甲大學航太與系統工程學系碩士論文, p.41, 2006.
23.Hsin-Fang Lu, Wen-Shyong Kuo, Tse-Hao Ko, ON THE MICROSTRUCTURES AND THERMAL CONDUCTIVITIES OF EXFOLIATED GRAPHITE, SAMPE COMFERENCE, 2006.
24.M. Hajian, K. T. Mathew, and L. P. Ligthart, MEASUREMENTS OF COMPLEX PERMITTIVITY WITH WAVEGUIDE RESONATOR USING PERTURBATION TECHNIQUE, MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Vol. 21, No. 4, p.269-272, 1999.
25.陳宇堂, 以KOH化學活化法製備PAN系活性碳纖維及其在超級電容碳電極之應用, 逢甲大學材料科學與工程學系碩士論文, p.102, 2006.
26.H.A. Bethe and J. Schwinger, Perturbation theory for resonant cavities, NDRC rep D1-117, 1943.
27.A. Parkash, J.K. Vaid, and A. Mansingh, Measurement of dielectric parameters at microwave frequencies by cavity perturbation technique, IEEE Trans Microwave Theory Tech MTT-22, p.791-795, 1979.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top