跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 07:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王銘志
研究生(外文):Ming - Chih Wang
論文名稱:五味子之組成—以五味子素SchisandrinB探討輻射保護功能
論文名稱(外文):Composition of Schizandra chinensis Baill—An Approach of Radioprotective Effects of Schisandrin B
指導教授:彭耀寰彭耀寰引用關係喬長誠喬長誠引用關係
指導教授(外文):Robert Y. PengC.C.Chyau
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:106
中文關鍵詞:五味子素輻射保護抗凋亡抗氧化
外文關鍵詞:Schisandrin BRadioprotectionAntiapoptosisAntioxidation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:511
  • 評分評分:
  • 下載下載:104
  • 收藏至我的研究室書目清單書目收藏:0
文獻指出為五味子主成份之一之五味子素(Schisandrin B, San B),具有抗氧化及保護肝臟受損等生物活性及藥理作用。本研究之目的即在探討San B之輻射保護作用與機轉。以流式細胞儀分析發現Chang liver細胞在照射前24小時加入40μM之San B,再以15 Gy放射線照射後,sub G1之比率由放射組的12%降低至5%,顯示照射前加入San B,明顯減少了Chang liver細胞受放射線引發之凋亡。分析其細胞週期之變化發現其G1及S期縮短, G2M期明顯延長,顯示G2關卡增強,將更多之細胞停留在G2M期進行修補,因而增加了細胞之存活率。有關San B對於提升抗氧化之能力方面,於照射前4小時添加40μM之San B,再以放射線照射時,其GSH之濃度明顯比照射組增加。再進一步以西方墨點法分析,在照射前24小時添加40μM之San B,其p53、Bax、caspase 9以及 caspase 3之活性皆明顯下降,而抗凋亡蛋白Bcl-2之活性則維持不變,推論San B之主要藥理乃是經由抑制p53引致細胞之凋亡,因而增加Chang liver細胞之存活。總之,研究顯示San B素可提升細胞之抗氧化能力,抑制放射線照射後引起之細胞凋亡途徑,並增強G2關卡,而達到輻射保護之作用。要之,San B長久使用證實亦無毒性反應,固而San B更具理想之輻射保護劑潛力,其最適有效濃度,則須進一步以動物實驗研究。
Schisandrin B (San B), an active component of Schizandra chinensis Baill, is pharmacologically popular for its bioactivities including anti-oxidative and hepatoprotective effects.
In this present study, we investigated the radioprotective effect of San B and its related mechanism. The effect of San B on the extent of radiation-induced apoptosis was assessed by cell cycle analysis, MTT assay and Western Blot tests. The sub G1 population was found to have increased after irradiation, which was suppressed by pretreatment with San B at 40 mM, by which the apoptotic rate was reduced from 12% to 5% under 15 Gy irradiation (p<0.05). An arrest at G2/M phase was also observed, which apparently could provide a longer time for repairing cell damages resulting in increased cell survival. Pretreatment with 40μM of San B also significantly increased the intracellular glutathione (GSH) levels after irradiation. Furthermore, Western blotting showed that pretreatment with San B significantly down-regulated p53 and Bax, suppressing expression of caspases-9 and caspases-3 after irradiation. However, no effect on the antiapoptotic protein Bcl-2 was found, suggesting that the inhibition of San B on radiation-induced apoptosis is mediated by p53- dependent pathway.
Conclusively, San B could be a promising radioprotectant. Its action mechanism involves antioxidative inhibition of radiation-induced apoptosis. However, cell model did not comply with the cited phenomena revealed by San B. More detail animal study is required for further confirming its radioprotective bioactivities.
中文摘要………………………………….…………………………3
英文摘要…………………………………………………………….6
第一章 研究目的…………………………………………………..8
第二章 文獻回顧…………………………………………….…10
第一節 放射線與細胞凋亡…………………………………….10
1、放射線之治療機轉……………………………………….10
2、細胞凋亡…………………………………………….……12
3、放射線引起之細胞凋亡………………………………….14
3.1 p53調控細胞凋亡途徑………………………..……14
3.2 神經醯胺(ceramide)調控細胞凋亡途徑…….……15
4、p53 基因與凋亡蛋白…………………………………….16
5、細胞凋亡與抗氧化能之關聯性………………………….19
6、放射線對細胞週期之影響……………………………….20
第二節 輻射保護劑……………………………………………….22
1、輻射保護劑……………………………………………….22
2、臨床輻射保護劑作用動力之評析……………………… 23
3、天然植物性輻射保護劑……………………………….…24
第三節 五味子與五味子素…………………………………….25
1、五味子…………………………………………………….25
2、五味子素………………………………………………….26
第三章 實驗方法……………………………………………… 28
3.1五味子萃取物之組成分析……………………….………28
3.2 Chang liver細胞的培養……………………………… 29
3.3.Chang liver生長曲線之測定….………………………29
3.4、五味子素(Schsandrin B)單獨給予之影響………….30
3.5、Chang liver細胞凋亡之流式細胞儀分析…………..30
3.6、Western blot(西方墨點法)……………………… 31
3.7、Glutathione Assay Kit(Sigma)………………… 34
第四章 實驗結果………………………………………………...35
第五章 討論……………………………………………………… 39
第六章 結論……………………………………………………… 44
參考文獻……………………………………………………….….45
圖表……………………………………………………….……….61
附錄…………………………………………………………………70
1. 行政院衛生署。死因統計結果摘要。資料引自http://www.doh.gov.tw/statistic/data/衛生統計叢書2/95/上冊/表10.xls。
2. Virining BA, Warren JL, Cooper GS, et al. Studying radiation therapy using SEER –medicare-linked data. Med Care. 2002; 20:IV-49.
3.Vicent TD, samnel H, Steven AR, et al. Cancer Principle and practice of oncology.2005.7th edition. 327-331.
4. Sun AS, Yeh HC, Wang LH, et al.: Pilot study of a specific dietary supplement in tumor-bearing mice and in stage IIIB and IV non-small cell lung cancer patients. Nutr Cancer 2001;39: 85-95.
5.陳立夫等中華醫藥專輯.中華日報社1982;635.
6. Huang KC. The Pharmacology of Chinese Herbs (2nd ed.). USA: CRC Press Publishing. 1999. 255-257.
7. Hancke JL, Burgos RA, Ahumada F et al. Schisandria chinensis (Turcz) Baill. Fitoterapia .1999; 70: 451-471.
8 Chang H.M. and But P.P.H. ed. Pharmacology and Applications of Chinese Materia Medica (Vol I).1985: Singapore: World Scientific Publishing. 199-209.
9 NIAS AW. An introduction to radiobiology. Edward Arnold Publishers,London. 1998.1-12.
10. Tripathi GNR. Proton reactivity and electronic structure of phenoxyl radicals in water. J. Phys. Chem. 1998; 102: 2388-2397.
11. HALL EJ. Radiobiology for the radiologist. Lippincott, Philadelphia, Pennsylvania, U.S.A. 2006.1-16.
12. Steel GG, Peacock JH. Why are some human tumours more radiosensitive t- han others? Radiother Oncol. 1989; 15: 63-72.
13. Verheij M. Bartelink H. Radiation-induced apoptosis. Cell tissue Res
2000; 301: 133-42.
14. Haas-Kogan DA, Yount G, Haas M. p53-dependent G1 arrest and p53 independent apoptosis influence the radiobiologic response of glioblastoma. Int J Radiat Oncol Biol Phys. 1996; 36: 95-103.
15. Yao KC, Komata T, Kondo Y, Kanzawa T, Kondo S, Germano IM. Molecular response of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. J Neurosurg. 2003; 98: 378-84.
16. Koshikawa T, Uematsu N, Iijima A, Katagiri T, Uchida K. Alterations of DNA copy number and expression in genes involved in cell cycle regulation and apoptosis signal pathways in gamma-radiation-sensitive SX9 cells and –resistant SR-1 cells. Radiat Res. 2005; 163: 374-83.
17..Kerr JF, Wyllie AH, and Currie AR. Apoptosis: a basic biological phenonmenon with wide-ranging implications in tissue kinetics. British Journal of Cancer. 1972; 26: 239-257.
18.Claus B, Verena J, Martin P, et al. Apoptosis – modulating agents in combination with radiotherapy – current status and outlook. Int J Radiat Oncol Biol Phys. 2004; 58: 542-554.
19. kolesnick R, Z. Fuks. Radiation and ceramide – induced apoptosis. Oncogene. 2003; 22: 5897-5906.
20. Hasfen C, T. wieder, B Gillissen et al. Ceramide induced mitochondria activation and a apoptosis via a Bax-dependent pathway in human carcinoma cells. Oncogene. 2002; 21: 4009-4019.
21. Liao WC, A Haimovitz-Friedman, RS persuad et al. Ataxia telangiectasia mutated gene product inhibits DNA damage-induced apoptosis via ceramide. J Biol Chem. 1999; 274: 17908-17917.
22. Takahashi E, Inanami O, Asanuma T, et al. Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells. J Radiat Res (Tokyo). 2006 ; 47(1): 19-25.
23. Sherr CJ. Principle of tumor suppression. Cell 2004 ; 116: 235-246.
24. Karen SY, Karen HV. Complicating the complexity of p53. Carcinogenesis 2005; 29: 1317-1322.
25. Andrei V.G, Elena A.K. The role of p53 in determining sensitivity of radiotherapy. Cancer. 2003; 3:117-129.
26. Bristow RG, Benchimol S, Hill RP. The p 53 gene as a modifer of intrinsic radiosensitivity: implications for radiotherapy. Radiother Onco. 1996; l40: 197-233.
27. Vousden K.H. Activation of the p53 tumor suppressor protein. Biochim Biophy Acta. 2002; 1602: 47-59.
28. Lee JH, Paull TT. ATM activation by DNA double –strand breaks through the Mre11-Rad50-Nbs1 complex. Science. 2005; 308: 551-554.
29. Lavin MF. Birell G, Chen PL et al. ATM signaling and genomic stability in response to DNA damage. Mutat Res. 2005; 569: 123-132.
30. Kastan MB, Onyekwere O, Sidransky D et al. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991; 521 : 6304- 6311.
31. Clarke AR, Puride CA, Harrison DJ et al. Thymocyte apoptosis induced by p53-dependent and independent pathway. Nature 1993; 362: 849-851.
32. Lowe SW, Schmitt EM, Smith SW et al. p53 is required for radiation- induced apoptosis in mouse thymocytes. Nature 1993; 362: 847-849.
33. Merritt A, Potten C, Kemp C et al. The role of p53 in spontaneous and radiation – induced apoptosis in the gastrointestinal tract of normal and p53- deficient mice. Cancer Res. 1994; 54: 614-617.
34. Yonish- Rouach E, resnitzky D, Lotem J et al. Wild –type p53 induces apoptosis in myeloid leukaemic cells that is inhibited by interleukin-6. Nature. 1991; 352: 345-347.
35. Strasser A, Harris AW, Jacks T et al. DNA damage can induce apoptosis in proliferating lymphoid cell via p53-indpendent mechanisms inhibit by Bcl-2. Cell. 1994; 79: 189-192.
36. Bracey TS, Miller JC, Preece A et al. radiation induced apoptosis in human colorectal adenoma and carcinoma cell lines can occur in the absence of wild type p53.Oncogene. 1995; 10: 2391-2396.
37. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74 : 609-19.
38.Adams, J. M., and Cory, S. : The Bcl-2 protein family: arbiters of cell survival. Science. 1998; 281: 1322-6.
39. Hockenbery, D., Nunez, G., Milliman, C. et al: Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348: 334-336.
40.Boise, L. H., Gonzalez-Garcia, M., Postema, C. Et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74: 597-608.
41 Antonsson, B., Montessuit, S., Sanchez, B. et al. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J. Biol. Chem. 2001; 276: 11615-11623.
42. Boise, L. H., Gottschalk, A. R., Quintans, J.et al Bcl-2 and Bcl-2-related proteins in apoptosis regulation. Curr. Top. Microbiol. Immunol. 1995; 200:107-21.
43. Krajewski, S., Tanaka, S., Takayama, S., et al. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 1993; 53: 4701-4714.
44. Sentman CL, Shutter JR, Hockenberry D et al. Bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 1991; 67: 879–888.
45. Strasser A, Harris A, Cory S. Bcl-2 transgene inhibits T cell death and perturbs thymic self censorship. Cell 1991; 67: 889–899.
46.Hockenberry D, Oltvai Z, Yin X-M et al. Bcl-2 functions in an antioxident pathway to prevent apoptosis. Cell 1993; 75: 241–251.
47. Marin MC, Fernandez A, Bick RJ et al. Apoptosis suppression by bcl-2 is correlated with the regulation of nuclear and cytosolic Ca21. Oncogene 1996; 12: 2259 –2266.
48. Voehringer DW, Story MD, O’Neil RG et al. Modulating Ca2+ in radiation-induced apoptosis suppresses DNA fragmentation but does not enhance clonogenic survival. Int J Radiat Biol. 1997; 71: 237–243.
49. Herrmann JL, Bruckheimer E, McDonnell TJ. Cell death signal transduction and bcl-2 function. Biochem Soc Trans. 1996; 24: 1059 –1065.
50. Shimizu S, Eguchi Y, Kamiike W et al. Bcl-2 blocks loss of mitochondrial membrane potential while ICE inhibitors act at a different step during inhibition of death induced by respiratory chain inhibitors. Oncogene. 1996; 13: 21–29.
51. Zamzami N, Marchetti P, Castedo M et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med. 1995; 182: 367–377.
52. Kane DJ, Sarafin TA, Auton Set al. Bcl-2 inhibition of neural cell death:Decreased generation of reactive oxygen species. Science. 1993; 262: 1274 –1276.
53. Voehringer DW, McConkey DJ, McDonnell TJ et al. Bcl-2 expression causes redistribution of glutathione to the nucleus. Proc Natl Acad Sci. 1998; 95: 2956 –2960.
54. Mirkovic N, Voehringer DW, Story MD et al. Resistance to radiaton-induced apoptosis in Bcl-2 expressing cells is reversed by depleting cellular thiols. Oncogene. 1997; 15: 1461–1470.
55. Maria T, Vlachaki, Rayymond E et al. The role of Bcl-2 and glutathione in an antioxidant pathway to prevent radiation- induced apoptosis. Int. J. Radiation Oncology Biol. Phys. 1998; 42: 185-190.
56. Leyko W , bartosz G. Membrane effects of ionizing radiation and hyperthermia. Int J of Radiat biology and related studies in physics, chemistry, and Medicin. 1986; 49: 743-770.
57. Noda Y, Mcgeer PL, Mcgeer EG et al. Lipid peroxidation Biolpathological significance. Molecular Aspects of Medicine. 1993; 14: 199-207.
58. Raleigh JA, Kremers W, Gaboury B et al. Int J of Radiat biology and related studies in physics, chemistry, and Medicin. 1977; 31: 203-213.
59. Pandey BN, Lathika KM, Mishra KP et al. Modification of radiation-induced oxidative damage in liposomal and microsomal membrane by eugenol. Radiat. Phys. Chem. 2006; 75 (3): 384-391.
60. Turner ND, Braby LA, Ford J et al Oppurtunites for nutritional amelioration of radiation –induced cellular damage. Nutrition 2002; 18: 904-912.
61. M. Srinivasna, A Ram Sudheer, K. Raveendran Pillai et al. Influence of ferulic acid on radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes. Toxicology. 2006; 228: 249-258.
62. G.H.Nail, K.I. Priyadarsini, D.B.Nail. et al. Studies on the extract of Terminalia chebula as a potent antioxidant and a probable radioprotector. Phytomedicine 2004; 11: 530-538.
63. Vanina AM, Maximo C, Nora AM et al. Mechanisms underlying the radioprotective effect of histamine on small intestine. Int. J. Radiat. Biol. 2007; 83: 653-663.
64. Hartwell LH, kastan MB. Cell cycle control and cancer. Science 1994; 266: 1821-1828.
65. Hartwell LF, Weinert TA. Checkpoints: Controls that ensure the order of cell cycle events. Science 1989; 246: 629-634.
66. Kaufmann WK, Paules RS. DNA damage and cell cycle checkpoints. FASEB J 1996; 10: 238-247.
67. Li CY, Nagasawa H, Dahlberg WK et al. Diminished capacity for p53 in mediating a radiation-induced G1 arrest in established human tumor cell lines. Oncogene 1995; 11: 1885-1892.
68. Little JB, Nagasawa H, keng PC et al. Absence of radiation- induced G1 arrest in two closely related human lymphoblast cell lines that differ in p53 status. J biol Chem. 1995; 11: 1885-1892.
69. Nagasawn H, Li CY, Maki CG et al. Relationship between radiation – induced G1 phase arrest and p53 function in human tumor cells. Cancer Res. 1995; 55: 1842-1846.
70. Bunz F, Dutriaux A, Lengauer C et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998; 282: 1497-1501.
71. Fingert HJ, Chang JD, Pardee AB. Cytotoxic , cell cycle, and chromosomal effects of methylxanthines in human tumo cells treated with akylating agents. Cancer Res 1986; 46: 2463-2467.
72. Hoffmann GR, Buccola J, Merz MS et al. Structure –activity analysis of the potention by aminothiols of the chromosome-damaging effect of bleomycin in G0 human lymphocytes. Environ Mol. Mut. 2001; 37: 117-127.
73. Weiss JF, Landauer MR. Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology. 2003; 189: 1-20.
74. Mettler FA, Voelz GL. Major radiation exposure- what to expect and who to respond. N. Engl. J. Med. 2002; 346: 1554-1561.
75. Hensley ML, Schuchter LM, Lindley C et al. American Socity of Clinical Oncology clinical pratice guidelines for the use of chemotherapy and radiotherapy protectants. J.Clin. Oncol. 1999; 17: 3333-3335.
76. Landauer MR, Srinvasan V, Seed TM. Genistein treatment protects mice from ionizing radiation injury. J. Appl. Toxicol. 2003; 23: 379-385.
77. Stone HB, Moulder JE, Coleman CN. Models for evaluating agents intended for prophylaxis, migration and treatment of radiation injuries report of an NCI workshop. Radiat. Res. 2004; 162: 711-728.
78. Mcbride WH, Chiang CS, Olson JL et al. A sense of danger from radiation. Radat. Res. 162; 2004: 1-19.
79 . Yuhas JM, Spellman JM, Culo F. The role of WR-2721 in radiotherapy and/or chemotherapy. Cancer Clin Trials. 1980; 3: 211–216.
80. E. J. Sherman, S. Feigenbergy, R. Coheny et al. Cost-Effectiveness of Amifostine for Prevention of Radiation-induced Xerostomia. Int. J. Radiation Oncology Biol. Phys. 2007; 69: 142.
81. T.K. Gosselin, K.A. Raj, R.W. Cloughet al. Amifostine for Xerostomia - Normal Tissue Protection at What Cost? Int. J. Radiation Oncology Biol. Phy.2005; 63; 128.
82. HALL EJ. Radiobiology for the radiologist. Lippincott, Philadelphia, Pennsylvania, U.S.A. 1994.183-190.
83. Lee TK, Johnke RM, Allison RR et al. Radiprotective potential of ginseng. Mutagenesis. 2005; 20(4): 237-43.
84. Liu WC, Wang SC, Tsai ML et al. Protection against radiation-induced bone marrow and intestinal injuries by Cordyceps sinensis, a Chinese herbal medicine Radat. Res. 2006; 166(6): 900-7.
85. Singh SP, Abraham SK, Kesavan PC et al. Radioprotection of mice following garlic pretreatment.Br J Cancer Suppl. 1996; 27:102-4.
86. Z.W. WANG, J.M..ZHOU,Z..S. HUANG et al..Aloe Polysaccharide Mediated Radioprotective Effect through the Inhibition of Apoptosis. Radia. Res.2004; 45: 447-454.
87. Po YC, Kan MK. Schisandrin B-induced increase in cellular glutathione level and protection against oxidant injury are mediated by the enhancement of glutathione synthesis and regeneration in AML12 and H9c2 cells. cofactors. 2006; 26(4): 221-30.
88. Ko KM, Yiu HY. Schisandrin B modulates the ischemia-reperfusion induced changes in non-enzymatic antioxidant levels in isolated-perfused rat hearts. . Oncogene. 2001; 220(1-2): 141-7.
89 Tang MH, Chiu PY, Ko KM. Hepatoprotective action of schisandrin B against carbon tetrachloride toxicity was mediated by both enhancement of mitochondrial glutathione status and induction of heat shock proteins in mice. Cofactors. 2003; 19(1-2): 33-42.
90.Kim SR, Lee MK, Koo KA et al. Dibenzocyclooctadiene lignans from Schisandra chinensis protect primary cultures of rat cortical cells from glutamate-induced toxicity. J Neurosci Res. 2003; 22(37):5897-9.
91.Sun M, Xu X, Lu O.Schisandrin B: a dual inhibitor of P-glycoprotein and multidrug resistance-associated protein 1.Cancer Lett.2007;246(1-2): 300-7.
92. Wu YF, Cao MF, Gao YP. Down-modulation of heat shock protein 70 and up-modulation of Caspase-3 during schisandrin B-induced apoptosis in human hepatoma SMMC-7721 cells.World J Gastrolenterol. 2004; 10(20): 2944-8.
93. Chiu PY, Leung HY, Siu AH, Poon MK, Ko KM Schisandrin B decreases the sensitivity of mitochondria to calcium ion-induced permeability transition and protects against carbon tetrachloride toxicity in mouse livers. Biol Pharm Bull. 2007; 30(6): 1108.
94. Li L, Lu Q, Shen Yrt al. Schisandrin B enhances doxorubicin-induced apoptosis of cancer cells but not normal cells. Biochem Pharmacol. 2006; 28:584-95.
95. Meister A.Glluthathione deficiency produced by inhibitions of its synthesis, and its reversal ; applications in research and therapy. Pharmacol Ther 1991; 51: 155-194.
96. Arrick BA, Natham CF. Gluthathione metabolism as a determinant of therapeutic efficacy: a review. Cancer Res. 1984; 44: 4224-4232.
97. Malki AM, Gentry J, Evans SC. Differential effect of selected methylxanthine derivatives on adiosensitization of lung carcinoma cells. Exp Oncol. 2006; 28: 16-24.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top