跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 05:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭雅婷
研究生(外文):Ya-Ting Guo
論文名稱:探討BacillussubtilisYJ1蛋白酶與幾丁質酶水解蝦殼廢棄物之條件及開發幾丁寡醣益生菌發酵飲品
論文名稱(外文):Optimization on conditions for the hydrolysis of shrimp waste by protease and chitinase from Bacillus subtilis YJ1 and Development of probiotics fermented chitooligosaccharide beverages
指導教授:殷儷容殷儷容引用關係
指導教授(外文):Li-Jung Yin
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:水產食品科學研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:126
中文關鍵詞:蝦殼廢棄物蛋白酶幾丁質酶益生菌幾丁寡醣
外文關鍵詞:shrimp wasteproteasechitinaseprobioticchitooligosaccharide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:2773
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究擬額外添加不同濃度羧甲基纖維素 (CMC) 或市售幾丁質之複合培養基,藉以利用Bacillus subtilis YJ1生產高活性蛋白酶與幾丁質酶。結果發現以1.5% 市售幾丁質組於37oC、150 rpm震盪培養3天後,中、鹼性蛋白酶分別為655.2及638.6 U/mLmin。藉由還原醣增量法與N-乙醯胺基葡萄糖生成法測定之幾丁質酶活性分別為438.04 U/mLmin及4.22 U/mLmin。利用該酵素液於50oC水解蝦殼溶液3或4小時,其可溶性蛋白質、胜肽、總游離胺基酸含量明顯比未水解高,顯示蝦殼溶液中之蛋白質被降解。另探討蝦殼水解物添加不同濃度之葡萄糖與調整pH,對乳酸菌Pediococcus pentosaceus S或益生菌Lactobacillus acidophilus BCRC 17010、Bifidobacterium adolescentis BCRC 14608或Lactobacillus casei BCRC 12272發酵之影響,以期得到具保健機能性成分之幾丁寡醣益生菌發酵飲品。實驗結果以2% 葡萄糖及中性pH值下,併用B. adolescentis BCRC 14608 發酵36小時,其菌數達10.68 log CFU/mL,顯示蝦殼水解物可作為益生菌生長之基質。由胜肽電泳觀察該發酵產物為小分子物質,其分子量約為2.5 kDa。薄層層析法結果顯示該發酵產物可得到N-乙醯幾丁五醣;進一步以HPLC分析確定具有N-乙醯幾丁二~五醣;抗氧化能力試驗中,TEAC值達4 mM、還原力為1.5 nm 及螯合亞鐵離子能力為80.42%。該項結果顯示採用蝦殼水解物併用益生菌B. adolescentis BCRC 14608發酵36小時之產品可作為機能性幾丁寡醣益生菌發酵飲品。
To produce high protease and chitinase activities, extra addition of chitins and CMC to the medium was conducted on the cultivation of Bacillus subtilis YJ-1. When this strain was incubated in a complex medium containing 0.5% (w/v) commercial chitin at 37oC, 150 rpm for 3 days, the highest neutral (655.2 U/mL•min) and alkaline (638.2 U/mL•min) proteases activities were obtained. The chitinases activities were 438.04 U/mL•min and 4.22 U/mL•min measured by neocuproine and DMBA methods, respectively. The shrimp shell solution was subjected to the hydrolysis by the above crude selective enzymes at 50oC for 3-4 hr, the soluble proteins, peptides, total free amino acid and reducing sugar of shrimp hydrolysates increased significantly (p<0.05), compared with those before hydrolysis. This phenomenon suggested the degradation of proteins contained in shrimp shell solution occurred. This study also investigated the effects of glucose content and pH on the fermerntation by Lactobacillus acidophilus BCRC 17010, Bifidobacterium adolescentis BCRC 14608 or Lactobacillus casei BCRC 12272. It was found that addition of 2% glucose at neutra pH was benefit for the growth of Bifidobacterium adolescentis BCRC 14608 (10.68 log CFU/mL after 36 hr fermentation). This result indicated that the shrimp shell hydrolysates were a good medium for Bifidobacterium adolescentis BCRC 14608. The molecular mass of the degraded products by electrophoresis weas approximately 2.5 kDa and the degraded chitooligosaccharides were pentaacetylchitopentaose and N-acetylchitobiose to pentaacetylchitopentaose measured by TLC and HPLC, respectively. The antioxidation ability including trolox equivalent antioxidant capacity, reducing power and Fe2+ ion chelating ability of the hydrolysate were 4 mM, 1.5 nm and 80.42% respectively. These results suggested that the combination use of selective enzymes produced by B. subtilis YJ1 with B. adolescentis BCRC 14608 fermentation could process the shrimp shell into a fermented functional chitooligosaccharide beverages.
目錄
頁碼
中文摘要 -----------------------------------------------------------1
英文摘要 -----------------------------------------------------------2
壹、研究背景與目的 ---------------------------------------------------3
貳、文獻整理 ---------------------------------------------------5
(一) 蝦殼廢棄物之組成與其功能性 -----------------------------------5
1. 蝦殼之成分 ---------------------------------------------------5
2. 幾丁質和幾丁聚醣之分子構造 ----------------------------------------5
3. 幾丁質酶之種類----------------------------------------------------7
4. 幾丁質酶活性測定方法 -------------------------------------------8
(二) N-乙醯幾丁寡醣及幾丁寡醣-----------------------------------------10
1. 簡介 -----------------------------------------------------------10
2. N-乙醯幾丁寡醣及幾丁寡醣之製備-------------------------------------11
(三) 枯草桿菌 (Bacillus subtilis) -----------------------------------15
1. Bacillus subtilis生產之胞外酵素-----------------------------------15
(四) 益生菌---------------------------------------------------------17
1. 益生菌之定義及特性------------------------------------------------17
2. 乳酸菌與雙歧桿菌對人類產生之益處------------------------------------18
3. 目前通過健康食品認證之乳酸菌產品之保健功效 ---------------------------20
4. 乳酸菌和雙歧桿菌與寡醣的關係---------------------------------------20
參、實驗材料與方法 ---------------------------------------------------23
Ι. 實驗材料 ---------------------------------------------------23
II. 主要儀器 ---------------------------------------------------25
III. 實驗流程圖 ----------------------------------------------------26
IV. 實驗方法 ---------------------------------------------------27
ㄧ、培養基組成對菌種生長與酵素活性之影響 ---------------------------27
(ㄧ) 菌酛的活化與保存 -------------------------------------------27
(二) Bacillus subtilis YJ1之培養條件 ---------------------------27
(三) 粗酵素液之製備與活性之測定 -----------------------------------27
1. 粗酵素液之製備----------------------------------------------------27
2. 粗酵素液pH之測定--------------------------------------------------27
3. 中、鹼性蛋白酶活性測定---------------------------------------------27
4. 纖維素酶活性測定--------------------------------------------------28
5. 幾丁質酶活性測定--------------------------------------------------28
二、蝦殼水解物之製備與化學分析----------------------------------------31
(ㄧ) 水解蝦殼廢棄物之粗酵素液之製備條件 --------------------------31
(二) 發酵基質之製備 ------------------------------------------32
(三) 益生菌發酵蝦殼溶液之條件 ----------------------------------32
1. 未水解蝦殼溶液之發酵條件 ----------------------------------32
2. 蝦殼水解物之發酵條件 ------------------------------------------32
3. 發酵溫度與接菌量之條件 ------------------------------------------33
4. 發酵期間益生菌數與pH值之變化--------------------------------------33
(四) 蝦殼水解物發酵過程之品質測定-------------------------------------34
1. 可溶性蛋白質含量測定 ------------------------------------------34
2. 胜胜含量測定-----------------------------------------------------34
3. 總游離胺基酸含量測定 ------------------------------------------34
4. 還原醣含量測定 --------------------------------------------------35
5. 發酵產物之N-乙醯幾丁寡醣之薄層層析 --------------------------35
6. 發酵產物之N-乙醯幾丁寡醣之高效液相層析 --------------------------36
7. 胜肽電泳分析 --------------------------------------------------37
(五) 水解物及發酵產物之抗氧化能力測定---------------------------------38
1. 還原力測定 --------------------------------------------------38
2. Trolox equivalent antioxidant capacity (TEAC)------------------38
3. 螯合亞鐵離子能力-------------------------------------------------39
肆、結果與討論------------------------------------------------------40
一、Bacillus subtilis YJ1生長曲線之變化 --------------------------40
二、培養基組成對Bacillus subtilis pH之影響---------------------------40
(一) 羧甲基纖維素 (CMC) 添加量--------------------------------------40
(二) Chitin添加量--------------------------------------------------40
三、培養基組成對Bacillus subtilis YJ1生產蛋白酶、纖維素酶或幾丁質酶活性之影響----------------------------------------------------------------41
(一) CMC添加量對Bacillus subtilis YJ1生產蛋白酶或纖維素酶活性之影響----41
(二) Chitin添加量對Bacillus subtilis YJ1生產蛋白酶活性之影響----------42
(三) 比較兩種幾丁質酶測定法------------------------------------------43
四、還原醣含量的變化------------------------------------------------44
五、探討水解溫度與時間對Bacillus subtilis YJ1蛋白酶與幾丁質酶之殘存活性影 響----------------------------------------------------------------44
六、粗酵素液水解市售幾丁質與幾丁聚醣所得N-乙醯幾丁寡醣之薄層層析--------45
七、探討MRSC培養基組成對益生菌生長之影響與評估乳酸菌與雙歧桿菌共生之可行性--45
(一) 益生菌培養條件對其pH值與菌數之影響--------------------------------45
(二) 總游離胺基酸與還原醣含量之變化 -----------------------------------46
(三) 評估乳酸菌與雙歧桿菌共生之可行性----------------------------------47
八、探討Bacillus subtilis YJ1蛋白酶與幾丁質酶水解蝦殼溶液之最適條件-----48
九、併用益生菌發酵蝦殼溶液之水解物-------------------------------------50
(一) 發酵期間pH值及益生菌數之變化-------------------------------------50
(二) 益生菌發酵蝦殼水解物之影響 -----------------------------------55
一、可溶性蛋白質含量變化---------------------------------------------55
二、胜肽含量變化----------------------------------------------------57
三、總游離胺基酸含量變化---------------------------------------------59
四、還原醣含量變化--------------------------------------------------61
五、發酵產物之N-乙醯幾丁寡醣之薄層層析---------------------- ----------62
六、發酵產物之N-乙醯幾丁寡醣之HPLC分析--------------------------------62
七、胜肽電泳 (Tricine-SDS-PAGE) 分析--------------------------------63
(三) 水解物及發酵產物之抗氧化能力 ----------------------------------63
1. 還原力----------------------------------------------------------63
2. Trolox equivalent antioxidant capacity (TEAC) 抗氧化當量---------64
3. 螯合亞鐵離子能力--------------------------------------------------64
伍、 結論 -----------------------------------------------------------66
陸、 參考文獻--------------------------------------------------------67
表目錄
頁碼
表一、培養基組成對益生菌發酵期間之總游離胺基酸含量影響 ----------------84
表二、培養基組成對益生菌發酵期間之還原醣含量影響 ----------------85
表三、B. subtilis YJ1於含1.5% chitin 之複合培養基生產之粗酵素液水解蝦殼溶液之pH值變化-------------------------------------------------------86
表四、B. subtilis YJ1於含1.5% chitin之複合培養基生產之粗酵素液水解蝦殼溶液之可溶性蛋白質、胜肽含量、總游離胺基酸含量變化 ------------------------87
表五、未水解蝦殼溶液併用乳酸菌或益生菌發酵48小時期間其pH值之變化--------88
表六、不同處理條件之蝦殼水解物併用乳酸菌或益生菌發酵48小 時期間其pH值之變化-------------------------------------------------------------89
表七、乳酸菌或益生菌發酵未水解之蝦殼溶液其菌數之變化-------------------90
表八、乳酸菌或益生菌發酵不同處理條件之蝦殼水解物之菌數變化--------------91
表九、未水解蝦殼溶液併用乳酸菌或益生菌發酵期間之可溶性蛋白質含量之變化----92
表十、不同處理條件之蝦殼水解物併用乳酸菌或益生菌發酵期間之可溶性蛋白質含量之變化---------------------------------------------------------------93
表十一、未水解蝦殼溶液併用乳酸菌或益生菌發酵期間之胜肽含量之變化---------94
表十二、不同處理條件之蝦殼水解物併用乳酸菌或益生菌發酵期間之胜肽含量之變化-95
表十三、未水解蝦殼溶液併用乳酸菌或益生菌發酵期間之總游離胺基酸含量之變化 ---96
表十四、不同處理條件之蝦殼水解物併用乳酸菌或益生菌發酵效期間之總游離胺基酸含量之變化 ----------------------------------------------------------97
表十五、未水解蝦殼溶液併用益生菌發酵期間之還原醣含量之變化---------------98
表十六、不同處理條件之蝦殼水解物併用益生菌發酵期間之還原醣含量之變化-----99
圖目錄
頁碼
圖一、Bacillus subtilis YJ1於TSB培養基培養期間pH與生菌數之變化-------100
圖二、以0.1% 或0.5% CMC額外添加於複合培養基對Bacillus subtilis YJ1培養5天pH值之影響--------------------------------------------------------101
圖三、含不同濃度chitin之複合培養基對Bacillus subtilis YJ1培養4天pH值之影響------------------------------------------------------------------102
圖四、Bacillus subtilis YJ1於TSB培養基培養期間其中、鹼性蛋白酶與纖維素酶活性之變化 ---------------------------------------------------------103
圖五、以0.1% 或0.5% CMC額外添加於複合培養基對Bacillus subtilis YJ1培養5天其中、鹼性蛋白酶與纖維素酶活性之變化 ---------------------------------104
圖六、含不同濃度chitin之複合培養基對Bacillus subtilis YJ1培養4天期間其中、鹼性蛋白酶活性之變化------------------------------------------------105
圖七、Bacillus subtilis YJ1於不同培養基組成培養5天期間其幾丁質酶活性之變化 (還原醣增量法)----------------------------------------------------106
圖八、Bacillus subtilis YJ1於不同培養基組成培養5天期間其幾丁質酶活性之變化 (N-乙醯胺基葡萄糖生成量測定法)--------------------------------------107
圖九、含不同濃度chitin之複合培養基對Bacillus subtilis YJ1培養4天期間其還原醣含量之變化 -------------------------------------------------108
圖十、粗酵素液分別於45、50及55 oC放置5小時其pH值之變化---------------109
圖十一、粗酵素液分別於45、50及55 oC放置5小時其中、鹼性蛋白酶殘存活性之變化110
圖十二、Bacillus subtilis YJ1之蛋白酶與幾丁質酶於不同溫度水解市售幾丁質與幾丁聚醣得到N-乙醯幾丁寡醣產物之薄層層析圖-------------------------------111
圖十三、培養基組成對益生菌發酵期間pH值與生菌數之影響 ------------------112
圖十四、培養基組成對混合益生菌發酵期間pH值與生菌數之影響-----------------113
圖十五、Bacillus subtilis YJ1之蛋白酶與幾丁質酶於50 oC水浴中震盪
(150 rpm) 水解蝦殼溶液1~5小時之薄層層析圖----------------------------114
圖十六、以H組併用益生菌發酵48小時期間之薄層層析圖----------------------115
圖十七、以F2組併用Lb. acidophilus BCRC17010發酵48小時期間之薄層層析圖-116
圖十八、以F2組併用B. adolescentis BCRC 14608發酵48小時期間之薄層層析圖117
圖十九、以F2組併用Lb. casei BCRC 12272發酵48小時期間之薄層層析圖------118
圖二十、以F2組併用B. adolescentis BCRC 14608發酵36小時之高效液相層析圖-119
圖二十一、以F2組併用益生菌發酵48小時期間之胜肽電泳圖譜 ------------------120
圖二十二、不同處理條件之未水解蝦殼溶液併用益生菌發酵期間之還原力之變化----121
圖二十三、不同處理條件之蝦殼水解物併用益生菌發酵期間之還原力之變化---- ---122
圖二十四、不同處理條件之未水解蝦殼溶液併用益生菌發酵期間之TEAC値之變化----123
圖二十五、不同處理條件之蝦殼水解物併用益生菌發酵期間之TEAC値之變化--------124
圖二十六、不同處理條件之未水解蝦殼溶液併用益生菌發酵期間之螯合亞鐵離子能力之變化----------------------------------------------------------------125
圖二十七、不同處理條件之蝦殼水解物併用益生菌發酵期間之螯合亞鐵離子能力之變化126
王三郎。1996。工業減廢技術與策略研討會論文輯。
王三郎。1996。水產資源利用學。高立圖書出版社。台北。
王三郎、李旭弘。1994。中華生質能源。13: 229。
王綺芬。1989。蟹殼幾丁質產品理化性質測定及製備方法之研究。國立台灣大學食品科技研究所碩士論文。台北。
王舒徽。2000。原生菌之機能性簡介。食品工業月刊 32(7):41-51。
邱志威。2004。食品微生物精要。藝軒圖書出版社。台北。
江泰成。2007。螺旋藻萃取物抑制油脂氧化及抗氧化活性之探討。國立台灣大學食品科技研究所碩士論文。台北。
李福臨。2000。乳酸菌分類之研究近況。食品工業月刊 32(8):36-42。
吳雅瑛。2007。綠竹筍殼幾丁三糖酶之純化與性質研究。靜宜大學食品營養系碩士論文。台中。
殷儷容。2003。探討以魚肉為基質之乳酸菌發酵新加工技術。國立台灣海洋大學食品科學系博士學位論文。基隆。
陳吉平。1997。微生物學-概念與應用。睿煜出版社。台北。
陳坤上。1994。幾丁質水解菌之特性及對蝦殼水解能力之研究。國立台灣海洋大學水產食品科學研究所博士學位論文。基隆。
程修和。2001。以纖維素酵素與鳳梨酵素水解幾丁聚醣與羧甲基纖維素製備幾丁寡醣與纖維寡醣之比較。國立台灣海洋大學食品科學系碩士論文。基隆。
黃建榕。1995。Bifidobacterium屬乳酸菌試製酸酪乳之研究-(I)酸酪乳之試製。畜產研究。28(2): 117-124.
黃卓志、辛志勳、張文重。1978。納豆菌蛋白質分解酵素生產條件之探討。屏東農專學報。19: 92-98。
臺灣省漁業局。1994。中華民國臺灣地區漁業年報。
蔡英傑。1998。乳酸菌與益生菌。生物產業 9(2):98-104。
潘子明。2005。我國乳酸菌最近的研究趨勢暨通過健康食品認證之乳酸菌產品現況。農業生技產業季刊。3: 19-27。
賴錫淮。2006。基礎微生物學。高立圖書有限公司。台北。
蕭瑞昌。1997。利用水溶性幾丁聚醣以薄膜超過濾法去除微量之金屬離子。元智工學院化學工程研究所碩士論文。桃園。
Ademark, P., Varga, A., Medve, J., Harjunpaa, V., Drakenberg, T. and Tjerneld, F. 1998. Softwood hemicellulose-degrading enzymes from Aspergillus niger: purification and properties of a β-mannanase. J Biotechnol. 63: 199-210.
Aiba S. 1994. Preparation of N-acetyl-chitooligosaccharides by hydrolysis of chitosan with chitinase follow by N-acetylation. Carbohydr Res 265: 323-328.
Aiba S and E Muraki. 1998. Preparation of higher N-acetylchitooligosaccharides in high yields. In: Advances in Chitin Science. (RH Chen and HC Chen. Ed)., Vol. 3, p. 89-96. Rita Advertising CO, ROC.
Allagheny, N., Obanu, Z. A., Campbell Platt, G., Owens, J. D. 1996. Control of ammonia formation during Bacillus subtilis fermentation of legumes. International Journal of Food Microbiology. 29: 321-333.
Amos, J.A. 1955. The use of enzymes on the baking industry. J Sci Food Agric. 6: 489.
Austin PR, Brine CJ, Castle JE, and Zikakis JP. 1981. New facets of research. Science 212: 749.
Ayebo, A. D., K. M. Shahani, and R. Dam. 1981. Antitumor components of yogurt: fractionation. J. Dairy Sci. 64: 2318-2323.
Barker SA, AB Foster, and JM Webber. 1958. Amino-sugars and related compounds. Part IV. Isolation and properties of oligosaccharides obtained by controlled fragmentation of chitin. J. Chem. Soc., 2218-2227.
Beerens, H., C. Romond, and C. Neut. 1980. Am. J. Clin. Nutr. 33: 2434-2439.
Beg, K.B., Sahai, V., Gupta, R. 2003. Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochem. 39: 2003-2209.
Bernfeld, P. 1955. Amylase  and . Methods Enzymology 1: 149-158.
Bhaskar, N., Suresh, P.V., Sakhare, P.Z., Sachindra, N.M. 2007. Shrimp biowaste fermentation with Pediociccus acidolactici CFR2182: Optimization of fermentation conditions by response surface methodology and effect of optimized conditions on deproteination/demineralization and carotenoid recovery. Enzyme and Microbial Technology. 40: 1427-1434.
Boller, T. and Mauch, F. 1988. Colorimetric assay for chitinase. In Method in Enzymology. 161: 424-426, Academic Press, New York.
Brown, I. L., X. Wang, D. L. Topping, M. J. Playne, and P. L. Conway. 1998. High amylose maize starch as a versatile prebiotic for use with probiotic bacteria. Food Australia. 50(12): 603-610.
Chang JJ and JH Hash. 1979. The use of an amino acid analyzer for the rapid identification and quantitative determination of chitosan oligosaccharides. Anal. Biochem., 95: 563-567.
Cheng, H. H. and Yin, L. J. 2007. Medium effects on the increase of protease and cellulose activities of Bacillus subtilis BCRC 41716. J. Fish. Soc. Taiwan, 34(3): 291-298.
Chen, H. C., Hsu, M. F., and Jiang, S. T. 1997. Purification and characterization of an exo-N,N-diacetylchitobiohydrolase-like enzyme from Cellulomonas flavigena NTOU 1. Enzyme Microbial Technol. 20: 191-197.
Christensen, J.E., Dudley, E.G., Pederson, J.A., Steele, J.L.1999. Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek. 76: 217-246.
Church, F. C., Swaisgood, H. E., Porter, D. H. and Catignani, G. L. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins.Journal of Dairy Science. 66: 1219-1227.
Cira, L. A., Huerta, S., Hall, G. M., Shirai, K. 2002. Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochemistry. 37: 1359-1366.
Crittenden, R. G., Morris, L. F., Harvet, M. L., Tran, L. T., Mitchell, H. L., Plaync, M. J. 2001. Selection of a Bifidobacterium strain to complement resistant starch in a synbiotic yoghurt. J Appl Microbiol. 90: 268-278.
Dapkevicius MDLE, Batista I, Nout MJR, Rombouts FM, Houben JH. 1998. Lipid and protein changes during ensilage of blue whiting (Micromesistius poutassou Risso) by acid and biological methods. Food Chem. 63: 97-102.
Defaye J, A Gadelle, and C Pedersen. 1989. Chitin and chitosan oligosaccharides. In Chitin and Chitosan. (G Sajak-Brek, T Anthonsen, and P Sandford ed.), p. 415-429. Elsevier Science Publishers Ltd, England.
Denter J, Bisping B. 1994. Formation of B-vitamins of by bacteria during the soaking process of soybeans for temp fermentation. International Journal of Food Microbiology. 22: 23-31.
De Vries W, Gerbrandy SJ, Stouthamer AH. 1967. Carbohydrate metabolism in Bifidobacterium bifidium. Biochim Biophys Acta. 136: 415-425.
Dinis, T. C. P., Madeira, V.M.C., and Almeida, L. M. 1994. Action of phenolic derivatives as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys. 315: 161-169.
Doi, E., Shibata, D., and Matoba, T. 1981. Modified colorimetric ninhydrin methods for peptidase assay. Analytical Biochemistry. 118: 173-184.
Flach, J., Pilet, P. E. and Jolles, P. 1992. What’s new in chitinase research? Experienta. 48: 701-716.
Friend, B.A., Shahani, K.M. 1984. Antitumor properties of lactobacilli and dairy products fermented by lactobacilli. J. Food Prot. 47: 717-720.
Frokjaer, S. 1994. Use of Hydrolysates for Protein Supplementation. Food Technol. 48(10): 10-14.
Gilliland, S. E., and H. S. Kim. 1984. Effect of viable starter culture bacteria in yogurt on lactose utilization in humans. J. Dairy Sci. 67: 1-6.
Gilliland, S., E., and M. L. Speck. 1977. Antagonistic action of Lactobacillus acidophilus toward intestinal and foodborne pathogens in associative cultures. J. Food Prot. 40: 820-823.
Gumming, J. H., M. B. Roberfroid, H. Andersson, C. Barth, A. Ferro-Luzzi, Y. Ghoos, M. Gibney, K. Hermonsen, W. P. T. James, O. Korver, D. Lairon, G. Pascal, and A. G.. S. Voragen. 1997. A newlook at dietary carbohydrate: chemistry, physiology and health. Eur. J. Clin. Nutr. 51: 417-423.
Gupta R., Beg Q.K., Lorenz P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol. 59: 15-32.
Hackman RH. 1965. Studies on chitin. VI. The nature of α-and β-chitin. Aust J Biol Sci 18: 935-946.
Hasegawa M, A Isogi, and F Onabe. 1993. Preparation of low-molecular-weight chitosan using phosphoric acid. Carbohydr. Polym., 20: 279-283.
Hendy, L., Gallagher, J., Winter, A., Hackett, T. J., McHale, L. and McHale, A. P. 1990. Production of an extracellular chitinolytic system by Talaromyces emersonii CBS 814.70. Biotechnol. Lett. 12: 673-678.
Hepner, G., R. Fried, S. Jeor, L. Fusetti, and R. Morin. 1979. Hypocholesterolemic effect of yogurt and milk. Am. J. Clin. Nutr. 32: 19-24.
Horowitz BST, S Roseman, and HJ Blumenthal. 1957. The preparation of glucosamine oligosaccharides I. Separation. J. Am. Chem. Soc., 79: 5064-5049.
Imoto, T. and Yagishita, K. A. 1971. A simple activity measurement of lysozyme. Agric, Biol. Chem. 35: 1154-1156.
Izume M and A Ohyakara. 1987. Preparation of D-glucosamine oligosaccharides by the enzymatic hydrolysis of chitosan.
Jeuniaux, C. 1966. Chitinase. In Methods In Enzymology (Neufeld, G.F. and Ginsburg, V. Eds). Vol. 8, p.644-654. Academic Press, New York.
Jiang, Z., Wei, Y., Li, D., Li, l., Chai, P., Kusakabe, I. 2006. High-level production, purification and characterization of a thermostable β-mannanase from the newly isolated Bacillus subtilis WY34. Carbohydr Polym. 66: 88-96.
Jung W. J., Souleimanov A., Park R. D., Smith D. L. 2007. Enzymatic production of N-acetyl chitooligosaccharides by crude enzyme derived from Paenibacillus illioisensis KJA-424. Carbohydrate Polymers. 37: 256-259.
Jung, W.J., Jo, G. H., Kuk, J. H., Kim, Y. J., Oh, K. T., Park, R. D. 2007. Production of chitin from red crab shell waste by successive fermentation with Lactobacillus paracasei KCTC-3074 and Serratia marcescens FS-3. Carbohydrate Polymers. 68: 746-750.
Keay, L. and Wildi, B.S. 1970. Proteases of the genus Bacillus: neutral proteases. Biotech Bioeng. 7: 179-212.
Kerovuo, J., Lauraeus, M., Nurminen, P., Kalkkinen, N., Apajalati J. 1998. Isolation, Characterization, Molecular Gene Cloning, and Sequencing of a Novel Phytase from Bacillus subtilis. Appl Environ Microbiol. 64: 2079-2085.
Kiers, J. L., Van leaken, A. E., Rombouts, F. M., Nout, M. J. R. 2000. In vitro digestibility of Bacillus fermented soya bean. International Journal of Food Microbiology. 60: 163-169.
Kiyosawa, H., C. Sugawara, N. Sugawara, and H. Miyake. 1984. Effect of skim milk and yogurt on serum lipids and development of sudanophilic lesions in cholesterol fed rabbits. Am. J. Clin Nutr. 40: 479-484.
Knorr, D. 1998. Technology aspects related to microorganisms in functional foods. Trends Food Sci. Technol. 9: 295-306.
Knorr D. 1984. Use of chitinous polymers in food-A challenge for food research and development. Food Technol 38: 85-97.
Koga D., Sueshige, N., Orkono, K., Utsumi, T., Tanaka, S., Yamada, Y. And Ide, A. 1988. Efficiency of chitinolytic enzyme in the formation of tricoderma matsutake protoplasts. Agric. Biol. Chem. 52: 2091-2094.
Koga D., Sueshige, N., Utsumi, T. And Ide, A. 1989. Kinetics of chitinase fromyam, Dioscorea oppsita thumb. Agric Biol Chem. 53: 3121-3127.
Kole, M. M., Draper, I. and Gerson, D. F. 1988. Protease production by Bacillus subtilis in oxygen- controlled, glucose fed-batch fermentation. Appl. Microbiol. Biotechnol. 28:404-408.
Kumar, C.G. and Takagi, H. 1999. Microbial alkaline proteases: from a bioindustrual viewpoint. Biotechnol Adv. 17: 561-594.
Landwall, P., and T. Holme. 1977. Influence of glucose and dissolved oxygen concentrations on yields of Escherichia coli B in dialysis culture. J. Gen. Microbiol. 103: 353-358.
Lapierre, L., P. Undeland, and L. J. Cox. 1992. Lithium chloride-sodium propionate agar for the enumeration of bifidobacteria in fermented dairy products. J. Dairy Sci. 75: 1192-1196.
Laura Ramírez-Coutiño, María del Carmen Marín-Cervantes, Sergio Huerta, Sergio Revah, Keiko Shirai. 2006. Enzymatic hydrolysis of chitin in the production of oligosaccharides using Lecanicillium fungicola chitinases. Process Biochemistry. 41: 1106-1110.
Lee, H. W., Park, Y. S., Jung, J. S., Shin, W. S. 2002. Chitosan oligosaccharides, dp 2-8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe. 8: 319-324.
Lee, H. W., Choi, J. W., Han, D. P., Park, M. J., Lee, N. W., Yi, D. H. 1996. Purification and characteristics of chitosanase from Bacillus sp. HW-002. J Microbiol Biotechnol. 6: 19-25.
Legarreya, G. I., Zakaria, Z., Hall, G. M. 1996. Lacitc fermentation of prawn waste : comparison of commercial and isolated starter culture. In Advances in Chitin Science; Jacques Andre: Lyon, France. Vol. 1: 399-402.
Leroy, F., De Vuyst, L. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Science and Technology. 15: 67-78.
Liang, T. W., Chen, Y. J., Yen, Y. H., Wang, S. L. 2007. The antitumor activity of the hydrolysates of chitinous materials hydrolyzed by crude enzyme from Bacillus amyloliquefacoens V656. Process Biochemistry. 42: 527-534.
Lin, Z. F., Wu, D., Luo, A. And Zhang, W. 1992. Chitinase from seeds of zea mays and coix lachrymajobi L. Purification and some properties, Process Biochemistry. 27: 83-88.
Loffler, A. 1986. Proteolytic enzymes: sources and applications. Food Technol. 40 (12): 63-70.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Ramdall, R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry. 193: 265-275.
MacAllister, R. V. 1979. Nutritive sweeteners made from starch. Adv Carbohydr Chem Biochrm. 36:15-19.
Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for deter for determination of reducing sugar. Anal. Chem. 31: 426-428.
Mann, G. V., and A. Spoerry. 1974. Studies of a surfactant and cholesterolemia in the Masai. Am. J. Clin. Nutr. 27: 464-469.
Matsumota, K., Y. Kobayashi, N. Tamura, T. Watanabe, and T. Kan. 1989. Production of galactooligosaccharides with β-galactosidase. Denpun Kagaku. 36: 123-130.
Mawadza, C., Hatti-Kaul R, Zvauya, R., Mattiasson, B. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83: 177-187.
McCreath, K. J. and Gooday, G. W. 1992. A rapid and sensitive microassay for determination of chitinolytic activity. J. Microbiol. Methods. 14: 229-237.
McCleary, B. V. 1988. -mannanase. Meth Enzymol. 160:596-610.
Meyers, S. P. and Chen, H. M. 1982. Astaxanthin and its role in fish culture. Proceedings of the Warmwater Fish Culture Workshop. Special Publication Series No.3, Charleston, South Carolina, 1-4 March, p. 153-165.
Miki, W. 1991. Biological functions and activities of animal carotenoids. Pure and Applied Chemistry. 63: 141-146.
Miller, L. N., Rice-Evans, C. A., Davis, M. J., Gopinathan, V. and Milner A. 1993 A novel method for measuring antioxidant status in premature neonates. Clinical Science. 84: 407-412.
Mislovicova D, J Masarova, K Bendzalova, L Soltes, and E Machova. 2000. Sonication of chitin-glucan, preparation of water-soluble fractions and characterization by HPLC. Ultrasonics Sonochem., 7:63-68.
Mitsuoka, T. 1990. Intestinal flora and human health. New Food Industry. 32(10): 1-8.
Mohamed A. A., Iamail A. S., Ahmed A., Abdel Fattah A. F. 1998. Production and immobilization of alkaline protease from Bacillus mycoides. Bioresource Technology. 64: 205-210.
Molano, J., Puran, A. and Cabib, E. 1977. A rapid and sensitive assay of chitinase using tritiated chitin. Anal. Biochem. 83: 648.
Morea, M., Matarante, A., Cagno, R.D., Baruzzi, F., Minervini, F. 2007. Contribution of autochthonous non-starter lactobacilli to proteolysis in Caciocavallo Pugliese cheese. International Dairy Journal. 17: 525-534.
Muraki E, F Yaku, and H Kojima. 1993. Preparation and crystallization of D-glucosamine oligosaccharides with dp. 6-8. Carbohydr: Res., 239: 227-237.
Naidu, A. S., W. R. Bidlack, and R. A. Clemens. 1999. Probiotic spectra of lactic acid bacteria (LAB). Ceit. Rev. Food Sci. Nutr. 39: 13-126.
Narahara, H., Koyama, Y., Yoshida, T., Pichangkura, S., Urda, R. and Taguchi, H. 1982. Growth and enzyme production in a solid-state culture of Aspergillus oryzae, Journal of Fermentation Technology. 60(4): 311-319.
Noh, D. O., and S. E. Gilliland. 1993. Influence of bile on cellular integrity and β-galactosidase activity of Lactobacillus acidophilus. J. Dairy Sci. 76: 1253-1259.
Ohtakara, A. 1961. Studies on the chitinolytic enzymes of black-kogi mold. Part I. Viscometric determination of chitinase activity by application of glycol chitin as a new substrate. Agric. Biol. Chem. 25: 50-54.
Ohtakara, A., Matsunaga, H., Miysutomi, M. 1990. Action pattern of Streptomyces griseus chitinase on partially N-acetylated chitosan. Agric Biol Chem. 54: 3191-3199.
Oku, T. 1996. Oligosaccharides with beneficial health effects: a Japanese perspective. Nutr. Rev. 54(11): 59-66.
Oneca, M., Ortigosa, M., Irigoyen, A., Torre, P. 2007. Proteolytic activity of some Lactobacillus paracasei strains in a model ovine-milk curd system: Determination of free amino acids by RP-HPLC. Food Chemistry. 100: 1602-1610.
Ong, L., Henriksson, A., Shah, N.P. 2007. Proteolytic pattern and organic acid profiles of probiotic Cheddar cheese as influenced by probiotic strains of Lactobacillus acidophilus, L. paracasei or Bifidobacterium sp.. International Dairy Journal. 17: 67-78.
Ostlie, H. M., M. H. Helland, and J. A. Narvhus. 2003. Growth and metabolism of selected strains of probiotic bacteria in milk. Int. J. Food Microbiol. 87: 17-27.
Outtrup H., Boyce C.O.L. 1990. Microbial proteinases and biotechnology. In: Fogaerty CT, Kelly K (eds) Microbial enzymes and biotechnology. Elsevier, London, pp 227-254.
Oyaizu, M. 1988. Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi. 35 (11): 771-775.
Pantaleone D, M Yalpani, and M Scollar. 1992. Unusual susceptibility of chitosan to enzymic hydrolysis. Carbphydr. Res., 237: 325-332.
Perdigon G., Alvarez S., Demacias MEN., Margni RA., Oliver G., Deruiz A. 1986a. Lactobacilli administered orally induce release of an enzymes from peritoneal macrophages in mice. Milchwissenschaft. 41: 244-347.
Perdigon, G., M. E. N. Demacias, S. Alvarez, G. Oliver, and A. A. P. Holgdo. 1986b. Effect of a mixture of Lactobacillus casei and Lactobacillus acidophilus administered orally on the immune system in mice. J. Food Prot. 49: 986-989.
Perdigon, G., M. E. N. Demacias, S. Alvarez, G. Oliver, and A. A. P. Holgdo. 1987. Enhancement of immune response in mice fed with Streptococcus thermophilus and Lactobacillus acidophilus. J. Dairy Sci. 70: 919-923.
Pereira, C. I., Crespo, M. T. B., Romão, M. V. S. 2001. Evidence for proteolytic activity and biogenic amines production in Lactobacillus curvatus and L. homohiochii. International Journal of Food Microbiology. 68: 211-216.
Pichyangkura R., Kudan S., Kuttiyawong K., Sukwattanasinitt M., Aiba S. 2002. Quantitative production of 2-acetamido-2-deoxy-D-glucose from crystalline chitin by vacterial chitinase. Carbohydrate Reaearch. 337: 557-559.
Poupard J. A., Husain, I. Norris R. F. 1973. Biology of the bifidobacteria. Bacteriol Rev. 37: 136-165.
Powning, R. F. and Irzykiewice, H. 1967. Separation of chitin oligosaccharides by thin-layer chromatography. 29: 115-119.
Rao, D. R., C. B. Chawan, and S. R. Pulusani. 1981. Influence of milk and S. thermophilus milk on plasma cholesterol levels and hepatic cholesterogenesis in rats. J. Food Sci. 46: 1339-1341.
Rao MS, Stevens WF. 2005. Quality parameters of chitosan derived from fermentation of shrimp biomaterial using a drum reactor. J Chem Technol Biotechnol. 80: 1080-7.
Rao, M.S., Munoz, J. and Stevens, W.F. 2000. Critical Factors in Chitin Production by Fermentation of Shrimp Biowaste. Applied Microbiology and Biotechnology. 54: 808-813.
Rao, M.B., Tanksale, A.M., chatge, M.S. and Deshpande, V.V. 1998. Molecular and Biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev. 62 (3): 597-635.
Rebeca B/D/, Pena-Vera M.T., Diaz-Castaneda M. 1991. Production of fish protein hydrolysates with bacterial protease; yield and nutritional value. J Food Sci. 56: 309-314.
Reddy, G. V., B. A. Friend, K. M. Shahani, and R. E. Farmer. 1983. Antitumor activity of yogurt components J. Food Prot. 46: 8-11.
Ressing, J. L., Strominger, J. L. and Leloir, L. F. 1955. A modified colorimetric method for the estination of N-acetylamino sugars. J. Biol. Chem. 217: 959-966.
Robert, W. K. and Selitrennidkoff, C. P. 1988. Plant and bacterical chitinase differ in antifungal activity. J. Biol. Chem. 134: 169-171.
Roberts GAF. 1992. Chitin Chemistry. The MacMillan Press LTD, London.
Sako, T., K. Matsumoto, and R. Tanaka. 1999. Recent progress on research and applications of non-digestible galacto-oligosaccharides. Int. Dairy J. 9: 69-80.
Sampson, M. N. and Gooday, G. W. 1996. A novel chitinase assay using the florescent brightener Calcofluor White M2R. In Chitin Enzymology (Muzzarelli, R.AA. Ed.) Vol, 2. pp. 227-234. Atec Edizioni-Grottammare.
Sanders, M. E., D. C. Walker, K. M. Walker, K. Aoyama, and T. R. Klaenhammer. 1996. Performance of commercial cultures in fluid milk applications. J. Dairy Sci. 76(6): 943-955.
Sarkar, P. K., Cook, P. E., Owens, J. D. 1993. Bacillus fermentation of soybeans. World Journal of Microbiology and Biotechnology. 9: 295-299.
Savaino, D. A., A. Abauelanor, D. E. Smith, and M. D. Levitt. 1984. Lactose Malabo sorption from yogurt, pasteurized yogurt, sweet acidophilus milk, and cultured milk in lactose-deficiency individuals. Am. J. Clin. Nutr. 39: 756-761.
Schagger, H. and Jagow, G. V. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry. 166: 368-369.
Shakelford, I. A., D. R. Rao, Chawan and S. R. Pulusani. 1983. Effect of feeding fermented milk on the size and number of fat globules. Dairy Sci. Abstr. 31: 716.
Shin-Ya Y, Lee MY, Hinode H, and Kajiuchi T. 2001. Effect of N-acetylation degree on N-acetylated chitosan hydrolysis with commercially available and modified pectinases. Biochem. Eng. J. 7: 85-88.
Sini, T. K., Santhosh. S., Mathew, P. T. 2007. Study on the production of chitin amd chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydrate Research. 342: 2423-2429.
Slinkard, K. and Singleton, V. L. 1977. Total phenol analysis: Automation andcomparison with manual methods. Am J Enol Vitic. 28: 49-55.
Su, P., Henriksson, A., Mitchell, H. 2007. Selected prebiotics support the growth of probiotic mono-cultures in vitro. Anaerobe. 13: 134-139.
Suetsuna, K. 2000. Antioxidant peptides from the protease digest of prawn (Penaeus japonicus) muscle. Biotechnol. 2: 5-10.
Sun, W., and M. W. Griffiths. 2000. Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. Int. J. Food Microbiol. 61: 17-25.
Takahashi Y. 1997. Effect of sonication on the acid degradation of chitin and chitosan. In: Advances in Chitin Science. (A Domard, GAF Robert, and KM Varum. ed.). Vol. 2, pp. 372-377. Held in Lyon. France.
Takasaki, Y. 1987. Pullulanase-amylase complex enzyme from Bacillus subtilis. Agric. Biol. Chem. 51: 9-16.
Tomomatsu, H. 1994. Health effects of oligosaccharides. Food Technol. 148(10): 61-65.
Trudel, J. and Asselin. 1989. Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal. Biochem. 178: 362-366.
Tsutomu, T., Kasumi, A., Yasuyaki, T. and Venzo, S. 1991. Isolation and characterization of thermostable chitinase from Bacillus licheniformis. Biophys. Acta. 1078: 404-411.
Uchida Y, M Izume, and A Ohtakara. 1988. Preparation of chitosan oligomers with purified chitosanase and its application. In: Chitin and Chitosan. (G Skjak-Brek, T Anthonsen, and P Sandford. Ed.), pp. 373-382. Elsevier Science Publishers Ltd, England.
Usui, T., Hayahi, Y., Nanjo, F., Sakai, K. and Ishido, Y.1987. Transglycoylation reaction of chitinase purified from Nocardio orientalis.Biochim. Biophys. Acta. 9923: 302-309.
Wang, S. L., Wang, C. Y., Huang, T. Y. 2008. Microbial reclamation of squid pen for the production of a novel extracellular serine protease by Lactobacillus paracasei subsp paracasei TKU012. Bioresource Technology. 99: 3411-3417.
Wang, S. L., Lin, T. Y., Yen, Y. H., Liao, H. F., Chen, Y. J. 2006. Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase. Carbohydr Res. 341: 2507-2515.
Wang, S. L. and Yeh, P. Y. 2006. Production of a surfactant- and solvent-stable alkaliphilic protease by bioconversion of shrimp shell wastes fermented by Bacillus subtilis TKU007. Process Biochemistry. 41: 1545-1552.
Webb, E. 1984. α-amylase, β-amylase, γ-amylase. In “Enzyme Nomenclature”. pp. 306-307. Academic Press, Orland, Fla.
Yabahira, S., T. Kobayashi, T. Suguri, M. Nakakoshi, S. Miura, H. Ishikawa, and I. Nakajima. 1995. Formation of oligosaccharides from lactose by Bacillus circulans β-galactosidase. Biosci. Biotechnol. Biochem. 59: 1021-1026.
Yang, J. K., Shih, I. L., Taeng, Y. M., Wang, S. L. 2000. Production and purification of protease from a Bacillus subtilis that can deproteinze crustacean wastes. Enzyme and Microbial Technology. 26: 406-413.
Yazawa, K., K. Imai and Z. Tamura. 1978. Oligosaccharides and polysaccharides specifically utilizable by bifidobacteria. Chem. Pharm. Bull. (Tokyo) 26: 3306-3311.
Yuli, P. E., Suhartono M. T., Rukayadi, Y., Hwang, J. K., Pyun, Y. R. 2004. Characteristics of thermostable chitinase enzymes from the indonesian Bacillus sp.13.26. Enzyme and Microbial Technology. 35 : 147-153.
Zhang, J., He, Z.M., and Hu, K. 2000. Purification and characterization of β-mannanase from Bacillus licheniformis for industrial use. Biotechnol Lett. 22: 1375-1378.
Ziemer, C. J., and G. R. Gibson. 1998. An overview of probiotics, prebiotics and synbiotics in the functional food concept: perspectives and future strategies. Int. Dairy J. 8: 473-479.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top