跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/01 18:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠霖
研究生(外文):Guan-Lin Chen
論文名稱:海洋酸化刺激仔稚魚上皮細胞HSP27調控酸鹼平衡之研究
論文名稱(外文):Acid-base regulation and stress-resistant of Japanese medaka embryos under ocean acidification
指導教授:黃鵬鵬黃鵬鵬引用關係
指導教授(外文):Pung-Pung Hwang
口試委員:張清風林豊益曾庸哲
口試日期:2014-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:漁業科學研究所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:59
中文關鍵詞:仔稚魚海洋酸化酸鹼調控熱休克蛋白二氧化碳
外文關鍵詞:fish larvaeocean acidificationacid-base regulationheat shock proteincarbon dioxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年由於大氣中二氧化碳(CO2)濃度升高,導致海洋生態系統受到嚴重影響,其中包括海水溫度、含氧量、酸鹼值等變異。
本研究運用日本種稻田魚擁有廣鹽性適應特性、完整基因體資源庫與發生學研究等實驗操作優勢,用以探討當硬骨魚仔稚時期面臨高CO2酸化的海水環境中,個體抗逆境蛋白、表皮離子細胞分化相關基因、以及酸鹼調控基因之表現相。實驗發現海水酸化會造成仔稚魚在2~5 dpf時期面臨發育生長瓶頸,同時酸鹼調控基因之表現有顯著提升現象;另一方面,抗逆境蛋白olhsp27a之表現可能在細胞面臨高碳酸緊迫壓力時扮演著重要角色。利用蛋白免疫染色技術發現olhsp27a表現於離子細胞,進一步運用反義核酸 (morpholino antisense oligonucleotides)抑制olHsp27a蛋白表現後,除了顯著抑制仔魚排酸機制,而酸鹼調節相關基因的表現亦發生回饋補償效應。綜合以上結果我們推論:離子細胞內hsp27a會受細胞外CO2的刺激啟動離子運輸蛋白的轉錄後修飾,進而調控表皮細胞的酸鹼恆定。


Contents…………………………………………………………………………………1
中文摘要……………………………………………………………………..………….3
Abstract……………..………………………………………………………………….4
Introduction…………………………………………………………………………...6
Ocean acidification (OA) ……………………………………………………………..6
OA impacts on marine organisms……………………………………………………7
Resistance to ambient stress…………………………………………………………10
Materials and Methods…………………………………………………..………..12
Experimental animals………………………………………………………………12
CO2 perturbation experiments.……………………………………………………12
Preparation of total RNA. …………………………………………………………13
Real-time quantitative PCR (qPCR). ……………………………………………14
Whole-mount in situ hybridization. …………………………………………………15
Whole-mount immunocytochemistry. ………………………………………………16
Western blot analysis………………………………………………………………..17
Translational knockdown with antisense morpholino oligonucleotides (MOs)……17
SIET and measurement of ionic gradients.…………………………………………18
Statistical analysis. …………………………………………………………………20
Results…………………………………………………………………………………21
Responses of acid–base machinery in embryos……………………………………21
Gene expressions in various developmental stages…………………………………21
Expressions of stress-resistant heat shock proteins between control and CO2 conditions…………………………………………………………………………22
olhsp27a mRNA expressions in medaka……………………………………………22
Spatial localization of olhsp27a mRNAs in medaka epithelial ionocytes…………23
Examination of olHSP27a abrogation efficiency by Western blot analysis ………23
Effects of olhsp27a knockdown on physiological responses in medaka embryos…..24
Effects of olhsp27a knockdown on H+ gradients in larvae exposed to CO2 conditions……………………………………………………………………………24
Effects of olhsp27 knockdown on acid-base regulation relative genes……………..25
Discussion……………………………………………………………………………..26
Conclusion…………………………………………………………………………….33
References……………………………………………………………………………...34
Figures and Table…………………………………………………………………..49


Adhikari, A. S., Rao, K. S., Rangaraj, N., Parnaik, V. K., &; Rao, C. M. (2004). Heat stress-induced localization of small heat shock proteins in mouse myoblasts: intranuclear lamin A/C speckles as target for alpha B-crystallin and Hsp25. Exp Cell Res, 299(2), 393-403. doi: DOI 10.1016/j.yexcr.2004.05.032
Ali, A., Bharadwaj, S., O''Carroll, R., &; Ovsenek, N. (1998). HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol, 18(9), 4949-4960.
Bryantsev, A. L., Loktionova, S. A., Ilyinskaya, O. P., Tararak, E. M., Kampinga, H. H., &; Kabakov, A. E. (2002). Distribution, phosphorylation, and activities of Hsp25 in heat-stressed H9c2 myoblasts: a functional link to cytoprotection. Cell Stress &; Chaperones, 7(2), 146-155. doi: Doi 10.1379/1466-1268(2002)007<0146:Dpaaoh>2.0.Co;2
Caldeira, K., &; Wickett, M. E. (2005). Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res-Oceans, 110(C9). doi: Artn C09s04Doi 10.1029/2004jc002671
Claiborne, J. B., &; Evans, D. H. (1992). Acid-Base-Balance and Ion Transfers in the Spiny Dogfish (Squalus-Acanthias) during Hypercapnia - a Role for Ammonia Excretion. J Exp Zool, 261(1), 9-17. doi: DOI 10.1002/jez.1402610103
Claiborne, J. B., &; Heisler, N. (1984). Acid-Base Regulation and Ion Transfers in the Carp (Cyprinus-Carpio) during and after Exposure to Environmental Hypercapnia. J Exp Biol 108(Jan), 25-43.
Coss, R. A., Sedar, A. W., Sistrun, S. S., Storck, C. W., Wang, P. H., &; Wachsberger, P. R. (2002). Hsp27 protects the cytoskeleton and nucleus from the effects of 42 degrees C at pH 6.7 in CHO cells adapted to growth at pH 6.7. Int J Hyperthermia, 18(3), 216-232. doi: 10.1080/02656730110119189
Cox, A. G., Winterbourn, C. C., &; Hampton, M. B. (2010). Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J, 425, 313-325. doi: Doi 10.1042/Bj20091541
Dahlhoff, E. P. (2004). Biochemical indicators of stress and metabolism: Applications for marine ecological studies. Annu Rev Physiol, 66, 183-207. doi: DOI 10.1146/annurev.physiol.66.032102.114509
Dalle-Donne, I., Rossi, R., Milzani, A., Di Simplicio, P., &; Colombo, R. (2001). The actin cytoskeleton response to oxidants: From small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radical Bio Med, 31(12), 1624-1632. doi: Doi 10.1016/S0891-5849(01)00749-3
Deane, E. E., &; Woo, N. Y. S. (2003). Ontogeny of thyroid hormones, cortisol, hsp70 and hsp90 during silver sea bream larval development. Life Sciences, 72(7), 805-818. doi: Pii S0024-3205(02)02334-2Doi 10.1016/S0024-3205(02)02334-2
Deigweiher, K., Koschnick, N., Portner, H. O., &; Lucassen, M. (2008). Acclimation of ion regulatory capacities in gills of marine fish under environmental hypercapnia. Am J Physiol-Reg I, 295(5), R1660-R1670. doi: DOI 10.1152/ajpregu.90403.2008
Domenici, P., Allan, B., McCormick, M. I., &; Munday, P. L. (2012). Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biology Letters, 8(1), 78-81. doi: DOI 10.1098/rsbl.2011.0591
Doney, S. C., Balch, W. M., Fabry, V. J., &; Feely, R. A. (2009). Ocean acidification: A critical emerging problem for the ocean sciences. Oceanography, 22(4):16–25.
Doney, S. C., Fabry, V. J., Feely, R. A., &; Kleypas, J. A. (2009). Ocean acidification: the other CO2 problem. Ann Rev Mar Sci, 1, 169-192. doi: 0.1146/ annurev. marine.010908.163834
Dupont, S., Havenhand, J., Thorndyke, W., Peck, L., &; Thorndyke, M. (2008). Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Marine Ecology Progress Series, 373, 285-294. doi: 10.3354/meps07800
Evans, D. H., Piermarini, P. M., &; Choe, K. P. (2005). The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev, 85(1), 97-177. doi: DOI 10.1152/physrev.00050.2003
Feder, J. H., Rossi, J. M., Solomon, J., Solomon, N., &; Lindquist, S. (1992). The Consequences of Expressing Hsp70 in Drosophila Cells at Normal Temperatures. Gene Dev, 6(8), 1402-1413. doi: Doi 10.1101/Gad.6.8.1402
Feder, M. E., &; Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu Rev Physiol, 61, 243-282. doi: DOI 10.1146/annurev.physiol.61.1.243
Furukawa, F., Watanabe, S., Inokuchi, M., &; Kaneko, T. (2011). Responses of gill mitochondria-rich cells in Mozambique tilapia exposed to acidic environments (pH 4.0) in combination with different salinities. Comp Biochem Phys A, 158(4), 468-476. doi: DOI 10.1016/j.cbpa.2010.12.003
Gattuso, J. P., Frankignoulle, M., Bourge, I., Romaine, S., &; Buddemeier, R. W. (1998). Effect of calcium carbonate saturation of seawater on coral calcification. Global and Planetary Change, 18(1-2), 37-46. doi: Doi 10.1016/S0921-8181(98)00035-6
Grosell, M. (2006). Intestinal anion exchange in marine fish osmoregulation. J Exp Biol, 209(15), 2813-2827. doi: Doi 10.1242/Jeb.02345
Gunter, H. M., &; Degnan, B. M. (2007). Developmental expression of Hsp90, Hsp70 and HSF during morphogenesis in the vetigastropod Haliotis asinina. Dev Genes Evol, 217(8), 603-612. doi: DOI 10.1007/s00427-007-0171-2
Haugan, P. M., &; Drange, H. (1996). Effects of CO2 on the ocean environment. Energ Convers Manage, 37(6-8), 1019-1022. doi: Doi 10.1016/0196-8904(95)00292-8
Hirata, T., Kaneko, T., Ono, T., Nakazato, T., Furukawa, N., Hasegawa, S.,Hirose, S. (2003). Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am J Physiol Regul Integr Comp Physiol, 284(5), R1199-1212. doi: 10.1152/ajpregu.00267.2002
Hoegh-Guldberg, O. (2010). Dangerous shifts in ocean ecosystem function? ISME J, 4(9), 1090-1092. doi: 10.1038/ismej.2010.107
Horng, J. L., Lin, L. Y., Huang, C. J., Katoh, F., Kaneko, T., &; Hwang, P. P. (2007). Knockdown of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in zebrafish (Danio rerio). Am J Physiol-Reg I, 292(5), R2068-R2076. doi: DOI 10.1152/ajpregu.00578.2006
Houghton, J. T., Ding, Y., &; Griggs, D. J. (2001). Climate change 2001—Thescientific basis: contribution of Working Group I to the third assessment report of the Intergovernmental Panel of Climate Change.
Huot, J., Houle, F., Spitz, D. R., &; Landry, J. (1996). HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res, 56(2), 273-279.
Hwang, P. P., &; Lee, T. H. (2007). New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A, 148(3), 479-497. doi: DOI 10.1016/j.cbpa.2007.06.416
Hwang, P. P., Lee, T. H., &; Lin, L. Y. (2011a). Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol-Reg I, 301(1), R28-R47. doi: DOI 10.1152/ajpregu.00047.2011
Hwang, P. P., Lee, T. H., &; Lin, L. Y. (2011b). Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol, 301(1), R28-47. doi: 10.1152/ajpregu.00047.2011
Jutfelt, F., de Souza, K. B., Vuylsteke, A., &; Sturve, J. (2013). Behavioural Disturbances in a Temperate Fish Exposed to Sustained High-CO2 Levels. Plos One, 8(6). doi: ARTN e65825DOI 10.1371/journal.pone.0065825
Kleypas, J. A., Feely, R. A., Fabry, V. J., Langdon, C., Sabine, C. L., &; Robbins, L. L. (2006). Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide to Future Research. St. Petersburg, FL, Sponsored by NSF, NOAA, and the US Geological Survey, 88 pp. Available online at: http://www.isse.ucar.edu/florida/ (accessed November 16, 2009).
Krebs, R. A., &; Feder, M. E. (1997). Deleterious consequences of Hsp7O overexpression in Drosophila melanogaster larvae. Cell Stress &; Chaperones, 2(1), 60-71. doi: Doi 10.1379/1466-1268(1997)002<0060:Dcohoi>2.3.Co;2
Krone, P. H., Evans, T. G., &; Blechinger, S. R. (2003). Heat shock gene expression and function during zebrafish embryogenesis. Semin Cell Dev Biol, 14(5), 267-274.
Krone, P. H., Sass, J. B., &; Lele, Z. (1997). Heat shock protein gene expression during embryonic development of the zebrafish. Cell Mol Life Sci, 53(1), 122-129. doi: Doi 10.1007/Pl00000574
Langdon, C., Takahashi, T., Sweeney, C., Chipman, D., Goddard, J., Marubini, F., Atkinson, M. J. (2000). Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cy, 14(2), 639-654. doi: Doi 10.1029/1999gb001195
Larsen, B. K., Portner, H. O., &; Jensen, F. B. (1997). Extra- and intracellular acid-base balance and ionic regulation in cod (Gadus morhua) during combined and isolated exposures to hypercapnia and copper. Mar Biol, 128(2), 337-346. doi: DOI 10.1007/s002270050099
Le Quere, C., Raupach, M. R., Canadell, J. G., Marland, G., Le Quere et al, C., Le Quere et al, C. (2009). Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2(12), 831-836. doi: 10.1038/ngeo689
Lin, C. C., Lin, L. Y., Hsu, H. H., Thermes, V., Prunet, P., Horng, J. L., &; Hwang, P. P. (2012). Acid secretion by mitochondrion-rich cells of medaka (Oryzias latipes) acclimated to acidic freshwater. Am J Physiol Regul Integr Comp Physiol, 302(2), R283-291. doi: 10.1152/ajpregu.00483.2011
Lin, T. Y., Liao, B. K., Horng, J. L., Yan, J. J., Hsiao, C. D., &; Hwang, P. P. (2008). Carbonic anhydrase 2-like a and 15a are involved in acid-base regulation and Na+ uptake in zebrafish H+-ATPase-rich cells. Am J Physiol Cell Physiol, 294(5), C1250-1260. doi: 10.1152/ajpcell.00021.2008
Loktionova, S. A., Ilyinskaya, O. P., Gabai, V. L., &; Kabakov, A. E. (1996). Distinct effects of heat shock and ATP depletion on distribution and isoform patterns of human Hsp27 in endothelial cells. Febs Letters, 392(2), 100-104. doi: Doi 10.1016/0014-5793(96)00792-2
Manchado, M., Infante, C., Asensio, E., Crespo, A., Zuasti, E., &; Canavate, J. P. (2008). Molecular characterization and gene expression of six trypsinogens in the flatfish Senegalese sole (Solea senegalensis Kaup) during larval development and in tissues. Comp Biochem Phys B, 149(2), 334-344. doi: DOI 10.1016/j.cbpb.2007.10.005
Mao, L., Bryantsev, A. L., Chechenova, M. B., &; Shelden, E. A. (2005). Cloning, characterization, and heat stress-induced redistribution of a protein homologous to human hsp27 in the zebrafish Danio rerio. Exp Cell Res, 306(1), 230-241. doi: 10.1016/j.yexcr.2005.02.007
Marshall, W. S., &; Grosell, M. (2006). Ion transport, osmoregulation,and acid-base balance. In: Evans DH, Claiborne JB (eds)The physiology of fishes, 3rd edn. CRC Press, Boca Raton,FL, p 177–230.
Marubini, F., &; Atkinson, M. J. (1999). Effects of lowered pH and elevated nitrate on coral calcification. Mar Ecol Prog Ser, 188, 117-121. doi: Doi 10.3354/Meps188117
Marubini, F., &; Davies, P. S. (1996). Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar Biol, 127(2), 319-328. doi: Doi 10.1007/Bf00942117
Mayer, M. P., &; Bukau, B. (1999). Molecular chaperones: The busy life of Hsp90. Curr Biol, 9(9), R322-R325.
Melzner, F., Gobel, S., Langenbuch, M., Gutowska, M. A., Portner, H. O., &; Lucassen, M. (2009). Swimming performance in Atlantic Cod (Gadus morhua) following long-term (4-12 months) acclimation to elevated seawater P-CO2. Aquat Toxicol, 92(1), 30-37. doi: DOI 10.1016/j.aquatox.2008.12.011
Milsom, W. K. (2002). Phylogeny of CO2/H+ chemoreception in vertebrates. Respiratory Physiology &; Neurobiology, 131(1-2), 29-41. doi: Pii S1569-9048(02)00035-6
Doi 10.1016/S1569-9048(02)00035-6
Morris, R. (1989). Acid Toxicity and Aquatic Animals (Cambridge Univ., 1989).
.
Munday, P. L., Dixson, D. L., Donelson, J. M., Jones, G. P., Pratchett, M. S., Devitsina, G. V., &; Doving, K. B. (2009). Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. P Natl Acad Sci USA, 106(6), 1848-1852. doi: DOI 10.1073/pnas.0809996106
Munday, P. L., Dixson, D. L., McCormick, M. I., Meekan, M., Ferrari, M. C. O., &; Chivers, D. P. (2010). Replenishment of fish populations is threatened by ocean acidification. P Natl Acad Sci USA, 107(29), 12930-12934. doi: DOI 10.1073/pnas.1004519107
Munday, P. L., McCormick, M. I., &; Nilsson, G. E. (2012). Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future? J Exp Biol, 215(22), 3865-3873. doi: Doi 10.1242/Jeb.074765
Munday, P. L., Pratchett, M. S., Dixson, D. L., Donelson, J. M., Endo, G. G. K., Reynolds, A. D., &; Knuckey, R. (2013). Elevated CO2 affects the behavior of an ecologically and economically important coral reef fish. Mar Biol, 160(8), 2137-2144. doi: DOI 10.1007/s00227-012-2111-6
Nakamura, M., Morita, M., Kurihara, H., &; Mitarai, S. (2012). Expression of hsp70, hsp90 and hsf1 in the reef coral Acropora digitifera under prospective acidified conditions over the next several decades. Biol Open, 1(2), 75-81. doi: 10.1242/bio.2011036
Nilsson, G. E., Dixson, D. L., Domenici, P., McCormick, M. I., Sorensen, C., Watson, S.-A., &; Munday, P. L. (2012). Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nature Climate Change, 2(3), 201-204. doi: 10.1038/nclimate1352
Portner, H. (2008). Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Marine Ecology Progress Series, 373, 203-217. doi: 10.3354/meps07768
Perry, S. F., &; Gilmour, K. M. (2006). Acid-base balance and CO2 excretion in fish: Unanswered questions and emerging models. Resp Physiol Neurobi, 154(1-2), 199-215. doi: DOI 10.1016/j.resp.2006.04.010
Pirkkala, L., Nykanen, P., &; Sistonen, L. (2001). Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. Faseb J, 15(7), 1118-1131. doi: Doi 10.1096/Fj00-0294rev
Riebesell, U., Revill, A. T., Holdsworth, D. G., &; Volkman, J. K. (2000). The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi. Geochim Cosmochim Ac, 64(24), 4179-4192. doi: Doi 10.1016/S0016-7037(00)00474-9
Seidelin, M., Brauner, C. J., Jensen, F. B., &; Madsen, S. S. (2001). Vacuolar-type H+-ATPase and Na+, K+-ATPase expression in gills of Atlantic salmon (Salmo salar) during isolated and combined exposure to hyperoxia and hypercapnia in fresh water. Zool Sci, 18(9), 1199-1205. doi: Doi 10.2108/Zsj.18.1199
Shih, T. H., Horng, J. L., Hwang, P. P., &; Lin, L. Y. (2008). Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. Am J Physiol Cell Physiol, 295(6), C1625-1632. doi: 10.1152/ajpcell.00255.2008
Simpson, S. D., Munday, P. L., Wittenrich, M. L., Manassa, R., Dixson, D. L., Gagliano, M., &; Yan, H. Y. (2011). Ocean acidification erodes crucial auditory behaviour in a marine fish. Biology Letters, 7(6), 917-920. doi: DOI 10.1098/rsbl.2011.0293
Solomon, S., Intergovernmental Panel on Climate Change., &; Intergovernmental Panel on Climate Change. Working Group I. (2007). Climate change 2007 : the physical science basis : contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge ; New York: Cambridge University Press.
Sorger, P. K. (1991). Heat-Shock Factor and the Heat-Shock Response. Cell, 65(3), 363-366. doi: Doi 10.1016/0092-8674(91)90452-5
Stumpp, M., Wren, J., Melzner, F., Thorndyke, M. C., &; Dupont, S. T. (2011). CO2 induced seawater acidification impacts sea urchin larval development I: Elevated metabolic rates decrease scope for growth and induce developmental delay. Comparative Biochemistry and Physiology a-Molecular &; Integrative Physiology, 160(3), 331-340. doi: DOI 10.1016/j.cbpa.2011.06.022
Toews, D. P., Holeton, G. F., &; Heisler, N. (1983). Regulation of the acid-base status during environmental hypercapnia in the marine teleost fish Conger conger. J Exp Biol, 107, 9-20.
Tomanek, L., Zuzow, M. J., Ivanina, A. V., Beniash, E., &; Sokolova, I. M. (2011). Proteomic response to elevated pCO2 level in eastern oysters, Crassostrea virginica: evidence for oxidative stress. J Exp Biol, 214(11), 1836-1844. doi: Doi 10.1242/Jeb.055475
Tseng, Y. C., Hu, M. Y., Stumpp, M., Lin, L. Y., Melzner, F., &; Hwang, P. P. (2013). CO2-driven seawater acidification differentially affects development and molecular plasticity along life history of fish (Oryzias latipes). Comp Biochem Physiol A Mol Integr Physiol, 165(2), 119-130. doi: 10.1016/j.cbpa.2013.02.005
Tseng, Y. C., Lee, J. R., Lee, S. J., &; Hwang, P. P. (2011). Functional analysis of the glucose transporters-1 alpha, -6, and -13.1 expressed (vol 300, pg R321, 2010). Am J Physiol-Reg I, 300(5), R1261-R1261. doi: DOI 10.1152/ajpregu-zh6-7585-corr.2011
Voss, M. R., Stallone, J. N., Li, M., Cornelussen, R. N., Knuefermann, P., &; Knowlton, A. A. (2003). Gender differences in the expression of heat shock proteins: the effect of estrogen. Am J Physiol Heart Circ Physiol, 285(2), H687-692. doi: 10.1152/ajpheart.01000.2002
Wakayama, T., &; Iseki, S. (1998). Expression and cellular localization of the mRNA for the 25-kDa heat-shock protein in the mouse. Cell Biol Int, 22(4), 295-304. doi: DOI 10.1006/cbir.1998.0252
Wang, Y. F., Tseng, Y. C., Yan, J. J., Hiroi, J., &; Hwang, P. P. (2009). Role of SLC12A10.2, a Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio). Am J Physiol-Reg I, 296(5), R1650-R1660. doi: DOI 10.1152/ajpregu.00119.2009
Wigley, T. M. (1996). Climate change report. Science, 271(5255), 1481-1482. doi: 10.1126/science.271.5255.1481
Wu, S. C., Horng, J. L., Liu, S. T., Hwang, P. P., Wen, Z. H., Lin, C. S., &; Lin, L. Y. (2010). Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. Am J Physiol-Cell Ph, 298(2), C237-C250. doi: DOI 10.1152/ajpcell.00373.2009
Zeebe, R. E., &; Wolf-Gladrow, D. (2001). CO2 in seawater. Equilibrium, kinetics, isotopes. Oceanography Series 65, Elsevier, Amsterdam.
Zhang, Z. B., &; Hu, J. Y. (2007). Development and validation of endogenous reference genes for expression profiling of medaka (Oryzias latipes) exposed to endocrine disrupting chemicals by quantitative real-time RT-PCR. Toxicol Sci, 95(2), 356-368. doi: DOI 10.1093/toxsci/kfl16


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top