跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2025/09/01 13:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄒磊
研究生(外文):Lei Tsou
論文名稱:高效率與高色穩定度白光有機發光元件的研製
論文名稱(外文):Fabrication of high efficiency and color stability in white organic light emitting device
指導教授:許渭州
指導教授(外文):Wei-Chou Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:60
中文關鍵詞:白光有機發光元件
外文關鍵詞:organic light emitting devicewhite light
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:2
於此篇論文中,我們使用共蒸鍍的技巧應用於藍光有機發光材料TBADN 以及黃色的染色有機材料Rubrene去製程我們期待的高效率以及高色穩定度的白光有機發光元件(WOLEDs)。在製作的同時我們也發現在藍光材料TBDAN 的發光頻譜以及Rubrene的吸收頻譜有相對高的重疊性,這也是在參雜過後的WOLED可以提高發光效率的主要原因首先我們嘗試最佳化藍光有機發光元件的結構,其結構依序如下ITO/NPB(70nm)/TBDAN(Xnm)/Alq3(10nm)/LiF(1nm)/Al(150nm) 接著我們調變發光層TBDAN的膜厚達到我們期待的高亮度以及高效率;在外加偏壓10伏可以達到2271 (cd/m2)而在6伏可以達到2.706(cd/A)的效率。接著我們選擇了最佳化的藍光有機發光元件的結構並在發光層TBADN用共蒸鍍的方式參雜染色材料,藉由增加Rubrene的濃度我們可以發現白光的發光效率、亮度、以及色穩定度變差甚至偏移、相對的也到至元件容易毀損於高電壓的操作。我們調變了在0.3%的參雜濃度下得到純度較高的白光;量測在4伏電壓下9.86 (cd/A) 的高效率、11伏外加電壓下13028 (cd/m2) 的高亮度、在偏壓8~11伏下CIE色度座標保持在(0.32,0.34)無偏移。 然而我們在0.7%的參雜濃度下量測到5伏電壓下11.836 (cd/A) 的更高的效率、11伏外加電壓下18250 (cd/m2) 更高的亮度、在偏壓8~11伏下CIE色度座標保持在(0.31,0.35)略偏黃的白光。
In this thesis, we use the co-vaporizing skills in blue organic material TBADN and yellow dyeing organic material Rubrene to achieve high efficiency and color stability white organic light emitting devices (WOLEDs). We also discover high overlapping between emitting photoluminescence of TBDAN and absorption of photoluminescence of Rubrene. That is one of the major reasons to increase the efficiency of WOLEDs.
At first, we try to optimize the best blue light emitting device structure whose layer in order as ITO/NPB(70nm)/TBDAN(Xnm)/Alq3(10nm)/LiF(1nm)/Al(150nm), and modulate the depth of emitting layer X to obtain the highest luminescence and efficiency which are 2271(cd/m2) at 10 applied voltage and 2.706 (cd/A) at 6 applied voltage.Second, we choose the optimal blue light emitting device structure to dope dyeing material in emitting layer, layer of TBADN. By the increasing of concentration on Rubrene, we also find the decline of the efficiency and luminescence, color shift from white light regions of the CIE coordinate, and easily burned out by high applied voltage. We tune concentration of Rubrene around 0.3% in pure white light emission to acquire efficiency 9.86 (cd/A) at 4 applied voltage, brightness 13028 (cd/m2) at 11 applied voltage, and the most important is that CIE coordinate still remain (0.32, 0.34) at applied voltage from 8 to 11. We also find concentration of Rubrene around 0.7% that obtain higher efficiency11.836 (cd/A) at 5 applied voltage, higher brightness 18250 (cd/m2) at 11 applied voltage than those in 0.3% dopant, but not very pure white light that CIE coordinate is about (0.31, 0.35).
Abstract (Chinese)
Abstract (English)
Table Captions
Figure Captions
Chapter 1 Introduction 1
Chapter 2 Organic Light-Emitting Device 3
2-1 The Organic Light-emitting Theorems 3
2-2 Mechanism of producing light emission 5
2-3 Measurements of light emission 8
2-4 Materials of anode and cathode 10
2-5 Design of Organic Light-emitting Device 11
2-6 Blue Organic Light-emitting Device 12
2-7 White Organic Light-emitting Device 12
Chapter 3 Fabrication of Organic Light-Emitting Device 14
Device Fabrication Process 14
3-1 Pre-clean ITO Glass 14
3-2 ITO Pattern Etching 15
3-3 UV Ozone Treatment 15
3-4 Thermal organic vaporizing 16
Chapter 4 Experimental Results 17
4-1 Device Structure 17
4-2 Modulate TBDAN Depth (X nm) 17
4-3 Modulate Concentration of Rubrene in TBADN
Layer (X=30nm) 20
Chapter 5 Conclusion 23
Reference
[1]C. W. Tang, S. A. VanSlyke and C. H. Chen, “ Electroluminescence of doped organic thin films,” J. Appl. Phys., 65, 3610, (1989)
[2]Yen-Shih Huang and Jwo-Huei Jou, “High-efficiency white organic light-emitting devices with dual daoped structure,” Applied Physics Letters , 80, 15 (2002)
[3]G. Destriau, “Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole,” J.Chem. Phys., 33,587 (1963)
[4]M.Pope, H. Kallmann, P. Magnante, “Below band-gap optical absorption in semiconductor alloys,” Chem. Phys.,38, 2024 (1963)
[5]W. Helfrich, W. G. Schneider, “Highly-bright white organic light-emitting diodes based on a singleemission layer,” Phys. Rev. Lett., 14, 299 (1965)
[6]W. D. Gill, “Transient Photocurrent for Field-Dependent Mobilities,” J. Appl. Phys., 43, 5033, (1972)
[7]E. Pinotti, A Sassella, A. Borghesi, R. Tubino, “Efficient nondoped white organic light-emitting diodes based on electromers,” Synth. Met., 122, 169 (2001)
[8]B. Chen, C.-S. Lee, S.-T. Lee, P. Webb, Y.-C. Chan, W. Gambling, H. Tian and W. Zhu, “Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host,” J. Appl. Phys. Part 1, 39, 1190 (2000)
[9]M. Klessinger, J. Michl, “Excited States and Photochemistry of Organic Molecules ,” VCH Publishers, New York (1995)
[10]Y. Liu, M. S. Liu, A. K.-Y. Jen, “Organic light-emitting diode (OLED) technology:
materials, devices and displaytechnologies,” Acta Polym. 50, 105 (1999)
[11]Robert Eisberg, Robert Resnick, “Quantum Physics of Atoms. Molecules, Solids, Nuclei, And Particles,” 2nd edition., pp. 313-316 (1974)
[12]M. A. Baldo, D. F. O `Brien, Y, You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 395, 151 (1998)
[13]S. M. Sze, “Physics of Semiconductor Devices,” 2nd edition., pp. 65, 301 (1985)
[14]S. M. Sze, “Physics of Semiconductor Devices,” 2nd edition., pp. 261 (1985)
[15]U. Wolf, V. I. Arkhipov, H. Bässler, “Nondoped-type white organic electroluminescent devices utilizing complementary color and exciton diffusion
,”Phys. Rev. B, 59, 7507 (1999)
[16]S. Barth, U. Wolf, H. Bässler,P. Müller, H Riel, H. Westweber, P. F. Seidler, and W Riess, “Photogeneration and transport of charge carriers in hybrid materials of conjugated polymers and dye-sensitized TiO2,” Phys. Rev. B 60, 8791 (1999)
[17]M. Kiy, I. Biaggio, M. Koehler, and P. Günter, “Thermally activated injection limited conduction in single layer N,N -diphenyl-N,N -bis(3-methylphenyl)1-1 -biphenyl-4,4 -diamine light emitting diodes,” Phys. Rev. Lett., 80, 4366 (2002)
[18]J. Kido, M. Kohda, K. Okuyama, K. Nagai, “Blue-light electroluminescence from p-phenylene vinylene-based copolymers,” Applied Physics Lett., 61, 761 (1992)
[19]J. Kido, M. Kimura, K. Nagai, “Observation of degradation processes of Al electrodes in organic electroluminescence devices by electroluminescence microscopy, atomic force microscopy, scanning electron microscopy, and Auger electron spectroscopy,” Scinece., 267, 1332 (1995)
[20]S. R. Forrest, D. D. C. Bradley, M. E. Thompson, “Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories,” Adv. Mater., 15, 1043 (2003)
[21]J. Cui, A. Wang, N. L. Edleman, J. Ni, P.Lee, N. R. Armstrong, T. J. Marks, “Theory of emission state of tris(8-quinolinolato)aluminum and its related compounds,” Adv. Master., 13, 1476 (2001)
[22]F. O. Adurodija, H. Izumi, T. Ishihar, “Comprehensive study of the film surface temperature and plasma thermokinetics during La1.85Sr0.15CuO4 deposition by laser ablation,” Thin Solid Films, 350, 79, (1999)
[23]H. J. Kim, J. W. Bae, J. S. Kim, “Importance of indium tin oxide surface acido basicity for charge injection into organic materials based light emitting diodes,” Surf. Cont. Technol., 131, 201 (2000)
[24]J. Matsuo, H. Katsumata, E. Minami, “Effect of polyatomic ion structure on thin-film growth: Experiments and molecular dynamics simulations,” Nucl. Instrum. Methods Phys. Res. B, 161, 952 (2000)
[25]M. Ishii, T. Mori, H. Fujikawa, S. Tokito, Y. Taga, “Radiative recombination mechanisms in aluminum tris(8-hydroxyquinoline): Evidence for triplet exciton recombination,” Journal of Luminescence, 87 1165 (2000)
[26]J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F. Cacialli, “Indium–tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance,” J. Appl. Phys., 84, 6859 (1998)
[27]S. K. So1, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, “Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing,”Appl. Phys A., 68, 447 (1999)
[28]M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, M Wang, “Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices,” J. Appl. Phys., 86, 1688 (1999)
[29]E. I. Haskal, A. Curioni, P. F. Seidler, W. Andreoni, “Lithium–aluminum contacts for organic light-emitting devices,”Applied Physics Lett., 71, 1151 (1997)
[30]L. S. Hung, L. S. Liao, C. S. Lee, S. T. Lee, “Sputter deposition of cathodes in organic light emitting diodes,”J. Appl. Phys., 86, 4607 (1999)
[31]L. S. Hung, “Device performance and polymer morphology in polymer light emitting diodes: The control of device electrical properties and metal/polymer contact,” Thin Solid Films, 363, 47 (2000)
[32]J. Yoon, J. Kim, T. Lee, and O. Park, “Evidence of band bending observed by electroabsorption studies in polymer light emitting device with ionomer/Al or LiF/Al cathode”, Appl. Phys. Lett., 76, 2152 (2000).
[33]L. S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode”, Appl. Phys. Lett., 70, 152 (1997).
[34]M. Stobel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, and A.Winnacker, “Space-charge-limited electron currents in 8-hydroxyquinoline aluminum”, Appl. Phys. Lett., 76, 115 (2000).
[35]S. E. Shaheen, G. E. Jabbour, M. M. Morelli, Y. Kawabe, B. Kippelen, N. Peyghambarian, M.-F. Nabor, R. Schlaf, E. A. Mash, and N. R. Armstrong, “Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode”, J. Appl. Phys., 84, 2324 (1998).
[36]T. Mori, H. Fujikawa, S. Tokito, and Y. Yaga, “Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy”, Appl. Phys. Lett., 73, 2763 (1998).
[37]G. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, M. M. Morelli, B. Kippelen, and N. Peyghambarian, “Highly efficient and bright organic electroluminescent devices with an aluminum cathode”, Appl. Phys. Lett., 71, 1762 (1997).
[38]P. Piromreun, H. Oh, Y. Shen, G. G. Malliaras, J. C. Scott, and P. J. Brock, “Role of CsF on electron injection into a conjugated polymer”, Appl. Phys. Lett., 77, 2403 (2000).
[39]G. E. Jabbour, B. Kippelen, N. R. Armstrong, and N. Peyghambarian, “Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices”, Appl. Phys. Lett., 73, 1185 (1998).
[40]H. Fujikawa, T. Mori, K. Noda, M. Ishii, S. Tokito, andY. Taga, “Organic electroluminescent devices using alkaline-earth fluorides as an electron injection layer”, J. of Lumin., 87, 1177 (2000)
[41]S. P. Sibley, M. E. Thompson, P. E. Burrows, and S. R. Forrest, “Electroluminescence in molecular materials”, in Optoelectronic Properties of Inorganic Compounds, D. M. Roundhill, and J. Fackler, Eds. New York: Plenum, in press
[42]L. J. Rothberg and A. J. Lovinger, “Status of and prospects for organic electroluminescence”, J. Mater. Res., 11, 3174 (1996).
[43]A. L. Burin, M. A. Ratner, “Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters,” J. Phys. Chem. A, 104, 4704 (2000)
[44]Silu Tao, Ziryo Hong, Zhaokuai Peng, Wwigang Ju, “ Anthracene derivative for non-doped blue-emitting organic electroluminescence device with both exllent color purity and high efficiency” Chem. Phys. Lett., 397 (2004)
[45]M. T. Lee, Y. S. Wu, H. H. Chen, C. T. Tsai, C. H. Liao, and C. H. Chen, “Combinatorial fabrication and studies of bright white organic light-emitting
devices based on emission from rubrene-doped 4,48-bis.2,28-diphenylvinyl.-1
,18-biphenyl ,” Proceedings of SID’04, p.720, May 23-28, 2004, Seattle, Washington, USA
[46]Chan-Ching Chang, Jenn-Fang Chen, “Highly efficient white organic electroluminescent devices based on tandem architecture” Appl. Phys. Lett., 87, 253501 (2005)
[47]Yung-Cheng Tsai, Jwo-Huei Jou, “Long-lifetime, high-efficiency white organic light-emitting diodes with mixed host composing double emission layers”, Appl. Phys. Lett., 89, 243521 (2006)
[48]R. H. Jordan, A. Dodabalapur, M. Strukelj, and T. M. Miller, “White organic electroluminescence devices” , Appl. Phys. Lett., 17, 07974 (1995)
[49]Yen-Shih Huang and Jwo-Huei Jou, Wen-Kuo Weng and Jia-Ming Liu
“High-efficiency white organic light-emitting devices with dual doped
structure”, Appl. Phys. Lett.,vol. 80, no.15 (2002)
[50]Hakim Choukri, Alexis Fischer, Sébastien Forget, Dominique Adès and Alain Siove, “White organic light-emitting diodes with fine chromaticity tuning via ultrathin layer position shifting”, Appl. Phys. Lett.,89, 183513 (2006)
[51]C. W. Ko and Y. T. Tao, “Bright white organic light-emitting diode”, Appl. Phys. Lett., vol. 79, no. 25 (2001)
[52]S.K. So, W.K. Choi, C.H. Cheng, L.M. Leung, C.F.Kwong, “Surface preparation and characterization of indiumtin oxide substrates for organic electroluminescent devices”, Appl. Phys. A., 68, 447–450 (1999)
[53]Silu Tao, Ziruo Hong, Zhaokuai Peng, “Anthracene derivative for a non-doped blue-emitting organic electroluminescence device with both excellent color purity and high efficiency”, Chem. Phys. Lett. Chem., 397, 1 (2004)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top