|
1. 行政院衛生署。死因統計結果摘要。資料引自http://www.doh.gov.tw/statistic/data/衛生統計叢書2/95/上冊/表10.xls。 2. Virining BA, Warren JL, Cooper GS, et al. Studying radiation therapy using SEER –medicare-linked data. Med Care. 2002; 20:IV-49. 3.Vicent TD, samnel H, Steven AR, et al. Cancer Principle and practice of oncology.2005.7th edition. 327-331. 4. Sun AS, Yeh HC, Wang LH, et al.: Pilot study of a specific dietary supplement in tumor-bearing mice and in stage IIIB and IV non-small cell lung cancer patients. Nutr Cancer 2001;39: 85-95. 5.陳立夫等中華醫藥專輯.中華日報社1982;635. 6. Huang KC. The Pharmacology of Chinese Herbs (2nd ed.). USA: CRC Press Publishing. 1999. 255-257. 7. Hancke JL, Burgos RA, Ahumada F et al. Schisandria chinensis (Turcz) Baill. Fitoterapia .1999; 70: 451-471. 8 Chang H.M. and But P.P.H. ed. Pharmacology and Applications of Chinese Materia Medica (Vol I).1985: Singapore: World Scientific Publishing. 199-209. 9 NIAS AW. An introduction to radiobiology. Edward Arnold Publishers,London. 1998.1-12. 10. Tripathi GNR. Proton reactivity and electronic structure of phenoxyl radicals in water. J. Phys. Chem. 1998; 102: 2388-2397. 11. HALL EJ. Radiobiology for the radiologist. Lippincott, Philadelphia, Pennsylvania, U.S.A. 2006.1-16. 12. Steel GG, Peacock JH. Why are some human tumours more radiosensitive t- han others? Radiother Oncol. 1989; 15: 63-72. 13. Verheij M. Bartelink H. Radiation-induced apoptosis. Cell tissue Res 2000; 301: 133-42. 14. Haas-Kogan DA, Yount G, Haas M. p53-dependent G1 arrest and p53 independent apoptosis influence the radiobiologic response of glioblastoma. Int J Radiat Oncol Biol Phys. 1996; 36: 95-103. 15. Yao KC, Komata T, Kondo Y, Kanzawa T, Kondo S, Germano IM. Molecular response of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. J Neurosurg. 2003; 98: 378-84. 16. Koshikawa T, Uematsu N, Iijima A, Katagiri T, Uchida K. Alterations of DNA copy number and expression in genes involved in cell cycle regulation and apoptosis signal pathways in gamma-radiation-sensitive SX9 cells and –resistant SR-1 cells. Radiat Res. 2005; 163: 374-83. 17..Kerr JF, Wyllie AH, and Currie AR. Apoptosis: a basic biological phenonmenon with wide-ranging implications in tissue kinetics. British Journal of Cancer. 1972; 26: 239-257. 18.Claus B, Verena J, Martin P, et al. Apoptosis – modulating agents in combination with radiotherapy – current status and outlook. Int J Radiat Oncol Biol Phys. 2004; 58: 542-554. 19. kolesnick R, Z. Fuks. Radiation and ceramide – induced apoptosis. Oncogene. 2003; 22: 5897-5906. 20. Hasfen C, T. wieder, B Gillissen et al. Ceramide induced mitochondria activation and a apoptosis via a Bax-dependent pathway in human carcinoma cells. Oncogene. 2002; 21: 4009-4019. 21. Liao WC, A Haimovitz-Friedman, RS persuad et al. Ataxia telangiectasia mutated gene product inhibits DNA damage-induced apoptosis via ceramide. J Biol Chem. 1999; 274: 17908-17917. 22. Takahashi E, Inanami O, Asanuma T, et al. Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells. J Radiat Res (Tokyo). 2006 ; 47(1): 19-25. 23. Sherr CJ. Principle of tumor suppression. Cell 2004 ; 116: 235-246. 24. Karen SY, Karen HV. Complicating the complexity of p53. Carcinogenesis 2005; 29: 1317-1322. 25. Andrei V.G, Elena A.K. The role of p53 in determining sensitivity of radiotherapy. Cancer. 2003; 3:117-129. 26. Bristow RG, Benchimol S, Hill RP. The p 53 gene as a modifer of intrinsic radiosensitivity: implications for radiotherapy. Radiother Onco. 1996; l40: 197-233. 27. Vousden K.H. Activation of the p53 tumor suppressor protein. Biochim Biophy Acta. 2002; 1602: 47-59. 28. Lee JH, Paull TT. ATM activation by DNA double –strand breaks through the Mre11-Rad50-Nbs1 complex. Science. 2005; 308: 551-554. 29. Lavin MF. Birell G, Chen PL et al. ATM signaling and genomic stability in response to DNA damage. Mutat Res. 2005; 569: 123-132. 30. Kastan MB, Onyekwere O, Sidransky D et al. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991; 521 : 6304- 6311. 31. Clarke AR, Puride CA, Harrison DJ et al. Thymocyte apoptosis induced by p53-dependent and independent pathway. Nature 1993; 362: 849-851. 32. Lowe SW, Schmitt EM, Smith SW et al. p53 is required for radiation- induced apoptosis in mouse thymocytes. Nature 1993; 362: 847-849. 33. Merritt A, Potten C, Kemp C et al. The role of p53 in spontaneous and radiation – induced apoptosis in the gastrointestinal tract of normal and p53- deficient mice. Cancer Res. 1994; 54: 614-617. 34. Yonish- Rouach E, resnitzky D, Lotem J et al. Wild –type p53 induces apoptosis in myeloid leukaemic cells that is inhibited by interleukin-6. Nature. 1991; 352: 345-347. 35. Strasser A, Harris AW, Jacks T et al. DNA damage can induce apoptosis in proliferating lymphoid cell via p53-indpendent mechanisms inhibit by Bcl-2. Cell. 1994; 79: 189-192. 36. Bracey TS, Miller JC, Preece A et al. radiation induced apoptosis in human colorectal adenoma and carcinoma cell lines can occur in the absence of wild type p53.Oncogene. 1995; 10: 2391-2396. 37. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74 : 609-19. 38.Adams, J. M., and Cory, S. : The Bcl-2 protein family: arbiters of cell survival. Science. 1998; 281: 1322-6. 39. Hockenbery, D., Nunez, G., Milliman, C. et al: Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348: 334-336. 40.Boise, L. H., Gonzalez-Garcia, M., Postema, C. Et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74: 597-608. 41 Antonsson, B., Montessuit, S., Sanchez, B. et al. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J. Biol. Chem. 2001; 276: 11615-11623. 42. Boise, L. H., Gottschalk, A. R., Quintans, J.et al Bcl-2 and Bcl-2-related proteins in apoptosis regulation. Curr. Top. Microbiol. Immunol. 1995; 200:107-21. 43. Krajewski, S., Tanaka, S., Takayama, S., et al. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 1993; 53: 4701-4714. 44. Sentman CL, Shutter JR, Hockenberry D et al. Bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 1991; 67: 879–888. 45. Strasser A, Harris A, Cory S. Bcl-2 transgene inhibits T cell death and perturbs thymic self censorship. Cell 1991; 67: 889–899. 46.Hockenberry D, Oltvai Z, Yin X-M et al. Bcl-2 functions in an antioxident pathway to prevent apoptosis. Cell 1993; 75: 241–251. 47. Marin MC, Fernandez A, Bick RJ et al. Apoptosis suppression by bcl-2 is correlated with the regulation of nuclear and cytosolic Ca21. Oncogene 1996; 12: 2259 –2266. 48. Voehringer DW, Story MD, O’Neil RG et al. Modulating Ca2+ in radiation-induced apoptosis suppresses DNA fragmentation but does not enhance clonogenic survival. Int J Radiat Biol. 1997; 71: 237–243. 49. Herrmann JL, Bruckheimer E, McDonnell TJ. Cell death signal transduction and bcl-2 function. Biochem Soc Trans. 1996; 24: 1059 –1065. 50. Shimizu S, Eguchi Y, Kamiike W et al. Bcl-2 blocks loss of mitochondrial membrane potential while ICE inhibitors act at a different step during inhibition of death induced by respiratory chain inhibitors. Oncogene. 1996; 13: 21–29. 51. Zamzami N, Marchetti P, Castedo M et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med. 1995; 182: 367–377. 52. Kane DJ, Sarafin TA, Auton Set al. Bcl-2 inhibition of neural cell death:Decreased generation of reactive oxygen species. Science. 1993; 262: 1274 –1276. 53. Voehringer DW, McConkey DJ, McDonnell TJ et al. Bcl-2 expression causes redistribution of glutathione to the nucleus. Proc Natl Acad Sci. 1998; 95: 2956 –2960. 54. Mirkovic N, Voehringer DW, Story MD et al. Resistance to radiaton-induced apoptosis in Bcl-2 expressing cells is reversed by depleting cellular thiols. Oncogene. 1997; 15: 1461–1470. 55. Maria T, Vlachaki, Rayymond E et al. The role of Bcl-2 and glutathione in an antioxidant pathway to prevent radiation- induced apoptosis. Int. J. Radiation Oncology Biol. Phys. 1998; 42: 185-190. 56. Leyko W , bartosz G. Membrane effects of ionizing radiation and hyperthermia. Int J of Radiat biology and related studies in physics, chemistry, and Medicin. 1986; 49: 743-770. 57. Noda Y, Mcgeer PL, Mcgeer EG et al. Lipid peroxidation Biolpathological significance. Molecular Aspects of Medicine. 1993; 14: 199-207. 58. Raleigh JA, Kremers W, Gaboury B et al. Int J of Radiat biology and related studies in physics, chemistry, and Medicin. 1977; 31: 203-213. 59. Pandey BN, Lathika KM, Mishra KP et al. Modification of radiation-induced oxidative damage in liposomal and microsomal membrane by eugenol. Radiat. Phys. Chem. 2006; 75 (3): 384-391. 60. Turner ND, Braby LA, Ford J et al Oppurtunites for nutritional amelioration of radiation –induced cellular damage. Nutrition 2002; 18: 904-912. 61. M. Srinivasna, A Ram Sudheer, K. Raveendran Pillai et al. Influence of ferulic acid on radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes. Toxicology. 2006; 228: 249-258. 62. G.H.Nail, K.I. Priyadarsini, D.B.Nail. et al. Studies on the extract of Terminalia chebula as a potent antioxidant and a probable radioprotector. Phytomedicine 2004; 11: 530-538. 63. Vanina AM, Maximo C, Nora AM et al. Mechanisms underlying the radioprotective effect of histamine on small intestine. Int. J. Radiat. Biol. 2007; 83: 653-663. 64. Hartwell LH, kastan MB. Cell cycle control and cancer. Science 1994; 266: 1821-1828. 65. Hartwell LF, Weinert TA. Checkpoints: Controls that ensure the order of cell cycle events. Science 1989; 246: 629-634. 66. Kaufmann WK, Paules RS. DNA damage and cell cycle checkpoints. FASEB J 1996; 10: 238-247. 67. Li CY, Nagasawa H, Dahlberg WK et al. Diminished capacity for p53 in mediating a radiation-induced G1 arrest in established human tumor cell lines. Oncogene 1995; 11: 1885-1892. 68. Little JB, Nagasawa H, keng PC et al. Absence of radiation- induced G1 arrest in two closely related human lymphoblast cell lines that differ in p53 status. J biol Chem. 1995; 11: 1885-1892. 69. Nagasawn H, Li CY, Maki CG et al. Relationship between radiation – induced G1 phase arrest and p53 function in human tumor cells. Cancer Res. 1995; 55: 1842-1846. 70. Bunz F, Dutriaux A, Lengauer C et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998; 282: 1497-1501. 71. Fingert HJ, Chang JD, Pardee AB. Cytotoxic , cell cycle, and chromosomal effects of methylxanthines in human tumo cells treated with akylating agents. Cancer Res 1986; 46: 2463-2467. 72. Hoffmann GR, Buccola J, Merz MS et al. Structure –activity analysis of the potention by aminothiols of the chromosome-damaging effect of bleomycin in G0 human lymphocytes. Environ Mol. Mut. 2001; 37: 117-127. 73. Weiss JF, Landauer MR. Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology. 2003; 189: 1-20. 74. Mettler FA, Voelz GL. Major radiation exposure- what to expect and who to respond. N. Engl. J. Med. 2002; 346: 1554-1561. 75. Hensley ML, Schuchter LM, Lindley C et al. American Socity of Clinical Oncology clinical pratice guidelines for the use of chemotherapy and radiotherapy protectants. J.Clin. Oncol. 1999; 17: 3333-3335. 76. Landauer MR, Srinvasan V, Seed TM. Genistein treatment protects mice from ionizing radiation injury. J. Appl. Toxicol. 2003; 23: 379-385. 77. Stone HB, Moulder JE, Coleman CN. Models for evaluating agents intended for prophylaxis, migration and treatment of radiation injuries report of an NCI workshop. Radiat. Res. 2004; 162: 711-728. 78. Mcbride WH, Chiang CS, Olson JL et al. A sense of danger from radiation. Radat. Res. 162; 2004: 1-19. 79 . Yuhas JM, Spellman JM, Culo F. The role of WR-2721 in radiotherapy and/or chemotherapy. Cancer Clin Trials. 1980; 3: 211–216. 80. E. J. Sherman, S. Feigenbergy, R. Coheny et al. Cost-Effectiveness of Amifostine for Prevention of Radiation-induced Xerostomia. Int. J. Radiation Oncology Biol. Phys. 2007; 69: 142. 81. T.K. Gosselin, K.A. Raj, R.W. Cloughet al. Amifostine for Xerostomia - Normal Tissue Protection at What Cost? Int. J. Radiation Oncology Biol. Phy.2005; 63; 128. 82. HALL EJ. Radiobiology for the radiologist. Lippincott, Philadelphia, Pennsylvania, U.S.A. 1994.183-190. 83. Lee TK, Johnke RM, Allison RR et al. Radiprotective potential of ginseng. Mutagenesis. 2005; 20(4): 237-43. 84. Liu WC, Wang SC, Tsai ML et al. Protection against radiation-induced bone marrow and intestinal injuries by Cordyceps sinensis, a Chinese herbal medicine Radat. Res. 2006; 166(6): 900-7. 85. Singh SP, Abraham SK, Kesavan PC et al. Radioprotection of mice following garlic pretreatment.Br J Cancer Suppl. 1996; 27:102-4. 86. Z.W. WANG, J.M..ZHOU,Z..S. HUANG et al..Aloe Polysaccharide Mediated Radioprotective Effect through the Inhibition of Apoptosis. Radia. Res.2004; 45: 447-454. 87. Po YC, Kan MK. Schisandrin B-induced increase in cellular glutathione level and protection against oxidant injury are mediated by the enhancement of glutathione synthesis and regeneration in AML12 and H9c2 cells. cofactors. 2006; 26(4): 221-30. 88. Ko KM, Yiu HY. Schisandrin B modulates the ischemia-reperfusion induced changes in non-enzymatic antioxidant levels in isolated-perfused rat hearts. . Oncogene. 2001; 220(1-2): 141-7. 89 Tang MH, Chiu PY, Ko KM. Hepatoprotective action of schisandrin B against carbon tetrachloride toxicity was mediated by both enhancement of mitochondrial glutathione status and induction of heat shock proteins in mice. Cofactors. 2003; 19(1-2): 33-42. 90.Kim SR, Lee MK, Koo KA et al. Dibenzocyclooctadiene lignans from Schisandra chinensis protect primary cultures of rat cortical cells from glutamate-induced toxicity. J Neurosci Res. 2003; 22(37):5897-9. 91.Sun M, Xu X, Lu O.Schisandrin B: a dual inhibitor of P-glycoprotein and multidrug resistance-associated protein 1.Cancer Lett.2007;246(1-2): 300-7. 92. Wu YF, Cao MF, Gao YP. Down-modulation of heat shock protein 70 and up-modulation of Caspase-3 during schisandrin B-induced apoptosis in human hepatoma SMMC-7721 cells.World J Gastrolenterol. 2004; 10(20): 2944-8. 93. Chiu PY, Leung HY, Siu AH, Poon MK, Ko KM Schisandrin B decreases the sensitivity of mitochondria to calcium ion-induced permeability transition and protects against carbon tetrachloride toxicity in mouse livers. Biol Pharm Bull. 2007; 30(6): 1108. 94. Li L, Lu Q, Shen Yrt al. Schisandrin B enhances doxorubicin-induced apoptosis of cancer cells but not normal cells. Biochem Pharmacol. 2006; 28:584-95. 95. Meister A.Glluthathione deficiency produced by inhibitions of its synthesis, and its reversal ; applications in research and therapy. Pharmacol Ther 1991; 51: 155-194. 96. Arrick BA, Natham CF. Gluthathione metabolism as a determinant of therapeutic efficacy: a review. Cancer Res. 1984; 44: 4224-4232. 97. Malki AM, Gentry J, Evans SC. Differential effect of selected methylxanthine derivatives on adiosensitization of lung carcinoma cells. Exp Oncol. 2006; 28: 16-24.
|