跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 22:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭豐洋
研究生(外文):Feng-Yang Peng
論文名稱:具有AR(1)誤差的迴歸模型的線性修正平均估計值
論文名稱(外文):Linear Trimmed Means for the Linear Regression with AR(1) Errors Model
指導教授:陳鄰安陳鄰安引用關係
指導教授(外文):Lin-An Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:17
中文關鍵詞:高斯馬可夫定理廣義最小平方法估計量線性修正平均數穩健性估計
外文關鍵詞:Gauss Markov theoremGnenralized least squares estimatorlinear trimmed meanrobust estimator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
延續Lai (2003)其具有AR(1)誤差的線性迴歸模型的穩健性估計基本架構,我們證明了在大樣本的情形下廣義修正平均值估計量能夠有類似 Gauss Markov Theorem 的性質。我們稱其為穩健型態的 Gauss Markov Theorem。
我們進而利用模擬的方法以及實例的分析,說明該估計量的特性與效率。
For the linear regression with AR(1) errors model, a robust type generalized and feasible generalized estimators of Lai et al. (2003) of regression parameters are shown
to have the desired property of robust type Gauss Markov theorem. It is done by shown that these two estimators are, respectively, the best among classes of linear trimmed
means. Monte Carlo and data analysis for this technique have been performed.
Aitken, A. C. (1935). On least squares and linear combination of observations. Pro-ceedings of the Royal Society of Edinburg. 55, 42-48.
Bai, Z.-D. and He, X. (1999). Asymptotic distributions of the maximal depth esti-mators for regression and multivariate location. The Annals of Statistics. 27,
1616-1637.
Chen, L.-A. (1997). An e±cient class of weighted trimmed means for linear regression models. Statistica Sinica
7, 669-686.
Chen, L-A, Welsh, A. H. and Chan, W. (2001) Linear winsorized means for the linear
regression model. Statistica Sinica. 11, 147-172.
Cochrane, D. and Orcutt, G. H. (1949). Application of least squares regressions to
relationships containing autocorrelated error terms. Journal of the American Sta-
tistical Association, 44, 32-61.
De Jongh, P. J. and De Wet, T. (1985), Trimmed Mean and Bounded In°uence Esti-
mators for the Parameters of the AR(1) Process, Communications in Statistics -
Theory and Methods, 14, 1361-1357.
De Jongh, P. J., De Wet, T. and Welsch, A. H. (1988), Mallows-Type Bounded-
In°uence-Regression Trimmed Means, Journal of the American Statistical Asso-
ciation, 83, 805-810.
Fomby, T. B., Hill, R. C. and Johnson, S. R. (1984). Advanced Econometric Methods.
New York: Springer-Verlag.
Giltinan, D. M., Carroll, R. J. and Ruppert, D. (1986), Some New Estimation Methods
for Weighted Regression When There Are Possible Outliers, Technometrics, 28,
219-230.
Huber, P. J. (1981). Robust Statistics. New York: Wiley.
Jure·ckov�鷻, J. (1977). Asymptotic relations of M-estimates and R-estimates in linear
regression model. Annals of Statistics 5, 464-472.
Jureckova, J. and Sen, P. K. (1987). An extension of Billingsley's theorem to higher
dimension M-processes. Kybernetica 23, 382-387.
Koenker, R. W. and Bassett, G. W. (1978), Regression Quantiles, Econometrica 46,
33-50.
Koenker, R. and Portnoy, S. (1990). M estimation of multivariate regression. Journal
of the American Statistical Association, 85, 1060-1068.
Koul, H.L. (1992). Weighted Empiricals and Linear Models. IMS Lecture Notes 21.
Krasker, W. S. (1985), Two Stage Bounded-In°uence Estimators for Simultaneous
Equations Models, Journal of Business and Economic Statistics 4, 432-444.
Krasker, W. S. and Welsch, R. E. (1982), E±cient Bounded In°uence Regression
Estimation, Journal of the American Statistical Association 77, 595-604.
Lai, Y.-H., Thompson, P. and Chen, L.-A. (2003). Generalized and Pseudo Generalized
Trimmed Means for the Linear Regression with AR(1) Error Model. Statistics and
Probability Letter, 67, 203-211.
Mendenhall, W. and Sincich, T. (1993). A Second Course in Business Statistics:
Regression Analysis. New York: Macmillan Publishing Company.
Ruppert, D. and Carroll, R. J. (1980). Trimmed least squares estimation in the linear
model. Journal of the American Statistical Association 75, 828-838.
Ser°ing, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley,
New York.
Welsh, A. H. (1987). The trimmed mean in the linear model. Annals of Statistics 15,
20-36.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top