|
Aitken, A. C. (1935). On least squares and linear combination of observations. Pro-ceedings of the Royal Society of Edinburg. 55, 42-48. Bai, Z.-D. and He, X. (1999). Asymptotic distributions of the maximal depth esti-mators for regression and multivariate location. The Annals of Statistics. 27, 1616-1637. Chen, L.-A. (1997). An e±cient class of weighted trimmed means for linear regression models. Statistica Sinica 7, 669-686. Chen, L-A, Welsh, A. H. and Chan, W. (2001) Linear winsorized means for the linear regression model. Statistica Sinica. 11, 147-172. Cochrane, D. and Orcutt, G. H. (1949). Application of least squares regressions to relationships containing autocorrelated error terms. Journal of the American Sta- tistical Association, 44, 32-61. De Jongh, P. J. and De Wet, T. (1985), Trimmed Mean and Bounded In°uence Esti- mators for the Parameters of the AR(1) Process, Communications in Statistics - Theory and Methods, 14, 1361-1357. De Jongh, P. J., De Wet, T. and Welsch, A. H. (1988), Mallows-Type Bounded- In°uence-Regression Trimmed Means, Journal of the American Statistical Asso- ciation, 83, 805-810. Fomby, T. B., Hill, R. C. and Johnson, S. R. (1984). Advanced Econometric Methods. New York: Springer-Verlag. Giltinan, D. M., Carroll, R. J. and Ruppert, D. (1986), Some New Estimation Methods for Weighted Regression When There Are Possible Outliers, Technometrics, 28, 219-230. Huber, P. J. (1981). Robust Statistics. New York: Wiley. Jure·ckov�鷻, J. (1977). Asymptotic relations of M-estimates and R-estimates in linear regression model. Annals of Statistics 5, 464-472. Jureckova, J. and Sen, P. K. (1987). An extension of Billingsley's theorem to higher dimension M-processes. Kybernetica 23, 382-387. Koenker, R. W. and Bassett, G. W. (1978), Regression Quantiles, Econometrica 46, 33-50. Koenker, R. and Portnoy, S. (1990). M estimation of multivariate regression. Journal of the American Statistical Association, 85, 1060-1068. Koul, H.L. (1992). Weighted Empiricals and Linear Models. IMS Lecture Notes 21. Krasker, W. S. (1985), Two Stage Bounded-In°uence Estimators for Simultaneous Equations Models, Journal of Business and Economic Statistics 4, 432-444. Krasker, W. S. and Welsch, R. E. (1982), E±cient Bounded In°uence Regression Estimation, Journal of the American Statistical Association 77, 595-604. Lai, Y.-H., Thompson, P. and Chen, L.-A. (2003). Generalized and Pseudo Generalized Trimmed Means for the Linear Regression with AR(1) Error Model. Statistics and Probability Letter, 67, 203-211. Mendenhall, W. and Sincich, T. (1993). A Second Course in Business Statistics: Regression Analysis. New York: Macmillan Publishing Company. Ruppert, D. and Carroll, R. J. (1980). Trimmed least squares estimation in the linear model. Journal of the American Statistical Association 75, 828-838. Ser°ing, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York. Welsh, A. H. (1987). The trimmed mean in the linear model. Annals of Statistics 15, 20-36.
|