跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/11 13:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳盈年
研究生(外文):Chen, Yin-Nien
論文名稱:鰭狀、穿隧場效電晶體元件於超低功耗靜態隨機存取記憶體、邏輯電路及類比電路應用之設計與分析
論文名稱(外文):Design and Analysis of Nanoscale FinFET and Tunnel FET Devices for Ultra-Low-Power SRAM, Logic and Analog Applications
指導教授:莊景德
指導教授(外文):Chuang, Ching-Te
口試委員:蘇彬崔秉鉞許雅三連振炘江孟學莊景德
口試委員(外文):Su, PinTui, Bing-YueHsu ,Yar-SunLien, Chen-HsinChiang, Meng-HsuehChuang, Ching-Te
口試日期:2016-01-13
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程學系 電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:199
中文關鍵詞:鰭狀場效電晶體穿隧場效電晶體變異度邏輯電路類比電路靜態隨機存取記憶體
外文關鍵詞:FinFETTFETVariabilityLogic CircuitsAnalog CircuitsSRAM cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:339
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在針對微縮鰭狀場效電晶體及穿隧場效電晶體於超低功耗靜態隨機存取記憶體、邏輯電路及類比電路應用提供一完整的評估與分析。在此論文中,我們考慮元件與電路間的相互影響(interaction)以及共同之最佳化(co-optimization)以全面性的呈現上述微縮鰭狀場效電晶體及穿隧場效電晶體在元件/電路層面的潛力與隱憂。藉由本研究,我們探討元件特性和低電壓操作對於邏輯電路(logic circuits)的漏電/延遲,靜態隨機存取記憶體(SRAM)的穩定度/效能以及類比電路的功耗/效能及其他重要考量因素的影響,進而提供在此篇論文裡我們所提出的電路設計以及未來電電壓操作電路設計的方向。
擁有優異的靜電完整性(electrostatic integrity)以及對於不均勻摻雜擾動(random dopant fluctuation)的免疫,鰭狀場效電晶體是取代傳統平面式金氧半場效電晶體最有競爭性的元件。於此同時,其可獨立閘極操作(independent-gate control)的元件架構有助於優化元件特性或是電路功能。我們全面性地檢視傳統6T transistor記憶體單元,獨立閘極控制Column-Decoupled的6T記憶體單元以及我們所提出的獨立閘極控制7T記憶體單元在穩定度以及效能上的表現。經由本研究我們發現,我們所提出的獨立閘極控制7T記憶體單元由於其使用了獨立閘極控制的元件於分隔讀取與寫入路徑的讀取電晶體(reading transistor)上,同時亦使用在兩個存取控制電晶體(access transistor)上形成cross-point的架構,進而提供了適當的寫入靜態雜訊邊界(static noise margin)以及顯著的改善了讀取和半讀取(Half-select)靜態雜訊邊界。除此之外,我們探討鰭線邊緣粗糙度(fin Line-Edge-Roughness)對於上述記憶體單元在讀取穩定度以及讀取效能的影響。我們研究分析顯示使用獨立閘極控制的元件雖然會比共同閘極控制(tied-gate)變異性差,整體而言,我們提出的獨立閘極7T記憶體單元提供了最佳的讀取靜態雜訊邊界變異度(μ/σ),以及解決了另兩個記憶體單元由於漏電流變異造成之存取資料翻轉的情況,顯示了其適合應用於低操作電壓靜態隨機存取記憶體。
透過能帶間穿隧效應(band-to-band tunneling)所產生的電流,穿隧場效電晶體(TFET) 由於其擁有克服熱電子(thermionic)限制的能力以及提供更為優異的切換特性被視為在未來超低電壓操作邏輯電路應用上極具競爭力的元件。首先我們先廣泛性的分析穿隧場效電晶體的元件特性,而其元件架構造成元件本身有較大的閘極-汲極電容(CGD),在電路操作上惡化了轉換延遲以及轉換能量。因此,我們全面性的比較幾種元件設計,包含使用雙重介電材質(Dual Oxide)、汲極端遠離閘極控制區(Drain-Side Underlap) 、使用雙重金屬閘極材料(Dual Metal Work Function),對於在維持穿隧場效電晶體優異的轉換特性的同時如何優化其閘極-汲極電容作探討。我們研究分析指出使用雙重介電材質(Dual Oxide)設計可得到最佳降低閘極-汲極電容(CGD)同時保有穿隧場效電晶體優異的轉換特性。另一方面,隨著操作電壓持續的下降,若要維持傳統金氧半場效電晶體仍可應用於超高速、超低功耗的操作上的話,新穎輔助電路如使用雙重操作電壓以及雙重臨界電壓設計則是不可或缺的。因此,我們針對傳統金氧半場效電晶體、金氧半場效電晶體採用上述電路架構、傳統穿隧場效電晶體以及穿隧場效電晶體採用雙重介電材質設計來探討何者更有潛力應用於次0.2V超高速、超低功耗的電路操作上。我們分析了其在靜態邏輯電路、Bus驅動(Bus Driver)以及閂鎖(latch)上,延遲、動態能耗、待機能耗上的表現。我們分析結果顯示穿隧場效電晶體採用雙重介電材質設計更適用於次0.2V超高速、超低功耗的電路操作。
我們也針對多種穿隧場效電晶體記憶體單元以及我們所提出的兩個記憶體單元,7T穿隧場效電晶體記憶體單元還有混合穿隧場效電晶體以及金氧半場效電晶體8T記憶體單元在穩定度、效能、記憶體單元佈局面積以及使用寫入輔助電路的有效性作全面性的分析與比較。
本論文也針對穿隧場效電晶體在類比/混頻電路應用上的潛力作探討研究。由於傳輸機制不同於傳統鰭狀場效電晶體,我們從本質元件物理特性觀點出發,分析以及比較鰭狀場效電晶體以及穿隧場效電晶體的類比特性指標。我們研究分析結果發現穿隧場效電晶體由於其在低壓下較佳的轉換特性,在超低電壓/功耗的類比應用上,其可提供較佳的增益(gain)以及線性度(linearity)。鰭狀場效電晶體由於其可提供的驅動電流較佳,更適用於高效能類比電路應用上面。除此之外,我們亦針對兩種元件在運算轉導放大器(operational transconductance amplifier)上的特性指標以及頻率響應,以實際觀察兩者在類比電路應用之潛力與劣勢。我們研究結果分析指出,在超低功耗應用上,由於穿隧場效電晶體擁有較佳的本質元件增益,因此在同樣功耗的設計下,其比鰭狀場效電晶體運算轉導放大器提供了兩倍大的單位增益頻率(unit-gain frequency) 、10dB多的共模抑制比(common-mode rejection ratio)。
隨著製程微縮以及操作電壓的下降,元件本質變異(intrinsic device variation)對於元件特性的改變以及其對電路設計上是相當重要的考量因素。本論文亦涵蓋功函數變異(Work Function Variation)以及鰭線邊緣粗糙度(Fin Line-Edge-Roughness)對於鰭狀場效電晶體以及穿隧場效電晶體元件特性的影響。我們的研究指出,由於傳輸機制的不同,元件本質變異對於此二元件的影響迥異; 元件本質變異影響鰭狀場效電晶體整個傳輸通道,而對於利用能帶間穿隧效應的穿隧場效電晶體,區域化尤其是穿隧邊界的改變為元件特性影響之主要因素,而在元件本質變異的比較中,我們也發現鰭線邊緣粗糙度對於此二種元件有較大的變異度。我們亦針對功函數變異以及鰭線邊緣粗糙度對於我們所提出的混合穿隧場效電晶體與金氧半場效電晶體、金氧半場效電晶體、穿隧場效電晶體8T記憶體單元在讀取、寫入、半讀取靜態雜訊邊界作全面性的分析與比較。我們的研究指出,我們所提出的混合穿隧場效電晶體與金氧半場效電晶體8T記憶體單元,由於其操作機制的優勢,在各項靜態雜訊邊界都可以達到五個標準偏差變異度的穩定性。我們所提出的混合式8T記憶體單元對於靜態隨機存取記憶體操作於超低壓下是較佳的設計選項。
The goal of this dissertation is to provide an extensive assessment of nanoscale FinFET and TFET devices for ultra-low-power application in SRAM, logic and analog. Device-circuit interactions and co-optimizations are considered to demonstrate the advantages and concerns of these emerging devices based circuits from both the device and circuit point of view. Through our analysis, impacts of device characteristics and low-VDD operation on the leakage/delay and stability/performance of logic circuits and SRAMs, on the power/performance of analog circuits are evaluated to offer insights for both our proposed innovative circuit designs and for future low-voltage circuit designs.
With superior electrostatic integrity and immune to random dopant fluctuation, FinFET device serves a promising role to replace conventional bulk MOSFET device. In addition, the possible adoption of the independent-gate control facilitates FinFET device characteristics and circuit functions. We extensively examine the stability and performance of our proposed Independently-controlled-Gate (IG) 7T FinFET SRAM cell with the conventional 6T FinFET SRAM cell and IG 6T Column-Decoupled FinFET SRAM cell. Through our analysis, our proposed IG 7T FinFET SRAM cell which exploits the independently-controlled-gate (IG) FinFET devices for reading transistor to decouple read/write paths and for access transistors to form cross-point structure provides comparable Write SNM (WSNM) and significant improvement in Read SNM (RSNM) and Half-Select SNM (HSSNM). In addition, with the 3D atomistic TCAD simulator generated Fin Line-Edge-Roughness (Fin LER) pattern, the impacts of the intrinsic device variability on the cell Read stability and Read Performance are extensively investigated. The results indicate that although the variability of independently-controlled-gate device is slightly larger compared to tied-gate device, our proposed cell provides the best μ/σ in RSNM and no Read failure events happened while other two counterparts encounter severe Read failure events due to leakage current from unselected cells flipping the storage data, revealing that our proposed cell is suitable for robust low Vmin SRAM application.
Utilizing band-to-band tunneling as the major transport mechanism, Tunnel FET (TFET) device with capability to surmount the thermionic limitation and to provide superior switching characteristics is regarded as the potential candidate for ultra-low voltage digital applications. Through our comprehensive analysis of the TFET device characteristics, it is found that the pronounced Miller capacitance (CGD) in TFET device undermines the steep-slope advantages and degrades both the switching delay and switching energy. The impacts of several device designs including the Dual Oxide (DOX), Drain-Side Underlap (Dund) and Dual Metal Work Function (DWF) on mitigating the Miller capacitance while maintain the switching characteristics of TFET device are comprehensively investigated and compared. Our results indicate that TFET device with DOX design provides superior reduction in Cinv and C¬gd while retaining comparable Ion-Ioff characteristics among the three design techniques. On the other hand, to enable MOSFET devices for high-speed low-power operation with extensively reduced supply voltage, advanced assist-circuit such as using the dual-supply dual-VT technique is indispensable at the cost of more complicated assist-circuits and needs of on-chip level shifter to generate dual supplies. We use TCAD mixed-mode simulations to comprehensively investigate the feasibility of sub-0.2V high-speed low-power circuits with the four topologies, nominal MOSFET-based circuits, MOSFET-based circuit with dual supply, dual-VT assisted circuits, nominal TFET-based circuits and TFET-based circuits with DOX design. The delay, dynamic energy, and Standby power of the logic circuits including NAND, Inverter, BUS Driver and Latch are comprehensively analyzed and compared. The results indicate that DOX TFET would be the best candidate in considering both the energy-delay product (EDP) and leakage power for NAND, Inverter and Latch circuits. While for Bus Driver in which the largest delay would take place among all logic blocks investigated, both the nominal and DOX TFET-based circuits outperform the nominal MOSFET-based circuits in EDP by about two orders of magnitude and consume comparable Standby power, revealing the potential of TFET device to achieve high-speed low-power circuit operation at VDD = 0.2V.
In addition to logic circuits, various TFET SRAM cells including conventional 7T/8T SRAM cell, 6T SRAM cell with assisted footer and our proposed cells to circumvent the difficulties implementing TFET with conventional 6T SRAM topology are statistically examined and compared. The results indicate that our proposed 7T Drive-Less (DL) TFET SRAM cell with the utilization of 4T DL SRAM as the basis along with the independent gate control can effectively improve the stability of the bit cell in Hold, Read and Write mode with adequate bit cell area compared with other counterparts. On the other hand, with the process compatibility in TFET and CMOS device fabrication, we propose a mixed TFET-MOSFET 8T SRAM cell to exploit merits of both TFET and MOSFET devices. The detailed analysis on stability, performance and effectiveness of using different write-assist schemes are extensively demonstrated. Through our comprehensive study, our proposed mixed TFET-MOSFET 8T SRAM cell provides significant improvement in stability, performance and Vmin, exhibiting the chance to stand for robust ultra-low power SRAM design at the cost of slightly larger bit cell area.
The advantages of the TFET devices for analog applications are assessed to examine the potential for SoC applications. The detailed analog properties and the figure-of-merit (FOM) of TFET and FinFET devices including the transconductance (gm), output resistance (Ro), intrinsic gain (gm x Ro), intrinsic capacitance and linearity are comprehensively studied from intrinsic device physics point of view. Our analysis indicates that for cost-performance ultra-low voltage/power applications, TFET provides substantial merits in intrinsic gain compared with the FinFET device while for high-performance applications, FinFET device outperforms the TFET device at moderate and high voltages. Besides, the operational transconductance amplifier is taken as the fundamental block to investigate the opportunities and concerns of the TFET device for analog/mixed-signal circuit applications. The results indicate that for cost-performance ultra-low power application, TFET OTA provides more than two times higher unity-gain frequency (fT), and 10dB larger common-mode rejection ratio (CMRR) than FinFET OTA at comparable power consumption design.
As the continual scaling of device dimension along with the reduced supply voltages, the impacts of intrinsic device variations become the critical concerns affecting device characteristics and circuit designs. The in-depth assessment of the impacts of Work-Function Variation and Fin Line-Edge Roughness on TFET and FinFET device characteristics are carried out through atomistic 3D TCAD simulations. Look-up table based Verilog-A model calibrated with TCAD results is built for each variation source and incorporates with HSPICE simulations to efficiently investigate impacts of Work-Function Variation and Fin Line-Edge Roughness on TFET SRAMs including our proposed mixed TFET-MOSFET 8T SRAM cell, conventional FinFET 8T SRAM cell and TFET 8T SRAM cell. For the first time, the feasibility/issues of each SRAM cell for ultra-low voltage operation considering intrinsic device variability are addressed. Our results indicate that our proposed mixed cell with exploiting merits of both devices provides superior stability and insusceptibility to intrinsic device variations, revealing its viability and robustness to operate at ultra-low voltages.

ABSTRACT V
誌謝 X
CONTENTS XII
TABLE CAPTIONS XV
FIGURE CAPTIONS XVI
CHAPTER 1 1
INTRODUCTION 1
CHAPTER 2 8
INDEPENDENTLY-CONTROLLED-GATE 7T FINFET SRAM CELL 8
2.1 INTRODUCTION 8
2.2 MANUFACTURE PROCESS OF THE TIED-GATE AND INDEPENDENT-GATE FINFET STRUCTURES 9
2.3 DEVICE-CIRCUIT CO-DESIGN WITH THE INDEPENDENT GATE CONTROL 10
2.4 DESIGN AND ANALYSIS OF INDEPENDENTLY-CONTROLLED-GATE 7T FINFET SRAM CELL 11
2.4.1 Cell Stability of Various FinFET SRAM Cells 12
2.4.2 Cell Area and Cell Performance of Various FinFET SRAM Cells 13
2.4.3 Impacts of Intrinsic Device Variation on FinFET SRAM Cells 14
2.5 SUMMARY 15
2.6 REFERENCE 16
CHAPTER 3 34
DOUBLE-GATE TUNNEL FET FOR ULTRA-LOW-VOLTAGE LOGIC CIRCUITS 34
3.1 INTRODUCTION 34
3.2 DEVICE DESIGN FOR HIGH-SPEED LOW-POWER LOGIC APPLICATIONS 36
3.2.1 Device Design and TCAD Simulation Methodology 36
3.2.2 Tunnel FET Device Designs to Mitigate Increased Miller Capacitance 38
3.3 ENERGY-DELAY AND LEAKAGE POWER ANALYSIS OF DOUBLE-GATE TUNNEL FET LOGIC CIRCUITS FOR ULTRA-LOW-VOLTAGE OPERATION 43
3.4 IMPACT OF PROCESS VARIATION ON DOUBLE-GATE TUNNEL FET LOGIC CIRCUITS 49
3.5 SUMMARY 50
3.6 REFERENCE 51
CHAPTER 4 80
DOUBLE-GATE TUNNEL FET SRAM CELLS 80
4.1 INTRODUCTION 80
4.2 DEVICE DESIGN AND DEVICE CHARACTERISTICS 81
4.3 DESIGN AND ANALYSIS OF PROPOSED 7T DRIVE-LESS TUNNEL FET SRAM CELL 83
4.3.1 Cell Design and Cell Operation 84
4.3.2 Cell Operation 87
4.3.3 Cell Stability 88
4.3.4 Cell Performance 88
4.4 DESIGN AND ANALYSIS OF PROPOSED MIXED TFET-MOSFET 8T SRAM CELL 89
4.4.1 Cell Design and Cell Operation 90
4.4.2 Cell Stability 92
4.4.3 Cell Layout 95
4.4.4 Cell Performance and Effectiveness of Circuit Techniques to Improve the Cell Performance 95
4.5 SUMMARY 99
4.6 REFERENCE 100
CHAPTER 5 131
TUNNEL FET ANALOG APPLICATIONS 131
5.1 INTRODUCTION 131
5.2 DEVICE DESIGN 133
5.3 TUNNEL FET ANALOG FIGURE OF MERIT 135
5.4 DESIGN OF TUNNEL FET OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA) 137
5.4.1 Design of TFET and FinFET OTA 138
5.4.2 Frequency Responses of TFET OTA and FinFET OTA 138
5.5 SUMMARY 139
5.6 REFERENCE 139
CHAPTER 6 156
INVESTIGATION OF WORK FUNCTION VARIATION AND FIN LINE-EDGE-ROUGHNESS ON TUNNEL FET DEVICES AND SRAMS 156
6.1 INTRODUCTION 156
6.2 INTRODUCE OF DEVICE VARIABILITY AND SIMULATION METHODOLOGY 157
6.3 IMPACTS OF WFV AND FINLER ON TFET AND FINFET DEVICES 160
6.4 IMPACTS OF WFV AND FINLER ON TFET AND FINFET SRAMS 163
6.5 REFERENCE 166
CHAPTER 7 CONCLUSION 191
CURRICULUM VITAE 196
PUBLICATION LIST 197

Chapter1
[1] M. Bohr, “The Evolution of Scaling From the Homogeneous Era to the Heterogeneous Era,” in IEDM Tech. Dig., 2011, pp. 1-6.
[2] T. Skotnicki, J. A. Hutchby, T.-J. King, H.-S. P. Wong, and F. Boeuf, “The End of CMOS Scaling,” IEEE Circuits and Devices Magazine, Jan./Feb., pp. 16-26, 2005.
[3] C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han, D. Hanken, M. Hattendorf, P. Hentges, R. Heussner, J. Hicks, D. Ingerly, P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S. Joshi, C. Kenyon, H. Liu, R. McFadden, B. McIntyre, J. Neirynck, C. Parker, L. Pipes, I. Post, S. Pradhan, M. Prince, S. Ramey, T. Reynolds, J. Roesler, J. Sandford, J. Seiple, P. Smith, C. Thomas, D. Towner, T. Troeger, C. Webber, P. Yashar, K. Zawadzki, and K. Mistry, ”A 22nm High Performance and Low-Power CMOS Technology Featuring Fully-Depleted Tri-Gate Transistors, Self-Aligned Contacts and High Density MIM Capacitors,” in VLSI Symp. Tech. Dig., 2012, pp. 131-132.
[4] Meng-Fan Chang , Chien-Fu Chen , Ting-Hao Chang , Chi-Chang Shuai , Yen-Yao Wang , Hiroyuki Yamauchi, “A 28nm 256kb 6T-SRAM with 280mV Improvement in VMIN Using a Dual-Split-Control Assist Scheme,” in ISSCC, Section 17.3, 2015
[5] T. Song, W. Rim, J. Jung, G. Yang, J. Park, S. Park, K.-H. Baek, S. Baek, S.-K. Oh, J. Jung, S. Kim, G. Kim, J. Kim, Y. Lee, K. S. Kim, S.-P. Sim, J. S. Yoon and K.-M. Choi, “A 14nm FinFET 128Mb 6T SRAM with VMINEnhancement Techniques for Low-Power Applications,” in ISSCC, Section 13.2, 2014
[6] Shien-Yang Wu, C.Y. Lin, M.C. Chiang, J.J. Liaw, J.Y. Cheng, S.H. Yang, M. Liang, T. Miyashita, C. H. Tsai, B.C. Hsu, H.Y. Chen, T. Yamamoto, S.Y. Chang, V.S. Chang, C.H. Chang, J.H. Chen, H.F. Chen, K.C. Ting, Y.K. Wu, K.H. Pan, R.F. Tsui, C.H. Yao, P.R. Chang, H.M. Lien, T.L. Lee, H.M. Lee, W. Chang, T. Chang, R. Chen, M. Yeh, C.C. Chen, Y. H. Chiu, Y.H. Chen, H.C. Huang, Y.C Lu, C.W. Chang, M.H. Tsai, C.C. Liu, K.S. Chen, C.C. Kuo, H.T. Lin, S. M. Jang, Y. Ku, “A 16nm FinFET CMOS Technology for Mobile SoC and Computing Applications,” in IEDM Tech. Dig., 2013
[7] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “A Novel High-Performance and Robust Sense Amplifier Using Independent Gate Control in Sub-50-nm Double-Gate MOSFET,” IEEE Tran. on VLSI Systems, vol. 14, no. 2, 2006
[8] K. Roy, H. Mahmoodi, S. Mukhopadhyay, H.Ananthan, A. Bansal and T. Cakici, “Double-Gate SOI Devices for Low-Power and High-Performance applications,” IEEE International Conf. on Comuter-Aided Design (ICCAD), pp. 217-224, 2005
[9] R. Kanj, R. Joshi, K. Kim, R. Williams, and S. Nassif, “Statistical Evaluation of Split Gate Opportunities for Improved 8T/6T Column-decoupled SRAM Cell Yield,” in International Symposium on Quality Electronic Design (ISQED), 2008.
[10] A. C. Seabaugh, and Q. Zhang, “Low-Voltage Tunnel Transistors for Beyond CMOS Logic,” Proc. IEEE, vol. 98, no. 12, pp. 2095-2110, Dec. 2010.
[11] A. M. Ionescu, and H. Riel, “Tunnel Field-Effect Transistors as Energy-Efficient Electronic Switches,” Nature, vol. 479, no. 7373, pp. 329-337, Nov. 2011.
[12] S. Mookerjea, R. Krishnan, S. Datta, and V. Narayanan, “Effective Capacitance and Drive Current for Tunnel FET (TFET) CV/I Estimation,” IEEE Trans. Electron Devices, vol. 56, no. 9, pp. 2092-2098, Sep. 2009
[13] S. Mookerjea, R. Krishnan, S. Datta and V. Narayanan, “On Enhanced Miller Capacitance Effect in Interband Tunnel Transistors,” in IEEE Electron Device Lett., vol. 30, no. 10, Oct. 2009, pp. 1102-1104
[14] Y. Yang, X. Tang, L.-T. Yang, P.-F. Guo, L. Fan, Y.-C. Yeo, “Tunneling Field-Effect Transistor: Capacitance Components and Modeling,” in IEEE Electron Device Lett., vol. 31, no. 7, Oct. 2009, pp. 752-754
[15] A. Kotabe, K. Itoh, R. Takemura, R. Tsuchiya, and M. Horiguchi,“Device-conscious circuits design for 0.5-V high-speed memory-rich nanoscale CMOS LSIs,” CICC Dig., vol. 16, no. 1, Sep. 2011
[16] X. Yang, K. Mohanram, ”Robust 6T Si tunneling transistor SRAM design,” in Conf. Design Automation Test Europe, pp. 1-6, March, 2011
[17] J. Singh, K. Ramakrishnan, S. Mookerjea, S. Datta, N. Vijaykrishnan, and D. Pradhan, “A novel Si-tunnel FET based SRAM design for ultra-low power 0.3 V VDD applications,” in Proc. ASP-DAC, 2010, pp. 181–186.
[18] X. Yang and K. Mohanram, “Robust 6T Si tunneling transistor SRAM design,” in Proc. Des. Autom. Test Eur., 2011, pp. 1–6

Chapter2
[1] C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han, D. Hanken, M. Hattendorf, P. Hentges, R. Heussner, J. Hicks, D. Ingerly, P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S. Joshi, C. Kenyon, H. Liu, R. McFadden, B. McIntyre, J. Neirynck, C. Parker, L. Pipes, I. Post, S. Pradhan, M. Prince, S. Ramey, T. Reynolds, J. Roesler, J. Sandford, J. Seiple, P. Smith, C. Thomas, D. Towner, T. Troeger, C. Webber, P. Yashar, K. Zawadzki, and K. Mistry, ”A 22nm High Performance and Low-Power CMOS Technology Featuring Fully-Depleted Tri-Gate Transistors, Self-Aligned Contacts and High Density MIM Capacitors,” in VLSI Symp. Tech. Dig., 2012, pp. 131-132.
[2] J. Kim, and K. Roy, “Double Gate-MOSFET Subthreshold Circuit for Ultralow Power Applications,” IEEE Trans. Electron Devices, vol. 51, no. 9, pp. 1468-1474, Sep. 2004.
[3] R. Kanj, R. Joshi, K. Kim, R. Williams, and S. Nassif, “Statistical Evaluation of Split Gate Opportunities for Improved 8T/6T Column-decoupled SRAM Cell Yield,” in International Symposium on Quality Electronic Design (ISQED), 2008.
[4] M.-H. Chiang, K. Kim, C.-T. Chuang and C. Tretz, “High-Density Reduced-Stack Logic Circuit Techniques Using Independent-Gate Controlled Double-Gate Devices,” IEEE Trans. Electron Devices, vol. 53, pp. 2370-2377, Sep. 2006
[5] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “A Novel High-Performance and Robust Sense Amplifier Using Independent Gate Control in Sub-50-nm Double-Gate MOSFET,” IEEE Tran. on VLSI Systems, vol. 14, no. 2, 2006
[6] K. Roy, H. Mahmoodi, S. Mukhopadhyay, H.Ananthan, A. Bansal and T. Cakici, “Double-Gate SOI Devices for Low-Power and High-Performance applications,” IEEE International Conf. on Comuter-Aided Design (ICCAD), pp. 217-224, 2005
[7] K. Endo, S. O’uchi, Y. Ishikawa, Y. Liu, T. Matsukawa, M. Masahara, K. Sakamoto, J. Tsukada, K. Ishii, H. Yamauchi and E. Suzuki, “Enhancing noise margins of FinFET SRAM by integrating Vth-controllable flexible-pass-gates,” European Solid-State Device Research Conference, pp. 146-149, 2008.
[8] K. Endo, M. Masahara, Y. Liu, T. Matsukawa, K. Ishii, E. Sugimata, H. Takashima, H. Yamauchi and E. Suzuki, “Investigation of N-channel Triple-Gate Metal-Oxide-Semiconductor Field-Effect Transistors on (100) Silicon on Insulator,” in Japanese Journal of Applied Physics, vol. 45, no. 4B, 2006
[9] K. Endo, S. O’uchi, Y. Ishikawa, Y. Liu, T. Matsukawa, K. Sakamoto, J. Tsukada, K. Ishii, H. Yamauchi, E. Suzuki, and M. Masahara, “Enhancing SRAM Cell Performance by Using Independent Double-Gate FinFET,” in IEDM Tech. Dig., 2008, pp. 1-4.
[10] M.-H. Chiang, K. Kim, C.-T. Chuang, and C. Tretz, “High-density reduced-stack logic circuit techniques using independent-gate controlled double-gate devices,” IEEE Trans. Electron Devices, vol. 53, pp. 2370-2377, Sep. 2006
[11] K. Zhang, K. Hose, V. De and B. Senyk, “The scaling of data sensing schemes for high speed cache design in sub-0.18 μm technologies,” Symposium on VLSI. Tech. Dig., 2000, pp. 226-227
[12] Natarajan, S. Armstrong, M. ; Bost, M. ; Brain, R. ; Brazier, M. ; Chang, C.-H. ; Chikarmane, V. ; Childs, M. ; Deshpande, H. ; Dev, K. ; Ding, G. ; Ghani, T. ; Golonzka, O. ; Han, W. ; He, J. ; Heussner, R. ; James, R. ; Jin, I. ; Kenyon, C. ; Klopcic, S. ; Lee, S.-H. ; Liu, M. ; Lodha, S. ; McFadden, B. ; Murthy, A. ; Neiberg, L. ; Neirynck, J. ; Packan, P. ; Pae, S. ; Parker, C. ; Pelto, C. ; Pipes, L. ; Sebastian, J. ; Seiple, J. ; Sell, B. ; Sivakumar, S. ; Song, B. ; Tone, K. ; Troeger, T. ; Weber, C. ; Yang, M. ; Yeoh, A. ; Zhang, K, “A 32nm logic technology featuring 2nd generation high-k + metal-gate transistors, enhanced channel strain and 0.171μm2 SRAM cell size in a 291Mb array,” in IEDM Tech. Dig., 2008, pp. 1-3.
[13] T. Ohtou, N. Sugii and T. Hiramoto, “Impact of Parameter Variations and Random Dopant Fluctuations on Short-Channel Fully Depleted SOI MOSFETs With Extremely Thin BOX,” in IEEE Electron Device Lett., vol. 28, no.8, 2007, pp.740-742
[14] G. Roy, A. R. Brown, F. A.-L., S. Roy, A. Asenov, “Simulation study of individual and combined sources of intrinsic parameter fluctuations in conventional nano-MOSFETs,” in IEEE Tran. on Electron Devices, vol. 53, no. 12, 2006, pp. 3063-3070

Chapter3
[1] Meng-Fan Chang , Chien-Fu Chen , Ting-Hao Chang , Chi-Chang Shuai , Yen-Yao Wang , Hiroyuki Yamauchi, “A 28nm 256kb 6T-SRAM with 280mV Improvement in VMIN Using a Dual-Split-Control Assist Scheme,” in ISSCC, Section 17.3, 2015
[2] T. Song, W. Rim, J. Jung, G. Yang, J. Park, S. Park, K.-H. Baek, S. Baek, S.-K. Oh, J. Jung, S. Kim, G. Kim, J. Kim, Y. Lee, K. S. Kim, S.-P. Sim, J. S. Yoon and K.-M. Choi, “A 14nm FinFET 128Mb 6T SRAM with VMIN Enhancement Techniques for Low-Power Applications,” in ISSCC, Section 13.2, 2014
[3] A. M. Ionescu, and H. Riel, “Tunnel Field-Effect Transistors as Energy-Efficient Electronic Switches,” Nature, vol. 479, no. 7373, pp. 329-337, Nov. 2011
[4] A. M. Ionescu, L. D. Michielis, N. Dagtekin, G. Salvatore, J. Cao, A. Rusu, S. Bartsch, “Ultra Low Power: Emerging Devices and Their Benefits for Integrated Circuits,” in IEDM Tech. Dig., 2011, pp. 378-381.
[5] A. C. Seabaugh, and Q. Zhang, “Low-Voltage Tunnel Transistors for Beyond CMOS Logic,” Proc. IEEE, vol. 98, no. 12, pp. 2095-2110, Dec. 2010.
[6] S. H. Kim, H. Kam, C. Hu and T.-J. King Liu, ”Germanium-Source Tunnel Field Effect Transistors With Record High ION/IOFF,” in VLSI Symp. Tech. Dig., 2009, pp. 178-179.
[7] R. Gandhi, Z. Chen, N. Singh, K. Banerjee, and S. Lee, “Vertical Si-Nanowire n-Type Tunneling FETs With Low Subthreshold Swing (≦ 50mV/decade) at Room Temperature,” IEEE Electron Device Lett., vol. 32, no. 4, pp. 437-439, April 2011.
[8] A. Tura, and J. C. S. Woo, “Performance Comparison of Silicon Steep Subthreshold FETs,” IEEE Trans. Electron Device, vol. 57, no. 6, pp. 1362-1368, June 2010.
[9] F. Mayer, C. L. Royer, J.-F. Damlencourt, K. Romanjek, F. Andrieu, C. Tabone, B. Previtali, and S. Deleonibus, “Impact of SOI, Si1-xGexOI and GeOI Substrates on CMOS Compatible Tunnel FET Performance,” in IEDM Tech. Dig., 2008, pp. 163-167.
[10] R. Asra, M. Shrivastava, K. V. R. M. Murali, R. K. Pandey, H. Gossner, and V. R. Rao, “A Tunnel FET for VDD Scaling Below 0.6V With a CMOS-Compatible Performance,” IEEE Trans. Electron Device, vol. 58, no. 7, pp. 1855-1863, July 2011.
[11] K. Ganapathi, and S. Salahuddin, “Heterojunction Vertical Band-to-Band Tunneling Transistors for Steep Subthreshold Swing and High ON Current,” IEEE Electron Device Lett., vol. 32, no. 5, pp. 689-691, May 2011.
[12] L. Liu, D. Mohata, and S. Datta, “Scaling Length Theory of Double-Gate Interband Tunnel Field-Effect Transistors,” IEEE Trans. Electron Device, vol. 59, no. 4, pp. 902-908, April 2012.
[13] M. J. Kumar, and S. Janardhanan, “Doping-Less Tunnel Field Effect Transistor: Design and Investigation,” IEEE Trans. Electron Device, vol. 60, no. 10, pp. 3285-3290, Oct. 2013.
[14] M. Luisier, and G. Klimeck, “Performance Comparisons of Tunneling Field-Effect Transistors Made of InSb, Carbon, and GaSb-InAs Broken Gap Heterostructures,” in IEDM Tech. Dig., 2009, pp. 913-916.
[15] A. Mallik, and A. Chattopadhyay, “Drain-Dependence of Tunnel Field-Effect Transistor Characteristics: The Role of the Channel,” IEEE Trans. Electron Device, vol. 58, no. 12, pp. 4250-4258, Dec. 2011.
[16] C. Hu, P. Patel, A. Bowonder, K. Jeon, S. H. Kim, W. Y. Loh, C. Y. Kang, J. Oh, P. Majhi, A. Javey, T.-J. King Liu, and R. Jammy, “Prospect of Tunneling Green Transistor for 0.1V CMOS,” in IEDM Tech. Dig., 2010, pp. 387-390.
[17] S. Saurabh, and M. J. Kumar, “Novel Attributes of a Dual Material Gate Nanoscale Tunnel Field-Effect Transistors,” IEEE Trans. Electron Device, vol. 58, no. 2, pp. 404-410, Feb. 2011.
[18] K. Boucart, and A. M. Ionescu, “A New Definition of Threshold Voltage in Tunnel FET,” Solid-State Electronics, vol. 52, pp. 1318-1323, 2008.
[19] A. Mallik, and A. Chattopadhyay, “Tunnel Field-Effect Transistors for Analog/Mixed-Signal System-on-Chip Application,” IEEE Trans. Electron Device, vol. 59, no. 4, pp. 888-894, April 2012.
[20] B. Ghosh, and M. W. Akram, “Junctionless Tunnel Field Effect Transistor,” IEEE Electron Device Lett., vol. 34, no. 5, pp. 584-586, May 2013.
[21] A. Villalon, C. L. Royer, P. Nguyen, S. Barraud, F. Glowacki, A. Revelant, L. Selmi, S. Cristoloveanu, L. Tosti, C. Vizioz, J.-M. Hartmann, N. Bernier, B. Previtali, C. Tabone, F. Allain, S. Martinie, O. Rozeau, and M. Vinet, “First Demonstration of Strained SiGe Nanowires TFETs With ION Beyond 700 μA/μm,” in VLSI Symp. Tech. Dig., 2014, pp.84-85.
[22] K. E. Moselund, H. Schmid, C. Bessire, M. T. Bjork, H. Ghoneim, and H. Riel, “InAs-Si Nanowire Heterojunction Tunnel FET,” IEEE Electron Device Lett., vol. 33, no. 10, pp. 1453-1455, Oct. 2012.
[23] D. K. Mohata, R. Bijesh, S. Mujumdar, C. Eaton, R. Engel-Herbert, T. Mayer, V. Narayanan, J. M. Fastenau, D. Loubychev, A. K. Liu, and S. Datta, “Demonstration of MOSFET-Like On-Current Performance in Arsenide/Antimonide Tunnel FETs With Staggered Hetero-junctions for 300mV Logic Applications,” in IEDM Tech. Dig., 2011, pp. 781-784.
[24] G. Dewey, B. Chu-Kung, J. Boardman, J. M. Fastenau, J. Kavalieros, R. Kotlyar, W. K. Liu, D. Lubyshev, M. Metz, N. Mukherjee, P. Oakey, R. Pillarisetty, M. Radosavljevic, H. W. Then, and R. Chau, “Fabrication, Characterization, and Physics of III-V Heterojunction Tunneling Field Effect Transistors (H-TFET) for Steep Sub-Threshold Swing,” in IEDM Tech. Dig., 2011, pp. 785-788.
[25] Y. Morita, T. Mori, S. Migita, W. Mizubayashi, A. Tanabe, K. Fukuda, T. Matsukawa, K. Endo, S. O’uchi, Y. X. Liu, M. Masahara, and H. Ota, “Synthetic Electric Field Tunnel FETs: Drain Current Multiplication Demonstrated by Wrapped Gate Electrode Round Ultrathin Epitaxial Channel,” in VLSI Symp. Tech. Dig., 2013, pp. 236-237.
[26] M. Noguchi, S. Kim, M. Yokoyama, S. Ji, O. Ichikawa, T. Osada, M. Hata, M. Takenaka, and S. Takagi, “High ION/IOFF and Low Subthreshold Slope Planar-type InGaAs Tunnel FETs With Zn-Diffused Source Junctions,” in IEDM Tech. Dig., 2013, pp. 683-686.
[27] Y. Yang, S. Su, P. Guo, W. Wang, X. Gong, L. Wang, K. L. Low, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, “Torwards Direct Band-to-Bnad Tunneling in P-Channel Tunneling Field Effect Transistor (TFET): Technology Enablement by Germanium-Tin (GeSn),” in IEDM Tech. Dig., 2012, pp. 379-382.
[28] S. Mookerjea, R. Krishnan, S. Datta, and V. Narayanan, “Effective Capacitance and Drive Current for Tunnel FET (TFET) CV/I Estimation,” IEEE Trans. Electron Device, vol. 56, no. 9, pp. 2092-2098, Sep. 2009.
[29] L. Knoll, Q. T. Zhao, A. Nichau, S. Richter, G. V. Luong, S. Trellenkamp, A. Schafer, L. Selmi, K. K. Bourdelle, and S. Mantl, “Demonstration of Improved Transient Response of Inverters With Steep Slope Strained Si NW FETs by Reduction of TAT With Pulsed I-V and NW Scaling,” in IEDM Tech. Dig., 2013, pp. 100-103.
[30] E. Baravelli, E. Gnani, R. Grassi, A. Gnudi, S. Reggiani, and G. Baccarani, “Optimization of n- and p-type TFETs Integrated on the Same InAs/AlxGa1-xSb Technology Platform,” IEEE Trans. Electron Device, vol. 61, no. 1, pp. 178-185, Jan. 2014.
[31] D. K. Mohata, R. Bijesh, Y. Zhu, M. K. Hudait, R. Southwick, Z. Chbili, D. Gundlach, J. Suehle, J. M. Fastenau, D. Loubychev, A. K. Liu, T. S. Mayer, V. Narayanan and S. Datta “Demonstration of Improved Heteroepitaxy, Scaled Gate Stack and Reduced Interface States Enabling Heterojunction Tunnel FETs with High Drive Current and High On-Off Ratio,” Symp. VLSI Tech., pp. 53-54, 2012
[32] S. Mookerjea, R. Krishnan, S. Datta, and V. Narayanan, “Effective Capacitance and Drive Current for Tunnel FET (TFET) CV/I Estimation,” IEEE Trans. Electron Devices, vol. 56, no. 9, pp. 2092-2098, Sep. 2009
[33] S. Mookerjea, R. Krishnan, S. Datta and V. Narayanan, “On Enhanced Miller Capacitance Effect in Interband Tunnel Transistors,” in IEEE Electron Device Lett., vol. 30, no. 10, Oct. 2009, pp. 1102-1104
[34] Y.-N. Chen, M.-L. Fan, V. P.-H. Hu, P. Su and C.-T. Chuang, “Investigation of Tunneling FET Device Designs for Improving Circuit Switching Performance and Energy,” Extended Abstracts of International Conference on Solid State Devices and Materials (SSDM), 2013, pp. 84-85.
[35] Y. Yang, X. Tang, L.-T. Yang, P.-F. Guo, L. Fan, Y.-C. Yeo, “Tunneling Field-Effect Transistor: Capacitance Components and Modeling,” in IEEE Electron Device Lett., vol. 31, no. 7, Oct. 2009, pp. 752-754
[36] A. Kotabe, K. Itoh, R. Takemura, R. Tsuchiya, and M. Horiguchi,“Device-conscious circuits design for 0.5-V high-speed memory-rich nanoscale CMOS LSIs,” CICC Dig., vol. 16, no. 1, Sep. 2011
[37] W. Y. Choi and W. Lee, “Hetero-Gate-Dielectric Tunneling Field-Effect Transistors,” IEEE Trans. Electron Device, vol. 57, no.9, pp. 2317-2319, 2010
[38] S. Saurabh and M. J. Kumar, “Novel Attributes of a Dual Material Gate Nanoscale Tunnel Field-Effect Transistor,” IEEE Trans. Electron Device, vol. 58, no.2, pp. 404-410, 2011
[39] S. Takagi and M. Takenaka “High Mobility CMOS Technologies using III-V/Ge Channels on Si platform,” International Conf. on Ultimate Integration on Silicon, pp.1-4, 2012
[40] L. Hutin, C. Royer, J. Damlencourt, J. Hartmann, H. Grampeix, V. Mazzocchi, C. Tabone, B. Previtali, A. Pouydebasque, M. Vinet, and O. Faynot, “GeOI pMOSFETs Scaled Down to 30-nm Gate Length With Record Off-State Current,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 234-236, 2010
[41] “Sentaurus TCAD Manual,”
[42] L. Hutin, C. Le Royer, J. F. Damlencourt, J.-M. Hartmann, H. Grampeix, V. Mazzocchi, C. Tabone, B. Previtali, A. Pouydebasque, M. Vinet and O. Faynot, “GeOI pMOSFETs scaled down to 30-nm gate length with record off-state current,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 234–236, 2010.
[43] E. Batail, S. Monfray, C. Tabone, O. Kermarrec, J. F. Damlencourt, P. Gautier, G. Rabille, C. Arvet, N. Loubet, Y. Campidelli, J.-M. Hartmann, A. Pouydebasque, V. Delaye, C. Le Royer, G. Ghibaudo, T. Skotnicki and S. Deleonibus, “Localized ultra-thin GeOI: An innovative approach to germanium channel MOSFETs on bulk Si substrates,” IEDM Tech. Dig., pp. 397–400, 2008.
[44] M. Poljak, V. Jovanovic and T. Suligoj “Features of electron mobility in ultrathin-body In-GaAs-On-Insulator MOSFETs down to body thickness of 2 nm,” in Proc. IEEE SOI Conf., 2011
[45] V. Saripalli, A. Mishra, S. Datta, and V. Narayanan, “An energy-efficient heterogeneous CMP based on hybrid TFET-CMOS cores,” in Proc. Design Automat. Conf., 2011, pp. 729–734.
[46] S. Jain, S. Khare, S. Yada, V. Ambili, P. Salihundam, S. Ramani, S. Muthukumar, M. Srinivasan, A. Kumar, S. K. Gb, R. Ramanarayanan, V. Erraguntla, J. Howard, S. Vangal, S. Dighe, G. Ruhl, P. Aseron, H. Wilson, N. Borkar, V. De, S. Borkar, “A 280mV-t0-1.2V wide-operating-range IA-32 processor in 32nm CMOS,” ISSCC Dig. Tech,. pp. 66-67, 2012
[47] R. Narang, M. Saxena, R. S. Gupta, and M. Gupta, “Impact of Temperature Variations on the Device and Circuit Performance of Tunnel FET: A Simulation Study,” Tran. on Nanotechnology, vol. 12, no. 6, pp. 951-957, Nov. 2013
[48] S. Migita , K. Fukuda , Y. Morita and H. Ota “Experimental demonstration of temperature stability of Si-tunnel FET over Si-MOSFET,” Proc. Silicon Nanoelectron. Workshop, pp.1 -2, 2012

Chapter4
[1] X. Yang, K. Mohanram, ”Robust 6T Si tunneling transistor SRAM design,” in Conf. Design Automation Test Europe, pp. 1-6, March, 2011
[2] J. Singh, K. Ramakrishnan, S. Mookerjea, S. Datta, N. Vijaykrishnan, and D. Pradhan, “A novel Si-tunnel FET based SRAM design for ultra-low power 0.3 V VDD applications,” in Proc. ASP-DAC, 2010, pp. 181–186.
[3] X. Yang and K. Mohanram, “Robust 6T Si tunneling transistor SRAM design,” in Proc. Des. Autom. Test Eur., 2011, pp. 1–6.
[4] V. Saripalli, S. Datta and V. Narayanan, “Variation-Tolerant Ultra Low-Power Heterojunction Tunnel FET SRAM Design,” in IEEE
[5] F. Mayer, C. Le Royer, J. –F. Damlencourt, K. Romanjek, F. Andrieu, C. Tabone, B. Previtali, and S. Deleonibus, “Impacts of SOI, Si1-xGexOI and GeOI substrates on CMOS compatabile tunnel FET perforamnce,” in IEDM. Tech, Dig., vol. 163, 2008
[6] A. Tura, and J. Woo, “Performance comparison of silicon steep subthreshold FETs,” IEEE Trans. Electron Devices, vol. 57, no. 6, pp. 1362–1368, June 2010
[7] R. Gandhi, Zhixian Chen, N. Singh, K. Banerjee, and Sungjoo Lee, “Vertical Si-Nanowire-Type Tunneling FETs with low subthreshold swing (<50mV/decade) at room temperature,” IEEE Electron Device Lett., vol. 32, no. 4, pp. 437-439, Apr. 2011.
[8] A. Mallik, and A. Chattopadhyay, “Drain-Dependence of Tunnel Field-Effect Transistor Characteristics: The Role of the Channel,” IEEE Trans. Electron Devices, vol. 58, no. 12, pp. 4250–4257, 2011
[9] M. Yamaoka, N. Maeda, Y. Shinozaki, Y. Shimazaki, K. Nii, S. Shimada, K. Yanagisawa, and T. Kawahara, “Low-Power embedded SRAM modules with expanded margins for writing,” ISSCC Digest of Tech. Papers, pp.480-481, Feb. 2005
[10] B. Giraud, A. Amara, and A. Vladimirescu, “A comparative study of 6T and 4T SRAM cells in double-gate CMOS with statistical variation,” Proc. Int. Conf. Circuits Syst., pp. 3022–3025, 2007
[11] W. Liu, K. Etessam-Yazdani, R. Hussin, and M. Asheghi, “Modeling and Data for Thermal Conductivity of Ultrathin Single-Crystal SOI Layers at High Temperature,” IEEE Trans. Electron Devices, vol. 53, no. 8, pp. 1868-1876, Aug. 2006
[12] S. Natarajan et al., “A 32nm Logic Technology Featuring 2nd-Generation High-k + Metal-Gate Transistors, Enhanced Channel Stain and 0.171 μm2 SRAM Cell Size in a 291Mb Array,” in IEDM Tech. Dig., 2008
[13] R. V. Joshi, K. Kim, R. Q. Williams, E. J. Nowak, and C.-T. Chuang, “A High-Performance, Low Leakage, and Stable SRAM Row-Based Back-Gate Biasing Scheme in FinFET Technology,” Proc. 2007 International Conference on VLSI Design, Jan. 6-10, 2007, pp. 665-670
[14] K. Endo, S.-i. O’uchi, Y. Ishikawa, Liu. Yongxum, T. Matsukawa, M. Masahara, K. Sakamoto, J. Tsukada, K. Ishii, H. Yamauchi, and E. Suzuki, “Enhancing noise margins of FinFET SRAM by integrating Vth-controllable flexible-pass-gates,” European Solid-State Device Research Conference, pp. 146-149, 2008
[15] L. Chang, R. K. Montoye, Y. Nakamura, K. A. Batson, R. J. Eickemeyer, R. H. Dennard, W. Haensch, and D. Jamsek, “An 8T-SRAM for variability tolerance and low-voltage operation in high-performance caches,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 956-963, Apr. 2008
[16] N. Verma and A. P. Chandrakasan, “A 256 kb 65 nm 8T subthreshold SRAM employing sense-amplifier redundancy,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 141–149, Jan. 2008.
[17] M.-H. Tu, J.-Y. Lin, M.-C. Tsai, S.-J. Chou, and C.-T. Chuang, “Single-ended subthreshold SRAM with asymmetrical write/read assist,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 57, no. 12, pp. 3039-3047, Dec. 2010.
[18] I. J. Chang, J. J. Kim, S. P. Park, and K. Roy, “A 32 kb 10T sub-threshold SRAM array with bit-interleaving and differential read scheme in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 650–658, Feb. 2009.
[19] M. Yabuuchi, K. Nii, Y. Tsukamoto, S. Ohbayashi, Y. Nakase, and H. Shinohara, “A 45 nm 0.6 V cross-point 8T SRAM with negative biased read/write assist,” in Symp. VLSI Circuits Dig., Jun. 16–18, 2009, pp. 158–159.
[20] Yih Wang, Eric Karl, Mesut Meterelliyoz, Faith Hamzaoglu, Yong-Gee Ng, Swaroop Ghosh, Liqiong Wei, Uddalak Bhattacharya and Kevin Zhang, “Dynamic Behavior of SRAM Data Retention and a Novel Transient Voltage Collapse Technique for 0.6V 32nm LP SRAM,” IEDM Tech. Dig., pp. 741, 2011.
[21] Eric Karl, Yih Wang, Yong-Gee Ng, Zheng Guo, Faith Hamzaoglu, Uddalak Bhattacharya, Kevin Zhang, Kaizad Mistry and Mark Bohr, “A 4.6 GHz 162Mb SRAM Design in 22nm Tri-Gate CMOS Technology with Integrated Active VMIN-Enhancing Assist Circuitry,” ISSCC, pp. 230, 2012.
[22] Y.-W. Lin, H.-I. Yang, G.-C. Lin, C.-S. Chang and C.-T. Chuang, “A 55nm 0.55V 6T SRAM with Variation-Tolerant Dual-Tracking Word-Line Under-Drive and Data-Aware Write Assist,” proc. ISLPED, pp. 79-84, 2012

Chapter5
[1] A. M. Ionescu and H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” Nature, vol. 479, pp. 329-337, 2011
[2] V. Saripalli, S. Datta, V. Narayanan and J. P. Kulkarni, “Variation-tolerant ultra-low power heterojunction tunnel FET SRAM design,” IEEE/ACM NANOARCH, pp. 45-52, June 2011
[3] M. Cotter, H. Liu, S. Datta, V. Narayanan, “Evaluation of tunnel FET-based flip-flop designs for low-power high-performance applications,” IEEE Int. Symp. on Quality Electronic Design (ISQED), pp. 430-437, March 2013
[4] S. Datta, R. Bijesh, H. Liu, D. Mohata and V. Narayanan, “Tunnel transistors for energy efficient computing,” IEEE Int. Reliability Physics Symposium (IRPS), pp. 6A.3.1-6A.3.7, 2013
[5] R. Harrison and T. Charles, “A Low-Power Low-Noise CMOS Amplifier for Neural Recording Applications”, IEEE JSSC, 2003
[6] S. Hori, T. Maeda, N. Matsuno and H. Hida, “Low-power widely tunable Gm-C filter with an adaptive DC-blocking, triode-biased MOSFET transconductor”, IEEE JSSC, 2004
[7] L. Wang, J. De Gyvez and E. Sánchez-Sinencio, “Time multiplexed color image processing based on a CNN with cell-state outputs”, IEEE TVLSI, 1998
[8] E. Sánchez-Sinencio, J. Ramirez-Angulo, B. Linares and A. Rodriguez, “Operational transconductance amplifier-based nonlinear function syntheses”, IEEE JSSC, 1989
[9] U. E. Avci, R. Rios, K. Kuhn, and I. A. Young, “Comparison of Performance, Switching Energy and Process Variations for the TFET and MOSFET in Logic,” in VLSI Symp. Tech. Dig., 2011, pp. 124-125
[10] G. Leung, C. O. Chui, “Stochastic Variability in Silicon Double-Gate Lateral Tunnel Field-Effect Transistors,” IEEE Trans. Electron Devices, vol. 60, no. 1, pp. 84–91, Jan. 2013
[11] L. Liu, D. Mohata and S. Datta, “Scaling Length Theory of Double-Gate Interband Tunnel Field-Effect Transistor,” IEEE Trans. Electron Devices, vol. 59, no. 4, pp.902-908, 2012
[12] D. K. Mohata, R. Bijesh, S. Mujumdar, C. Eaton, R. Engel-Herbert, T. Mayer, V. Narayanan, J. M. Fastenau, D. Loubychev, A. K. Liu, and S. Datta, “Demonstration of MOSFET-like ON-Current Performance in Arsenide/Antimonide Tunnel FETs With Staggered Hetero-junctions for 300mV Logic Applications,” in IEDM Tech. Dig., 2011, pp. 781-784
[13] G. Zhou, R. Li, T. Vasen, M. Qi, S. Chae, Y. Lu, Q. Zhang, H. Zhu, J.-M. Kuo, T. Kosel, M. Wistey, P. Fay, A. Seabaugh, and H. Xing, “Novel Gate-Recessed Vertical InAs/GaSb TFETs With Record High ION of 180 μA/μm at VDS = 0.5V,” in IEDM Tech. Dig., 2012, pp. 777-78
[14] S. Mookerjea, D. Mohata, R. Krishnan, J. Singh, A. Vallett, A. Ali, T. Mayer, V. Narayanan, D. Schlom, A. Liu, and S. Datta, “Experimental Demonstration of 100nm Channel Length In0.53Ga0.47As-based Vertical Inter-band Tunnel Field Effect Transistors (TFETs) for Ultra Low-Power Logic and SRAM Applications,” in IEDM Tech. Dig., 2009, pp. 949-951
[15] G. Dewey, B. Chu-Kung, J. Boardman, J. M. Fastenau, J. Kavalieros, R. Kotlyar, W. K. Liu, D. Lubyshev, M. Metz, N. Mukherjee, P. Oakey, R. Pillarisetty, M. Radosavljevic, H. W. Then, and R. Chau, “Fabrication, Characterization, and Physics of III-V Heterojunction Tunneling Field Effect Transistors (H-TFET) for Steep Sub-Threshold Swing,” in IEDM Tech. Dig., 2011, pp. 785-788.
[16] R. Kotlyar, U. E. Avci, S. Cea, R. Rios, T. D. Linton, K. J. Kuhn and I. A. Young, “Bandgap Engineering of group IV materials for complementary n and p tunneling field effect transistor,” Appl. Phys. Lett., vol.102, pp. 113106, 2013
[17] Y. Yang, G. Han, P. Guo, W. Wang, X. Gong, L. Wang, K. L. Low, Y.-C. Yeo, “Germanium-Tin P-Channel Tunneling Field-Effect Transistor: Device Design and Technology Demonstration,” IEEE Trans. Electron Devices, vol. 60, no. 12, pp.4048-4056, 2013
[18] “Sentaurus TCAD Manual,” Sentaurus Device, 2011
[19] L. Hutin, C. Royer, J. Damlencourt, J. Hartmann, H. Grampeix, V. Mazzocchi, C. Tabone, B. Previtali, A. Pouydebasque, M. Vinet, and O. Faynot, “GeOI pMOSFETs scaled down to 30-nm gate length with record off-state current,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 234–236, 2010
[20] E. Batail et al., “Localized ultra-thin GeOI: An innovative approach to germanium channel MOSFETs on bulk Si substrates,” IEDM Tech. Dig., pp. 397–400, 2008
[21] M. Poljak et al., “Features of electron mobility in ultrathin-body In- GaAs-On-Insulator MOSFETs down to body thickness of 2 nm,” in Proc. IEEE SOI Conf., 2011
[22] A. Mallik and A. Chattopadhyay, IEEE Trans. Electron Devices, vol. 58, no. 12, pp. 4250–4257, Dec. 2011
[23] Y.-N. Chen et al., 2013 International Conference on Solid State Devices and Materials (SSDM), Sep. 2013
[24] http://www.synopsys.com/home.aspx
[25] S. Migita et al., in Proc. Silicon Nanoelectron Workshop, 2012, pp. 1-2.

Chapter6
[1] E. Baravelli, A. Dixit, R. Rooyackers, M. Jurczak, N. Speciale, and K. D. Meyer, “Impact of Line-Edge Roughness on FinFET Matching Performance,” IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2466-2474, Sep. 2007
[2] X. Wang, A. R. Brown, B. Cheng, and A. Asenov, “Statistical Variability and Reliability in Nanoscale FinFETs,” in IEEE IEDM Tech. Dig., 2011, pp. 5.4.1-5.4.4
[3] Choi, K.M.; Choi, W.Y. Work-function variation effects of tunneling field-effect transistors (TFETs). IEEE Trans. Electron Device Lett. 2013, 34, 942–944
[4] N. Damrongplasit, C. Shin, S. H. Kim, R. A. Vega, and T.-J. King Liu, “Study of Random Dopant Fluctuation Effects in Germanium-Source Tunnel FET,” IEEE Trans. Electron Device, vol. 58, no. 10, pp. 3541-3548, Oct. 2011.
[5] G. Leung, and C. O. Chui, “Stochastic Variability in Silicon Double-Gate Lateral Tunnel Field-Effect Transistors,” IEEE Trans. Electron Device, vol. 60, no. 1, pp. 84-91, Jan. 2013.
[6] F. Conzatti, M. G. Pala, and D. Esseni, “Surface-Roughness-Induced Variability in Nanowire InAs Tunnel FET,” IEEE Electron Device Lett., vol. 33, no. 6, pp. 806-808, June 2012.
[7] M. G. Pala, D. Esseni, and F. Conzatti, “Impact of Interface Traps on the IV Curves of InAs Tunnel-FET and MOSFETs: A Full Quantum Study,” in IEDM Tech. Dig., 2012, pp. 135-138.
[8] S. S. Sylvia, K. M. M. Habib, M. A. Khayer, K. Alam, M. Neupane, and R. K. Lake, “Effect of Random, Discrete Source Dopant Distribution on Nanowire Tunnel FET,” IEEE Trans. Electron Device, vol. 61, no. 6, pp. 2208-2214, June 2014.
[9] R. Narang, M. Saxena, R. S. Gupta, and M. Gupta, “Impact of Temperature Variations on the Device and Circuit Performance of Tunnel FET: A Simulation Study,” IEEE Trans. Nanotechnology, vol. 12, no. 6, pp. 951-957, Nov. 2013.
[10] N. Damrongplasit, C. Shin, S. H. Kim, R. A. Vega, and T.-J. King Liu, “Impact of Gate Line-Edge Roughness (LER) Versus Random Dopant Fluctuations (RDF) on Germanium-Source Tunnel FET Performance,” IEEE Trans. Nanotechnology, vol. 12, no. 6, pp. 1061-1066, Nov. 2013.
[11] R. Pandey, B. Rajamohanan, H. Liu, V. Narayanan, and S. Datta, “Electrical Noise in Heterojunction Interband Tunnel FETs,” IEEE Trans. Electron Device, vol. 61, no. 2, pp. 552-560, Feb. 2014.
[12] R. Pandey, V. Saripalli, J. P. Kulkarni, V. Narayanan, and S. Datta, ”Impact of Single Trap Random Telegraph Noise on Heterojunction TFET SRAM Stability,” IEEE Electron Device Lett., vol. 35, no. 3, pp. 393-395, March 2014
[13] U. E. Avci, R. Rios, K. Kuhn, and I. A. Young, “Comparison of Performance, Switching Energy and Process Variations for the TFET and MOSFET in Logic,” in VLSI Symp. Tech. Dig., 2011, pp. 124-125
[14] Saripalli, V.; Datta, S.; Narayanan, V.; Kulkarni, J.P. Variation-tolerant ultra low-power heterojunction tunnel FET SRAM design. In Proceedings of the 2011 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), San Diego, CA, USA, 8–9 June 2011; pp. 45–52.
[15] Saripalli, V.; Mishra, A.; Datta, S.; Narayanan, V. An energy-efficient heterogeneous CMP based on hybrid TFET-CMOS cores. In Proceedings of the 48th ACM/EDAC/IEEE on Design Automation Conference (DAC), New York, NY, USA, 5–9 June 2011; pp. 729–734
[16] “Sentaurus TCAD Manual,” Sentaurus Device, 2011
[17] A. R. Brown, N. M. Idris, J. R. Watling, and A. Asenov, “Impact of metal gate granularity on threshold voltage variability: A full-scale threedimensional statistical simulation study,” IEEE Electron Device Lett., vol. 31, no. 11, pp. 1199–1201, Nov. 2010
[18] T. Matsukawa, S. O’uchi, K. Endo, Y. Ishikawa, H. Yamauchi, Y. X. Liu, J. Tsukada, K. Sakamoto, and M. Masahara, “Comprehensive analysis of variability sources of FinFET characteristics,” in Proc. Symp. VLSI Technol., Jun. 2009, pp. 118–119.
[19] Y. X. Liu, K. Endo, S. O’uchi, T. Kamei, J. Tsukada, H. Yamauchi, Y. Ishikawa, T. Hayashida, K. Sakamoto, T. Matsukawa, A. Ogura, and M. Masahara, “On the gate-stack origin threshold voltage variability in scaled FinFETs and multi-FinFETs,” in Proc. VLSI Symp. Technol., Jun. 2010, pp. 101–102
[20] Shao-Heng Chou, Ming-Long Fan and Pin Su,” Investigation and comparison of Work Function Variation for FinFET and UTB SOI devices using a Voronoi approach,” IEEE TED, pp. 1485-1489, 2013

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊