[1] B. Jaffe, et al., Properties of piezoelectric eramics in solid solution series PbTiO3-PbZrO3-PbO-SnO and PbTiO3-PbHfO3, J. Res. Nat. Bur. Stds., vol. 55, p. 239, 1955.
[2]S. Roberts, Dielectric and piezoelectric properties of barium titanate, Physical Review, vol. 71, p. 890, 1947.
[3]V. K. Seth and W. A. Schulze, Grain-oriented fabrication of bismuth titanate ceramics and its electrical properties, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 36, pp. 41-49, 1989.
[4]K. Singh, V. Lingwal, S. Bhatt, N. Panwar, and B. Semwal, Dielectric properties of potassium sodium niobate mixed system, Materials research bulletin, vol. 36, pp. 2365-2374, 2001.
[5]S.-Y. Chu, W. Water, Y.-D. Juang, and J.-T. Liaw, Properties of (Na, K) NbO3 and (Li, Na, K) NbO3 Ceramic Mixed Systems, Ferroelectrics, vol. 287, pp. 23-33, 2003.
[6] 吳朗, '電子陶瓷-壓電,' 全欣科技圖書, vol. 7, 1994.
[7] 許桂樹, 陳克群, 李怡銘, 感測器原理與應用, 全華圖書股份有限公司, pp.9-2, 2007.
[8] 朱建國, 孫小松, 李衛, 電子與光電子材料, 北京國防工業出版社, pp. 48, 2007.
[9] 化學之旅工作室, 快樂化學, 安徽省淮南市快樂化學網, 石英, 2009.
[10] A. J. Moulson and J. M. Herbert, Electroceramics: materials, properties, applications, John Wiley & Sons, Inc, 2003.
[11] B. Jaffe, Piezoelectric ceramics, Academic Press London, vol. 115, 1971.
[12] IEEE Standard on Piezoelectricity, IEEE Engineering 1988.
[13] Charles Kittel, Introduction to Solid State Physics, Eighth Edition, John Wiley & Sons, Inc, 2005.
[14] 邱碧秀,電子陶瓷材料, 徐氏基金會, 1992.
[15] Pieter Kuiper, Dielectric responses , en.wikipedia, 2010.
[16] 吳朗, '電子陶瓷-介電,' 全欣科技圖書, vol. 1, 1994.
[17] 翁逸鵬,鈮酸鈉鉀壓電陶瓷之製作及其在表面聲波濾波器的應用, 國立成功大學電機工程研究所碩士論文, pp.16-17, 2005.[18] Y. Guo, K.-i. Kakimoto, and H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics, Applied Physics Letters, vol. 85, p. 4121, 2004.
[19] P. Zhao, B.-P. Zhang, and J.-F. Li, High piezoelectric d33 coefficient in Li-modified lead-free (Na,K)NbO3 ceramics sintered at optimal temperature, Applied Physics Letters, vol. 90, p. 242909, 2007.
[20] K. Wang and J.-F. Li, Analysis of crystallographic evolution in (Na,K)NbO[sub 3]-based lead-free piezoceramics by x-ray diffraction, Applied Physics Letters, vol. 91, p. 262902, 2007.
[21] X. K. Niu, J. L. Zhang, L. Wu, P. Zheng, M. L. Zhao, and C. L. Wang, Crystalline structural phase boundaries in (K,Na,Li)NbO3 ceramics, Solid State Communications, vol. 146, pp. 395-398, 2008.
[22] H.-T. Li, B.-P. Zhang, P.-P. Shang, Y. Fan, and Q. Zhang, Phase Transition and High Piezoelectric Properties of Li0.058(Na0.52+xK0.48)0.942NbO3 Lead-Free Ceramics, Journal of the American Ceramic Society, vol. 94, pp. 628-632, 2011.
[23] W. Ge, Y. Ren, J. Zhang, C. P. Devreugd, J. Li, and D. Viehland, A monoclinic-tetragonal ferroelectric phase transition in lead-free (K0.5Na0.5)NbO3-x%LiNbO3 solid solution, Journal of Applied Physics, vol. 111, p. 103503, 2012.
[24] K. Wang, J.-F. Li, and N. Liu, Piezoelectric properties of low-temperature sintered Li-modified (Na, K)NbO3 lead-free ceramics, Applied Physics Letters, vol. 93, p. 092904, 2008.
[25] K. Wang and J.-F. Li, Low-Temperature Sintering of Li-Modified (K, Na)NbO3 Lead-Free Ceramics: Sintering Behavior, Microstructure, and Electrical Properties, Journal of the American Ceramic Society, vol. 93, pp. 1101-1107, 2010.
[26] H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, and Z. Pei, An approach to further improve piezoelectric properties of (K0.5Na0.5)NbO3-based lead-free ceramics, Applied Physics Letters, vol. 91, p. 202907, 2007.
[27] K. Wang and J.-F. Li, Domain Engineering of Lead-Free Li-Modified (K,Na)NbO3 Polycrystals with Highly Enhanced Piezoelectricity, Advanced Functional Materials, vol. 20, pp. 1924-1929, 2010.
[28] 陳永增, 鄧惠源, 非破壞性檢測, 全華科技,pp.4-1, 2000.
[29] X. Sun, J. Deng, J. Chen, C. Sun, and X. Xing, Effects of Li Substitution on the Structure and Ferroelectricity of (Na,K)NbO3, Journal of the American Ceramic Society, vol. 92, pp. 3033-3036, 2009.
[30] D. Zhou, M. Kamlah, and D. Munz, Effects of uniaxial prestress on the ferroelectric hysteretic response of soft PZT, Journal of the European Ceramic Society, vol. 25, pp. 425-432, 2005.
[31] R. Yimnirun, S. Ananta, Y. Laosiritaworn, A. Ngamjarurojana, and S. Wongsaenmai, Scaling Behavior of Dynamic Ferroelectric Hysteresis in Soft PZT Ceramic: Stress Dependence, Ferroelectrics, vol. 358, pp. 3-11, 2007.
[32] M. Davis, N. Klein, D. Damjanovic, N. Setter, A. Gross, V. Wesemann, et al., Large and stable thickness coupling coefficients of [001]C-oriented KNbO3 and Li-modified (K,Na)NbO3 single crystals, Applied Physics Letters, vol. 90, p. 062904, 2007.
[33] J. H. Cho, N. R. Yeom, S. J. Kwon, Y. J. Lee, Y. H. Jeong, M. P. Chun, et al., Ferroelectric domain morphology and structure in Li-doped (K,Na)NbO3 ceramics, Journal of Applied Physics, vol. 112, p. 052005, 2012.
[34] A. J. Paula, R. Parra, M. A. Zaghete, and J. A. Varela, Study on the formation during the production of lead-free piezoceramics at the morphotropic phase boundary, Solid State Communications, vol. 149, pp. 1587-1590, 2009.
[35] E. Hollenstein, D. Damjanovic, and N. Setter, Temperature stability of the piezoelectric properties of Li-modified KNN ceramics, Journal of the European Ceramic Society, vol. 27, pp. 4093-4097, 2007.
[36] K. Hatano, K. Kobayashi, T. Hagiwara, H. Shimizu, Y. Doshida, and Y. Mizuno, Polarization System and Phase Transition on (Li,Na,K)NbO3 Ceramics, Japanese Journal of Applied Physics, vol. 49, p. 09MD11, 2010.
[37] M. I. Morozov, H. Kungl, and M. J. Hoffmann, Effects of poling over the orthorhombic-tetragonal phase transition temperature in compositionally homogeneous (K,Na)NbO3-based ceramics, Applied Physics Letters, vol. 98, p. 132908, 2011.
[38] M. M. Hejazi, B. Jadidian, and A. Safari, Fabrication and evaluation of a single-element Bi0.5Na0.5TiO3-based ultrasonic transducer, IEEE Trans Ultrason Ferroelectr Freq Control, vol. 59, pp. 1840-7, Aug 2012.
[39] Q. Zhou, S. Lau, D. Wu, and K. Kirk Shung, Piezoelectric films for high frequency ultrasonic transducers in biomedical applications, Progress in Materials Science, vol. 56, pp. 139-174, 2011.