跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 08:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:卓子暄
研究生(外文):Tz-Shiuan Cho
論文名稱:傳染性華氏囊炎病毒VP2次病毒粒子與固定化鎳離子吸附之點突變分析
論文名稱(外文):Effect of Point-mutation on the Adsorption of VP2 Subvinal Particles of Infectious Bursal Disease Virus to the Immobilized Nickel ions.
指導教授:王敏盈
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:62
中文關鍵詞:固定化金屬親和性層析法固定化鎳離子傳染性華氏囊炎病毒VP2次病毒
外文關鍵詞:IMACimmobilized nickel ionsinfectious bursal disease virusVP2 SVP
相關次數:
  • 被引用被引用:2
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
固定化金屬離子親和性層析法(Immobilized-Metal ion Affinity Chromatography,IMAC),因具有單一步驟純化、再生容易優點,可做為大量純化蛋白質之方式。先前研究,以IMAC可直接純化未融合His-tag的VP2蛋白,發現位於P domain DE loop結構上的His 253胺基酸可與IMAC的鎳離子形成配位鍵結,做為病毒顆粒與IMAC管柱結合的重要位置。
本研究為尋找可取代His 253位置與固定化金屬離子結合的胺基酸位置,先利用軟體分析蛋白的暴露面積篩選,在His 253為丙胺酸的情形下,將其個別突變為組胺酸(Histidine),經篩選後可Gln221、Ser222、Ser251、Ser317、Gln320及Ala321六個位置。分別以大腸桿菌表現系統與昆蟲桿狀病毒表現系統表現各突變株重組蛋白,並進行不同酸鹼值的緩衝溶液及不同濃度之咪唑沖提,結果顯示VP2-P domain 的Loop結構上人工His能取代His 253與鎳離子結合,且透過多種實驗觀察證實經突變後蛋白並不影響其構形、密度等物理特性。


The advantage of Immobilized-Metal ion Affinity Chromatography (IMAC) – one- step purification, recycling is easy, etc.- are decisive when developing large-scale purification procedures for industrial applications. Previous results indicated that SVPs can be purified directly by IMAC and the His 253 on DE loop of P domain plays an important role binding Ni2+ ions. Besides His 253, outward superficial residues on P domain of SVPs provide higher chances for Ni2+ ions binding.

In this study, to search the residues this can be substituted for the binding of immobilized Ni2+ ions. First, the calculation of exposure areas of residues on the loop was performed by Surface Racer 5.0 software. Six resides - Gln221, Ser222, Ser251, Ser317, Gln320 and Ala321-have been chosen, than been substituted with histidine. Recombinant proteins was expressed in Escherichia coli and Bac-to-Bac baculovirus expression system, and then purified by IMAC. The binding strength of these variants with immobilized Ni2+ ion was measured by quantitating the unbound VP2 protein after a series of wash with various pH and immidazole concentrations. The results have shown some residues on the loop structure of P domains of SVPs substituted and complement the mutation of H253A to bind Ni2+ ion, and don’t affect density and other physical characteristics.

目錄
摘要......................................................i
Abstract..................................................ii
目錄.....................................................iii
第一章 文獻回顧............................................1
一、固定化金屬離子親和性層析法...........................1
(一) 固定相基質........................................1
(二) 金屬螯合劑........................................1
(三) 金屬離子..........................................2
二、病毒與次病毒顆粒之純化...............................2
三、固定化金屬離子親和性層析法優點與應用.................2
四、傳染性華氏囊炎病毒...................................3
五、傳染性華氏囊炎病毒之基因組及其產物分析...............3
六、VP2次病毒顆粒與固定化金屬離子親和性層析結合特性分析..4
七、VP2次病毒顆粒之原核與真核表現系統....................5
八、巨分子與溶劑接觸面積計算概念及其應用.................5
九、定點突變技術在蛋白質工程上之應用.....................6
第二章 研究動機與目的......................................7
第三章 材料與方法..........................................8
一、利用蛋白結構分析軟體分析各胺基酸殘基在P3009 VP2蛋白的
暴露程度.............................................8
二、以大腸桿菌(Escherichia coli)表現系統生產重組蛋白.....8
(一) 重組質體與細菌菌株製備與保存......................8
1.大腸桿菌表現載體...................................8
2.大腸桿菌保存質體菌株TOP10F’.......................8
3.大腸桿菌表現菌株BL21(DE3)codon plus R.P............8
4.以PCR構築VP2突變蛋白的重組質體.....................9
5.勝任細胞的製備.....................................9
6.重組質體轉型入宿主細胞.............................9
7.抽取質體...........................................9
8.限制酶切割鑑定重組質體與DNA定序...................10
(二) 重組蛋白表現.....................................10
三、以昆蟲桿狀病毒表現系統(Insect cell/ Baculovirus
Expression System)生產蛋白..........................10
(一) 重組桿狀病毒之構築...............................10
1.昆蟲細胞 Sf-9.....................................10
2.桿狀病毒轉移質體(Baculovirus transfer vector)
pFastBacTM1.......................................11
3.重組病毒轉移質體之構築............................11
4.轉型DH10BacTME.coli以生產重組bacmid...............11
(二) 重組桿狀病毒 (Recombinant Baculovirus)之生產.....12
1.轉染(transfection)昆蟲細胞產生重組病毒............12
2.放大(amplify)重組病毒.............................12
3.以PCR方式鑑定重組病毒DNA..........................12
(三) 重組蛋白之表現...................................13
1.昆蟲細胞Hi-5......................................13
2.重組蛋白之表現....................................13
四、重組蛋白純化及分析前處理............................13
(一) 以固定化金屬離子親和性管柱純化重組蛋白...........13
(二) 蔗糖梯度離心分離法...............................14
(三) 重組蛋白分析前處理...............................14
1.以100 kDa 濃縮膜置換緩衝液及濃縮目標蛋白..........14
2.墊糖離心..........................................15
五、VP2蛋白多價抗體製備.................................15
六、重組蛋白分析與鑑定..................................15
(一) SDS-聚丙醯胺凝膠電泳(SDS-PAGE)及考馬斯亮藍
(Coomassie Blue)染色法...........................15
(二) 西方墨漬法(Western blotting).....................16
(三) 酵素連結免疫分析 (Enzyme-Linked Immunosorbent
Assay, ELISA)....................................16
(四) 高效能液相層析系統分析 ( High Performance Liquid
Chromatography,HPLC).............................17
七、以穿透式電子顯微鏡觀察(Transmission Electron
Microscopy).........................................17
八、利用咪唑進行重組蛋白與固定化金屬離子之脫附分析......17
第四章 結果...............................................19
一、P3009 VP2蛋白胺基酸側鏈之暴露面積計算...............19
二、大腸桿菌表現系統生產重組蛋白及純化分析..............19
(一) 點突變重組載體之構築.............................19
(二) 重組蛋白表現.....................................19
(三) 點突變蛋白與固定化金屬親和管柱吸附特性分析.......19
(四) 重組蛋白之高效能液相層析系統分析及穿透式電子顯微鏡
觀察.............................................20
(五) 重組蛋白之定量...................................20
三、昆蟲桿狀病毒表現系統生產突變蛋白及純化分析..........21
(一) 重組基因及重組桿狀病毒之構築.....................21
(二) 重組蛋白表現.....................................21
(三) 次病毒顆粒之固定化金屬親和管柱吸附分析...........21
(四) 重組蛋白之高效能液相層析系統分析及穿透式電子顯微鏡
觀察.............................................22
(五) 重組蛋白之定量...................................22
(六) 蔗糖梯度超高速離心分離次病毒顆粒.................22
(七) 酵素連結免疫分析超高速離心後之次病毒顆粒.........22
(八) 利用咪唑進行重組蛋白與固定化金屬離子之脫附分析...23
第五章 討論...............................................24
一、胺基酸突變位置與固定化鎳離子吸附特性關係............24
二、抗原決定位與固定化鎳離子吸附位置探討................24
圖表結果..................................................26
參考文獻..................................................48
附錄圖表..................................................54


參考文獻

董學儒(2006)。家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化
鎳離子之異相吸附。國立中央大學化學工程與材料工
程學系,博士論文。
陳宜暉(2007)。利用點突變探討傳染性華氏囊病病毒VP2蛋白中His
249與His 253對於IBDV次病毒顆粒與固定化金屬親和
性管柱親和力之重要性。國立中興大學生物科技學研
究所。碩士論文。
楊函蓁(2007)。研究傳染性華氏囊病毒次病毒顆粒VP2蛋白表面胺基
酸His249與His253對鎳離子 之親合性及免疫原性的
影響。國立中興大學生物科技學研究所。碩士論文。
Apezteguia, I., Calligaris, R., Bottardi, S. and Santoro, C. (1994) Expression, purification, and functional characterization of the two zinc-finger domain of the human GATA-1. Protein Expr Purif, 5, 541-546.
Arnold, F. H. (1991) Metal-affinity separations: a new dimension in protein processing. Biotechnology (N Y), 9, 151-156.
Azad, A. A., Barrett, S. A. and Fahey, K. J. (1985) The characterization and molecular cloning of the double-stranded RNA genome of an Australian strain of infectious bursal disease virus. Virology, 143, 35-44.
Azad, A. A., Jagadish, M. N., Brown, M. A. and Hudson, P. J. (1987) Deletion mapping and expression in Escherichia coli of the large genomic segment of a birnavirus. Virology, 161, 145-152.
Azad, A. A., McKern, N. M., Macreadie, I. G., Failla, P., Heine, H. G., Chapman, A., Ward, C. W. and Fahey, K. J. (1991) Physicochemical and immunological characterization of recombinant host-protective antigen (VP2) of infectious bursal disease virus. Vaccine, 9, 715-722.
Baas, P. D., Teertstra, W. R., van Mansfeld, A. D., Jansz, H. S., van der Marel, G. A., Veeneman, G. H. and van Boom, J. H. (1981) Construction of viable and lethal mutations in the origin of bacteriophage ''phi'' X174 using synthetic oligodeoxyribonucleotides. J Mol Biol, 152, 615-639.
Becht, H., Muller, H. and Muller, H. K. (1988) Comparative studies on structural and antigenic properties of two serotypes of infectious bursal disease virus. J Gen Virol, 69 ( Pt 3), 631-640.
Bottcher, B., Kiselev, N. A., Stel''Mashchuk, V. Y., Perevozchikova, N. A., Borisov, A. V. and Crowther, R. A. (1997) Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. J Virol, 71, 325-330.
Carter, E. D. (1986) Scientific and political issues in evaluating new technology: the case of shock wave lithotripsy. Isr J Med Sci, 22, 231-236.
Charles, A. D., Gautier, A. E., Edge, M. D. and Knowles, J. R. (1982) Targeted point mutation that creates a unique Eco RI site within the signal codons of the beta-lactamase gene without altering enzyme secretion or processing. J Biol Chem, 257, 7930-7932.
Clemmitt, R. H. and Chase, H. A. (2000) Immobilised metal affinity chromatography of beta-galactosidase from unclarified Escherichia coli homogenates using expanded bed adsorption. J Chromatogr A, 874, 27-43.
Colangeli, R., Heijbel, A., Williams, A. M., Manca, C., Chan, J., Lyashchenko, K. and Gennaro, M. L. (1998) Three-step purification of lipopolysaccharide-free, polyhistidine-tagged recombinant antigens of Mycobacterium tuberculosis. J Chromatogr B Biomed Sci Appl, 714, 223-235.
Corden, J., Wasylyk, B., Buchwalder, A., Sassone-Corsi, P., Kedinger, C. and Chambon, P. (1980) Promoter sequences of eukaryotic protein-coding genes. Science, 209, 1406-1414.
Craik, J. D. and Reithmeier, R. A. (1985) Reversible and irreversible inhibition of phosphate transport in human erythrocytes by a membrane impermeant carbodiimide. J Biol Chem, 260, 2404-2408.
Cui, X., Nagesha, H. S. and Holmes, I. H. (2003) Mapping of conformational epitopes on capsid protein VP2 of infectious bursal disease virus by fd-tet phage display. J Virol Methods, 114, 109-112.
Da Costa, B., Chevalier, C., Henry, C., Huet, J. C., Petit, S., Lepault, J., Boot, H. and Delmas, B. (2002) The capsid of infectious bursal disease virus contains several small peptides arising from the maturation process of pVP2. J Virol, 76, 2393-2402.
Dobos, P., Hill, B. J., Hallett, R., Kells, D. T., Becht, H. and Teninges, D. (1979) Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes. J Virol, 32, 593-605.
Doong, S. R., Chen, Y. H., Lai, S. Y., Lee, C. C., Lin, Y. C. and Wang, M. Y. (2007) Strong and heterogeneous adsorption of infectious bursal disease VP2 subviral particle with immobilized metal ions dependent on two surface histidine residues. Anal Chem, 79, 7654-7661.
Dormond, E., Chahal, P., Bernier, A., Tran, R., Perrier, M. and Kamen, A. (2010) An efficient process for the purification of helper-dependent adenoviral vector and removal of helper virus by iodixanol ultracentrifugation. J Virol Methods, 165, 83-89.
Fahey, K. J., Chapman, A. J., Macreadie, I. G., Vaughan, P. R., McKern, N. M., Skicko, J. I., Ward, C. W. and Azad, A. A. (1991) A recombinant subunit vaccine that protects progeny chickens from infectious bursal disease. Avian Pathol, 20, 447-460.
Fahey, K. J., Erny, K. and Crooks, J. (1989) A conformational immunogen on VP-2 of infectious bursal disease virus that induces virus-neutralizing antibodies that passively protect chickens. J Gen Virol, 70 ( Pt 6), 1473-1481.
Gaberc-Porekar, V. and Menart, V. (2001) Perspectives of immobilized-metal affinity chromatography. J Biochem Biophys Methods, 49, 335-360.
Galloux, M., Libersou, S., Morellet, N., Bouaziz, S., Da Costa, B., Ouldali, M., Lepault, J. and Delmas, B. (2007) Infectious bursal disease virus, a non-enveloped virus, possesses a capsid-associated peptide that deforms and perforates biological membranes. J Biol Chem, 282, 20774-20784.
Gillam, S., Astell, C. R., Jahnke, P., Hutchison, C. A., 3rd and Smith, M. (1984) Construction and properties of a ribosome-binding site mutation in gene E of phi X174 bacteriophage. J Virol, 52, 892-896.
Grisshammer, R. and Tucker, J. (1997) Quantitative evaluation of neurotensin receptor purification by immobilized metal affinity chromatography. Protein Expr Purif, 11, 53-60.
Heine, H. G., Haritou, M., Failla, P., Fahey, K. and Azad, A. (1991) Sequence analysis and expression of the host-protective immunogen VP2 of a variant strain of infectious bursal disease virus which can circumvent vaccination with standard type I strains. J Gen Virol, 72 ( Pt 8), 1835-1843.
Hochuli, E., Dobeli, H. and Schacher, A. (1987) New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr, 411, 177-184.
Hutchison, C. A., 3rd, Phillips, S., Edgell, M. H., Gillam, S., Jahnke, P. and Smith, M. (1978) Mutagenesis at a specific position in a DNA sequence. J Biol Chem, 253, 6551-6560.
Itakura, K., Rossi, J. J. and Wallace, R. B. (1984) Synthesis and use of synthetic oligonucleotides. Annu Rev Biochem, 53, 323-356.
Jiang, C., Wechuck, J. B., Goins, W. F., Krisky, D. M., Wolfe, D., Ataai, M. M. and Glorioso, J. C. (2004) Immobilized cobalt affinity chromatography provides a novel, efficient method for herpes simplex virus type 1 gene vector purification. J Virol, 78, 8994-9006.
Johnson, R. D. and Arnold, F. H. (1995) Review: Multipoint binding and heterogeneity in immobilized metal affinity chromatography. Biotechnol Bioeng, 48, 437-443.
Johnson, R. D., Todd, R. J. and Arnold, F. H. (1996) Multipoint binding in metal-affinity chromatography II. Effect of pH and imidazole on chromatographic retention of engineered histidine-containing cytochromes c. J Chromatogr A, 725, 225-235.
Kochan, G., Gonzalez, D. and Rodriguez, J. F. (2003) Characterization of the RNA-binding activity of VP3, a major structural protein of Infectious bursal disease virus. Arch Virol, 148, 723-744.
Lee, B. and Richards, F. M. (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol, 55, 379-400.
Lee, C. C., Ko, T. P., Chou, C. C., Yoshimura, M., Doong, S. R., Wang, M. Y. and Wang, A. H. (2006) Crystal structure of infectious bursal disease virus VP2 subviral particle at 2.6A resolution: implications in virion assembly and immunogenicity. J Struct Biol, 155, 74-86.
Lombardo, E., Maraver, A., Caston, J. R., Rivera, J., Fernandez-Arias, A., Serrano, A., Carrascosa, J. L. and Rodriguez, J. F. (1999) VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. J Virol, 73, 6973-6983.
Lombardo, E., Maraver, A., Espinosa, I., Fernandez-Arias, A. and Rodriguez, J. F. (2000) VP5, the nonstructural polypeptide of infectious bursal disease virus, accumulates within the host plasma membrane and induces cell lysis. Virology, 277, 345-357.
Louie, G. V. and Brayer, G. D. (1990) High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c. J Mol Biol, 214, 527-555.
Maraver, A., Ona, A., Abaitua, F., Gonzalez, D., Clemente, R., Ruiz-Diaz, J. A., Caston, J. R., Pazos, F. and Rodriguez, J. F. (2003) The oligomerization domain of VP3, the scaffolding protein of infectious bursal disease virus, plays a critical role in capsid assembly. J Virol, 77, 6438-6449.
Mattiasson, B., Kumar, A. and Galaev, I. (1998) Affinity precipitation of proteins: design criteria for an efficient polymer. J Mol Recognit, 11, 211-216.
Min, C. and Verdine, G. L. (1996) Immobilized metal affinity chromatography of DNA. Nucleic Acids Res, 24, 3806-3810.
Muller, H. and Becht, H. (1982) Biosynthesis of virus-specific proteins in cells infected with infectious bursal disease virus and their significance as structural elements for infectious virus and incomplete particles. J Virol, 44, 384-392.
Mundt, E., Beyer, J. and Muller, H. (1995) Identification of a novel viral protein in infectious bursal disease virus-infected cells. J Gen Virol, 76 ( Pt 2), 437-443.
Mundt, E., Kollner, B. and Kretzschmar, D. (1997) VP5 of infectious bursal disease virus is not essential for viral replication in cell culture. J Virol, 71, 5647-5651.
Nick, H., Cursiefen, D. and Becht, H. (1976) Structural and growth characteristics of infectious bursal disease virus. J Virol, 18, 227-234.
Novotny, M., Seibert, M. and Kleywegt, G. J. (2007) On the precision of calculated solvent-accessible surface areas. Acta Crystallogr D Biol Crystallogr, 63, 270-274.
Okoye, J. O. and Uzoukwu, M. (1981) An outbreak of infectious bursal disease among chickens between 16 and 20 weeks old. Avian Dis, 25, 1034-1038.
Ozel, M. and Gelderblom, H. (1985) Capsid symmetry of viruses of the proposed Birnavirus group. Arch Virol, 84, 149-161.
Pathange, L. P., Bevan, D. R., Larson, T. J. and Zhang, C. (2006) Correlation between protein binding strength on immobilized metal affinity chromatography and the histidine-related protein surface structure. Anal Chem, 78, 4443-4449.
Porath, J., Carlsson, J., Olsson, I. and Belfrage, G. (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 258, 598-599.
Richards, F. M. and Richmond, T. (1977) Solvents, interfaces and protein structure. Ciba Found Symp, 23-45.
Sharma, S. and Agarwal, G. P. (2001) Interactions of proteins with immobilized metal ions: a comparative analysis using various isotherm models. Anal Biochem, 288, 126-140.
Smith, G. E., Vlak, J. M. and Summers, M. D. (1983) Physical Analysis of Autographa californica Nuclear Polyhedrosis Virus Transcripts for Polyhedrin and 10,000-Molecular-Weight Protein. J Virol, 45, 215-225.
Song, Z., Dong, C., Wang, L., Chen, D. E., Bi, G., Dai, M. and Liu, J. (2010) A novel method for purifying bluetongue virus with high purity by co-immunoprecipitation with agarose protein A. Virol J, 7, 126.
Sulkowski, E. (1989) The saga of IMAC and MIT. Bioessays, 10, 170-175.
Takahashi, H., Akazawa, D., Kato, T., Date, T., Shirakura, M., Nakamura, N., Mochizuki, H., Tanaka-Kaneko, K., Sata, T., Tanaka, Y., Mizokami, M., Suzuki, T. and Wakita, T. (2010) Biological properties of purified recombinant HCV particles with an epitope-tagged envelope. Biochem Biophys Res Commun, 395, 565-571.
Todd, R. J., Johnson, R. D. and Arnold, F. H. (1994) Multiple-site binding interactions in metal-affinity chromatography. I. Equilibrium binding of engineered histidine-containing cytochromes c. J Chromatogr A, 662, 13-26.
Tsodikov, O. V., Record, M. T., Jr. and Sergeev, Y. V. (2002) Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. J Comput Chem, 23, 600-609.
Wallace, R. B., Johnson, P. F., Tanaka, S., Schold, M., Itakura, K. and Abelson, J. (1980) Directed deletion of a yeast transfer RNA intervening sequence. Science, 209, 1396-1400.
Wang, M. Y., Kuo, Y. Y., Lee, M. S., Doong, S. R., Ho, J. Y. and Lee, L. H. (2000) Self-assembly of the infectious bursal disease virus capsid protein, rVP2, expressed in insect cells and purification of immunogenic chimeric rVP2H particles by immobilized metal-ion affinity chromatography. Biotechnol Bioeng, 67, 104-111.
Wang, X. N., Zhang, G. P., Zhou, J. Y., Feng, C. H., Yang, Y. Y., Li, Q. M., Guo, J. Q., Qiao, H. X., Xi, J., Zhao, D., Xing, G. X., Wang, Z. L., Wang, S. H., Xiao, Z. J., Li, X. W. and Deng, R. G. (2005) Identification of neutralizing epitopes on the VP2 protein of infectious bursal disease virus by phage-displayed heptapeptide library screening and synthetic peptide mapping. Viral Immunol, 18, 549-557.
Willoughby, N. A., Kirschner, T., Smith, M. P., Hjorth, R. and Titchener-Hooker, N. J. (1999) Immobilised metal ion affinity chromatography purification of alcohol dehydrogenase from baker''s yeast using an expanded bed adsorption system. J Chromatogr A, 840, 195-204.
Wizemann, H. and von Brunn, A. (1999) Purification of E. coli-expressed HIS-tagged hepatitis B core antigen by Ni2+ -chelate affinity chromatography. J Virol Methods, 77, 189-197.
Wyeth, P. J. and Cullen, G. A. (1978) Transmission of immunity from inactivated infectious bursal disease oil-emulsion vaccinated parent chickens to their chicks. Vet Rec, 102, 362-363.
Yamaguchi, T., Iwata, K., Kobayashi, M., Ogawa, M., Fukushi, H. and Hirai, K. (1996) Epitope mapping of capsid proteins VP2 and VP3 of infectious bursal disease virus. Arch Virol, 141, 1493-1507.
QuikChange

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top