跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/01 12:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張恩菱
研究生(外文):Enling, Chang
論文名稱:抗腫瘤新生血管標靶微氣泡搭配超音波之基因治療於腦瘤研究
論文名稱(外文):Antiangiogenic-Targeting Microbubbles Combined with Ultrasound-Mediated Gene Therapy in Brain Tumors
指導教授:葉秩光
指導教授(外文):Yeh, Chih-Kuang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:78
中文關鍵詞:抗腫瘤新生血管標靶非病毒基因遞送超音波標靶微氣泡擊破血腦障蔽開啟Hsv-TK/GCV系統
外文關鍵詞:Antiangiogenic-targetingNon-viral gene deliveryUTMDBBBDHsv-TK/GCV system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
多形性膠質母細胞瘤(Glioblastoma multiforme, GBM)是種即使傳統化療還是難以治療且高復發率的惡性腦瘤,目前超音波標靶微氣泡擊破(Ultrasound-targeted microbubbles destruction, UTMD)應用於血腦障蔽已被證實,並可以遞送治療基因至腦部,此外UTMD也可以應用於遞送殺腫瘤基因於癌症治療。GBM中的腫瘤血管的表皮細胞富含許多VEGF-A,可以與VEGFR2做結合,這也廣泛應用在標靶治療中。在本研究中,我們合成乘載基因並結合anti-VEGFR2抗體的正電微氣(Cationic microbubbles with anti-VEGFR2 antibody, VCMBs)進行血腦障蔽開啟和腦瘤治療,並使用VCMBs增加微氣泡表面的基因乘載量和癌細胞表面的吸附效率。
我們使用冷光基因(pLUC, 6.5 kb)進行基因轉染模擬並超音波參數最佳化,每隻大鼠(Male Sprague-Dawley rats)在左腦被種入5x105 C6大鼠膠質瘤癌細胞,種腫瘤後第7天,每隻大鼠頸靜脈注射2x109乘載基因的VCMBs後進行超音波照射,根據不同時間使用非侵入式活體分子影像系統(IVIS)偵測,使用有標靶VCMBs的腦瘤組別冷光表達量([5.5±1.5] to [11.6±4.4] x 103 photons/sec/cm2/sr,)高於使用無標靶的CMBs組別冷光表達量([4.4±1.4] to [7.3±1.1] x 103 photons/sec/cm2/sr, p*<0.5)
接著,我們使用自殺基因(Herpes simplex virus type 1 thymidine kinase, pHsv-TK, 7.2 kb)結合Ganciclovir藥物(GCV)已經被證實為最有高度療效於腦瘤治療。細胞實驗中,在細胞超音波轉染pHsv-TK基因24小時後,細胞培養於不同濃度的GCV藥物,細胞轉染後第4天,隨著GCV藥物濃度增加(0, 0.1, 1 and 50 μg/ml)而細胞存活率降低(100.0±10.5%, 90.2±21.4%, 63.6±8.9% and 57.6±4.9%),而無轉染pHsv-TK基因的細胞,無論GCV濃度多寡皆不會影響細胞存活率(p*<0.5)。動物實驗中,大鼠在種腫瘤後第6天使用VCMBs結合超音波轉染pHsv-TK基因,接著連續8天腹腔注射0.2 ml (100 mg/kg/day) GCV藥物,種腫瘤後第18天MRI偵測結果顯示,有使用超音波結合VCMBs轉染pHsv-TK基因的組別的腦瘤體積(3.8 mm3)明顯小於無治療的組別的腦瘤體積(19.75 ± 8.3 mm3),而且有治療的組別生存天數較長。總而言之,本研究建立一個承載基因的VCMBs結合超音波的方法應用於血腦障蔽開啟,並成為一個非病毒、非侵入式和標靶基因遞送的工具於腦瘤治療。
Glioblastoma multiforme (GBM) is a malignant brain tumor with poor prognosis and high recurrence rate despite traditional chemotherapy. Ultrasound-targeted microbubbles destruction (UTMD) has been approved to achieve local blood-brain barrier disruption (BBBD), enhancing therapeutic agents into the brain. Besides, UTMD has been employed to deliver tumor-killing gene for cancer therapy. Tumor vessels in GBM are highly rich in VEGF-A, which could bind VEGFR2 on endothelial cells, is widely used in targeted therapy. In this study, we fabricated DNA-loaded cationic microbubbles with anti-VEGFR2 antibody (VCMBs) for transient BBBD and targeted therapy in brain tumors. We used VCMBs for improving gene delivery by loading DNA on MBs shell and actively attaching on cancer cell.
Expression of reporter gene, luciferase (pLUC, 6.5 kb), was used for monitoring gene transfer and optimization ultrasound parameters. Male Sprague-Dawley rats were injected 5x105 C6 glioma cells in left hemispheres of the brain in vivo. At 7 days post injection, 2x109 DNA-loaded VCMBs were injected via jugular vein, then ultrasound- mediated gene delivery was actuated by insonation of the brain tumor xenografts. Comparisons of treatment conditions across all time points revealed that the use of VCMBs in brain tumors resulted in significantly higher luciferase expression measured by IVIS ([5.5±1.5] to [11.6±4.4] x 103 photons/sec/cm2/sr,) relative to the use of CMBs in brain tumors ([4.4±1.4] to [7.3±1.1] x 103 photons/sec/cm2/sr, p*<0.5).
Herpes simplex virus type 1 thymidine kinase (pHsv-TK, 7.2 kb) in combination with ganciclovir (GCV) has been shown as one of the most promising suicide gene systems for brain tumors treatment. For in vitro studies, 24 hours post transfection under FUS, the pHsv-TK transfected C6 glioma cells were incubated in the presence of 0-10 μg/ml GCV in medium. At day 4, cell viability of pHsv-TK transfected C6 glioma cells were decrease (100.0±10.5%, 90.2±21.4%, 63.6±8.9% and 57.6±4.9%) when GCV concentrations increase (0, 0.1, 1 and 50 μg/ml), respectively, showing significant cell death compared with cell viability of C6 glioma cells without treatment at different GCV concentrations (p*<0.5). For in vivo studies, rats were transfected with pHsv-TK with VCMBs under FUS after 6 days of tumor growth. Each rat was intraperitoneally injected with 0.2 ml (100 mg/kg/day) GCV every 24 h lasting for 8 days. The tumor volume measured by MRI on Day 18 was significantly smaller in the rats treated with pHSV-TK/GCV system with VCMBs under FUS (3.8 mm3) than in the rats without treatment (19.75 ± 8.3 mm3). Additionally, rats with treatment were significantly prolonged survival time compared to the rats without treatment. Overall, this study aimed to develop the DNA-loaded VCMBs, using UTMD for achieving local BBBD, as a non-viral, noninvasive and targeted gene delivery approach in brain tumors.
Contents
1 Introduction 11
1.1 Overview of brain tumors 11
1.1.1 Introduction of brain tumors 11
1.1.2 The role of blood-brain barrier 12
1.1.3 Current status of brain tumors treatment 13
1.1.4 Gene therapy in brain tumors 14
1.1.5 Research of ultrasound-mediated gene delivery in brain tumors 17
1.2 Antiangiogenic-targeting MBs in gene therapy 18
1.2.1 Properties of DNA-loaded MBs 18
1.2.2 Properties of antiangiogenic-targeting MBs 19
1.3 Mechanisms of ultrasound-mediated gene delivery 20
1.3.1 Properties of MBs combined with FUS 20
1.3.2 FUS-induced blood-brain barrier opening 20
1.3.3 Ultrasound-mediated gene delivery in vitro 21
1.3.4 Ultrasound-mediated gene delivery in vivo 22
1.4 Overview of dissertation 23
2 Material and Methods 25
2.1 DNA-loaded VCMBs 25
2.1.1 Plasmid preparation 25
2.1.2 Preparation of DNA-loaded VCMBs 25
2.1.3 Characterization of DNA-loaded VCMBs 27
2.1.4 Measurement of avidin-biotin binding efficiency 27
2.1.5 Measurement of DNA loading efficiency 28
2.1.6 Nuclease protection assay 28
2.1.7 Microscope and cryo-TEM image 29
2.1.8 Measurement of C6 glioma cells targeting efficiency 30
2.2 Acoustic properties of DNA-loaded VCMBs 30
2.2.1 Stability Analysis 30
2.3 Ultrasound-mediated gene delivery in C6 glioma cells 31
2.3.1 Cell membrane permeability test 31
2.3.1.1 Experiment setup for cell membrane permeability test 31
2.3.1.2 Experimental design 32
2.3.1.3 Analysis of cell membrane permeability 32
2.3.2 pLUC transfection in vitro 33
2.3.2.1 Experiment setup for pLUC transfection in vitro 33
2.3.2.2 Experimental design 34
2.3.2.3 Analysis of pLUC expression and cell viability 34
2.3.3 pHsv-TK transfection in vitro 34
2.3.3.1 Experiment setup for pHsv-TK transfection in vitro 34
2.4 Ultrasound-mediated gene delivery in vivo 35
2.4.1 Monitoring of pLUC delivery in subcutaneous tumors 35
2.4.1.1 Experiment setup for pLUC delivery in subcutaneous tumors 35
2.4.2 pLUC delivery in brain tumors 36
2.4.2.1 Brain tumor model 36
2.4.2.2 Confirmation and quantification of FUS-BBB opening 37
2.4.2.3 Experiment setup for pLUC delivery in brain tumors 37
2.4.2.4 Analysis of pLUC expression 39
2.4.3 pHsv-TK delivery in brain tumors 39
2.4.3.1 Experiment setup for pHsv-TK delivery in brain tumors 39
2.4.3.2 Magnetic resonance imaging (MRI) 40
3. Results and Discussion 41
3.1 DNA-loaded VCMBs 41
3.1.1 Characterization of DNA-loaded VCMBs 41
3.1.2 Measurement of avidin-biotin binding efficiency 42
3.1.3 Measurement of DNA loading efficiency 43
3.1.4 Nuclease protection assay 44
3.1.5 Microscope and cryo-TEM Images of VCMBs 45
3.1.6 Measurement of C6 glioma cells targeting efficiency 46
3.2 Acoustic properties of DNA-loaded VCMBs 47
3.2.1 MBs stability analysis 47
3.2.2 Measurement of inertial cavitation dose and subharmonic intensity 48
3.3 Ultrasound-mediated gene delivery in C6 glioma cells 49
3.3.1 Cell membrane permeability test 49
3.3.2 Ultrasound-mediated gene delivery of pLUC in vitro 54
3.3.3 Ultrasound-mediated gene delivery of pHsv-TK in vitro 62
3.4 Ultrasound-mediated gene delivery of pLUC in subcutaneous tumors 63
3.4.1 Assessment of pLUC Expression 63
3.5 Ultrasound-mediated gene delivery of pLUC in brain tumors 65
3.5.1 In vivo FUS-induced BBB opening and EB release 65
3.5.2 Analysis of pLUC Expression 66
3.6 Ultrasound-mediated gene delivery of pHsv-TK in brain tumors 67
4. Discussion 69
4.1 Safety in ultrasound-mediated gene delivery 69
4.2 CMBs for increase gene loading efficiency 69
4.3 Antiangiogenic-targeting MBs applied in ultrasound-mediated gene delivery 70
4.4 Limitation of pHsv-TK/GCV system 71
4.5 Overall conclusion 72
5. Future Work 72
Reference 73
Reference
[1] A. Omuro and L. M. DeAngelis, "Glioblastoma and other malignant gliomas: A clinical review," JAMA, vol. 310, pp. 1842-1850, 2013.
[2] R. K. Upadhyay, "Drug delivery systems, CNS protection, and the blood brain barrier," Biomed Res Int, vol. 2014, p. 869269, 2014.
[3] A. Bhowmik, R. Khan, and M. K. Ghosh, "Blood brain barrier: a challenge for effectual therapy of brain tumors," Biomed Res Int, vol. 2015, p. 320941, 2015.
[4] L. G. Dubois, L. Campanati, C. Righy, I. D'Andrea-Meira, T. C. Spohr, I. Porto-Carreiro, et al., "Gliomas and the vascular fragility of the blood brain barrier," Front Cell Neurosci, vol. 8, p. 418, 2014.
[5] http://www.cancer.gov/types/brain/patient/child-cranio-treatment-pdq.
[6] http://baike.sogou.com/v319202.htm.
[7] http://www.buy-pharma.co/Doxorubicin-Injection-p-457.html.
[8] S. Benedetti, F. Dimeco, B. Pollo, N. Cirenei, B. M. Colombo, M. G. Bruzzone, et al., "Limited efficacy of the HSV-TK/GCV system for gene therapy of malignant gliomas and perspectives for the combined transduction of the interleukin-4 gene," Hum Gene Ther, vol. 8, pp. 1345-53, Jul 20 1997.
[9] S. H. Chen, H. D. Shine, J. C. Goodman, R. G. Grossman, and S. L. Woo, "Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo," Proc Natl Acad Sci U S A, vol. 91, pp. 3054-7, Apr 12 1994.
[10] S. H. Cho, B. Oh, H. A. Kim, J. H. Park, and M. Lee, "Post-translational regulation of gene expression using the ATF4 oxygen-dependent degradation domain for hypoxia-specific gene therapy," J Drug Target, vol. 21, pp. 830-6, Nov 2013.
[11] J. Fick, F. G. Barker, 2nd, P. Dazin, E. M. Westphale, E. C. Beyer, and M. A. Israel, "The extent of heterocellular communication mediated by gap junctions is predictive of bystander tumor cytotoxicity in vitro," Proc Natl Acad Sci U S A, vol. 92, pp. 11071-5, Nov 21 1995.
[12] Q. Huang, P. Pu, Z. Xia, and Y. You, "Exogenous wt-p53 enhances the antitumor effect of HSV-TK/GCV on C6 glioma cells," J Neurooncol, vol. 82, pp. 239-48, May 2007.
[13] Q. Huang, Z. Xia, Y. You, and P. Pu, "Wild Type p53 gene sensitizes rat C6 glioma cells to HSV-TK/ACV treatment in vitro and in vivo," Pathol Oncol Res, vol. 16, pp. 509-14, Dec 2010.
[14] S. J. Jang, J. H. Kang, K. I. Kim, T. S. Lee, Y. J. Lee, K. C. Lee, et al., "Application of bioluminescence imaging to therapeutic intervention of herpes simplex virus type I - Thymidine kinase/ganciclovir in glioma," Cancer Lett, vol. 297, pp. 84-90, Nov 1 2010.
[15] L. Q. Li, F. Shen, X. Y. Xu, H. Zhang, X. F. Yang, and W. G. Liu, "Gene therapy with HSV1-sr39TK/GCV exhibits a stronger therapeutic efficacy than HSV1-TK/GCV in rat C6 glioma cells," ScientificWorldJournal, vol. 2013, p. 951343, 2013.
[16] S. Li, Y. Gao, K. Pu, L. Ma, X. Song, and Y. Liu, "All-trans retinoic acid enhances bystander effect of suicide-gene therapy against medulloblastomas," Neurosci Lett, vol. 503, pp. 115-9, Oct 3 2011.
[17] K. Mori, J. Iwata, M. Miyazaki, H. Osada, Y. Tange, T. Yamamoto, et al., "Bystander killing effect of tymidine kinase gene-transduced adult bone marrow stromal cells with ganciclovir on malignant glioma cells," Neurol Med Chir (Tokyo), vol. 50, pp. 545-53, 2010.
[18] D. Nanda, R. Vogels, M. Havenga, C. J. Avezaat, A. Bout, and P. S. Smitt, "Treatment of malignant gliomas with a replicating adenoviral vector expressing herpes simplex virus-thymidine kinase," Cancer Res, vol. 61, pp. 8743-50, Dec 15 2001.
[19] J. Niu, C. Xing, C. Yan, H. Liu, Y. Cui, H. Peng, et al., "Lentivirus-mediated CD/TK fusion gene transfection neural stem cell therapy for C6 glioblastoma," Tumour Biol, vol. 34, pp. 3731-41, Dec 2013.
[20] T. Paino, E. Gangoso, J. M. Medina, and A. Tabernero, "Inhibition of ATP-sensitive potassium channels increases HSV-tk/GCV bystander effect in U373 human glioma cells by enhancing gap junctional intercellular communication," Neuropharmacology, vol. 59, pp. 480-91, Nov 2010.
[21] P. A. Robe, F. Princen, D. Martin, B. Malgrange, A. Stevenaert, G. Moonen, et al., "Pharmacological modulation of the bystander effect in the herpes simplex virus thymidine kinase/ganciclovir gene therapy system: effects of dibutyryl adenosine 3',5'-cyclic monophosphate, alpha-glycyrrhetinic acid, and cytosine arabinoside," Biochem Pharmacol, vol. 60, pp. 241-9, Jul 15 2000.
[22] H. Stedt, H. Samaranayake, J. Pikkarainen, A. M. Maatta, L. Alasaarela, K. Airenne, et al., "Improved therapeutic effect on malignant glioma with adenoviral suicide gene therapy combined with temozolomide," Gene Ther, vol. 20, pp. 1165-71, Dec 2013.
[23] X. L. Zhou, Y. L. Shi, and X. Li, "Inhibitory effects of the ultrasound-targeted microbubble destruction-mediated herpes simplex virus-thymidine kinase/ganciclovir system on ovarian cancer in mice," Exp Ther Med, vol. 8, pp. 1159-1163, Oct 2014.
[24] A. Kwiatkowska, M. S. Nandhu, P. Behera, E. A. Chiocca, and M. S. Viapiano, "Strategies in Gene Therapy for Glioblastoma," Cancers (Basel), vol. 5, pp. 1271-305, Dec 2013.
[25] A. Alonso, E. Reinz, B. Leuchs, J. Kleinschmidt, M. Fatar, B. Geers, et al., "Focal Delivery of AAV2/1-transgenes Into the Rat Brain by Localized Ultrasound-induced BBB Opening," Mol Ther Nucleic Acids, vol. 2, p. e73, 2013.
[26] P. Yan, K. J. Chen, J. Wu, L. Sun, H. W. Sung, R. D. Weisel, et al., "The use of MMP2 antibody-conjugated cationic microbubble to target the ischemic myocardium, enhance Timp3 gene transfection and improve cardiac function," Biomaterials, vol. 35, pp. 1063-73, Jan 2014.
[27] P. H. Hsu, K. C. Wei, C. Y. Huang, C. J. Wen, T. C. Yen, C. L. Liu, et al., "Noninvasive and targeted gene delivery into the brain using microbubble-facilitated focused ultrasound," PLoS One, vol. 8, p. e57682, 2013.
[28] Q. Huang, J. Deng, F. Wang, S. Chen, Y. Liu, Z. Wang, et al., "Targeted gene delivery to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption," Exp Neurol, vol. 233, pp. 350-6, Jan 2012.
[29] Q. Huang, J. Deng, Z. Xie, F. Wang, S. Chen, B. Lei, et al., "Effective gene transfer into central nervous system following ultrasound-microbubbles-induced opening of the blood-brain barrier," Ultrasound Med Biol, vol. 38, pp. 1234-43, Jul 2012.
[30] K. Kooiman, H. J. Vos, M. Versluis, and N. de Jong, "Acoustic behavior of microbubbles and implications for drug delivery," Adv Drug Deliv Rev, vol. 72, pp. 28-48, Jun 2014.
[31] M. Shimamura, N. Sato, Y. Taniyama, S. Yamamoto, M. Endoh, H. Kurinami, et al., "Development of efficient plasmid DNA transfer into adult rat central nervous system using microbubble-enhanced ultrasound," Gene Ther, vol. 11, pp. 1532-9, Oct 2004.
[32] K. Un, S. Kawakami, R. Suzuki, K. Maruyama, F. Yamashita, and M. Hashida, "Suppression of melanoma growth and metastasis by DNA vaccination using an ultrasound-responsive and mannose-modified gene carrier," Mol Pharm, vol. 8, pp. 543-54, Apr 4 2011.
[33] J. F. Wang, C. J. Wu, C. M. Zhang, Q. Y. Qiu, and M. Zheng, "Ultrasound-mediated microbubble destruction facilitates gene transfection in rat C6 glioma cells," Mol Biol Rep, vol. 36, pp. 1263-7, Jul 2009.
[34] S. Wang, O. O. Olumolade, T. Sun, G. Samiotaki, and E. E. Konofagou, "Noninvasive, neuron-specific gene therapy can be facilitated by focused ultrasound and recombinant adeno-associated virus," Gene Ther, vol. 22, pp. 104-10, Jan 2015.
[35] C. D. Anderson, J. Urschitz, M. Khemmani, J. B. Owens, S. Moisyadi, R. V. Shohet, et al., "Ultrasound directs a transposase system for durable hepatic gene delivery in mice," Ultrasound Med Biol, vol. 39, pp. 2351-61, Dec 2013.
[36] Z. Y. Chen, K. Liang, and R. X. Qiu, "Targeted gene delivery in tumor xenografts by the combination of ultrasound-targeted microbubble destruction and polyethylenimine to inhibit survivin gene expression and induce apoptosis," J Exp Clin Cancer Res, vol. 29, p. 152, 2010.
[37] Q. Jin, Z. Wang, F. Yan, Z. Deng, F. Ni, J. Wu, et al., "A novel cationic microbubble coated with stearic acid-modified polyethylenimine to enhance DNA loading and gene delivery by ultrasound," PLoS One, vol. 8, p. e76544, 2013.
[38] N. Nomikou, P. Tiwari, T. Trehan, K. Gulati, and A. P. McHale, "Studies on neutral, cationic and biotinylated cationic microbubbles in enhancing ultrasound-mediated gene delivery in vitro and in vivo," Acta Biomater, vol. 8, pp. 1273-80, Mar 2012.
[39] C. M. Panje, D. S. Wang, M. A. Pysz, R. Paulmurugan, Y. Ren, F. Tranquart, et al., "Ultrasound-mediated gene delivery with cationic versus neutral microbubbles: effect of DNA and microbubble dose on in vivo transfection efficiency," Theranostics, vol. 2, pp. 1078-91, 2012.
[40] L. C. Phillips, A. L. Klibanov, B. R. Wamhoff, and J. A. Hossack, "Targeted gene transfection from microbubbles into vascular smooth muscle cells using focused, ultrasound-mediated delivery," Ultrasound Med Biol, vol. 36, pp. 1470-80, Sep 2010.
[41] A. H. Smith, M. A. Kuliszewski, C. Liao, D. Rudenko, D. J. Stewart, and H. Leong-Poi, "Sustained improvement in perfusion and flow reserve after temporally separated delivery of vascular endothelial growth factor and angiopoietin-1 plasmid deoxyribonucleic acid," J Am Coll Cardiol, vol. 59, pp. 1320-8, Apr 3 2012.
[42] L. Sun, C. W. Huang, J. Wu, K. J. Chen, S. H. Li, R. D. Weisel, et al., "The use of cationic microbubbles to improve ultrasound-targeted gene delivery to the ischemic myocardium," Biomaterials, vol. 34, pp. 2107-16, Mar 2013.
[43] R. R. Sun, M. L. Noble, S. S. Sun, S. Song, and C. H. Miao, "Development of therapeutic microbubbles for enhancing ultrasound-mediated gene delivery," J Control Release, vol. 182, pp. 111-20, May 28 2014.
[44] D. S. Wang, C. Panje, M. A. Pysz, R. Paulmurugan, J. Rosenberg, S. S. Gambhir, et al., "Cationic versus neutral microbubbles for ultrasound-mediated gene delivery in cancer," Radiology, vol. 264, pp. 721-32, Sep 2012.
[45] A. Xie, T. Belcik, Y. Qi, T. K. Morgan, S. A. Champaneri, S. Taylor, et al., "Ultrasound-mediated vascular gene transfection by cavitation of endothelial-targeted cationic microbubbles," JACC Cardiovasc Imaging, vol. 5, pp. 1253-62, Dec 2012.
[46] Y. Zhou, H. Gu, Y. Xu, F. Li, S. Kuang, Z. Wang, et al., "Targeted Antiangiogenesis Gene Therapy Using Targeted Cationic Microbubbles Conjugated with CD105 Antibody Compared with Untargeted Cationic and Neutral Microbubbles," Theranostics, vol. 5, pp. 399-417, 2015.
[47] W. Zhigang, L. Zhiyu, R. Haitao, R. Hong, Z. Qunxia, H. Ailong, et al., "Ultrasound-mediated microbubble destruction enhances VEGF gene delivery to the infarcted myocardium in rats," Clin Imaging, vol. 28, pp. 395-8, Nov-Dec 2004.
[48] Y. H. Wang, S. P. Chen, A. H. Liao, Y. C. Yang, C. R. Lee, C. H. Wu, et al., "Synergistic delivery of gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy," Sci Rep, vol. 4, 2014.
[49] M. A. Pysz, S. B. Machtaler, E. S. Seeley, J. J. Lee, T. A. Brentnall, J. Rosenberg, et al., "Vascular Endothelial Growth Factor Receptor Type 2–targeted Contrast-enhanced US of Pancreatic Cancer Neovasculature in a Genetically Engineered Mouse Model: Potential for Earlier Detection," Radiology, vol. 274, pp. 790-9, Mar 2015.
[50] M. A. Pysz, I. Guracar, L. Tian, and K. Willmann Jü, "Fast microbubble dwell-time based ultrasonic molecular imaging approach for quantification and monitoring of angiogenesis in cancer," Quant Imaging Med Surg, vol. 2, pp. 68-80, Jun 2012.
[51] S. V. Bachawal, K. C. Jensen, A. M. Lutz, S. S. Gambhir, F. Tranquart, L. Tian, et al., "Earlier Detection of Breast Cancer with Ultrasound Molecular Imaging in a Transgenic Mouse Model," Cancer Res, vol. 73, pp. 1689-98, Mar 15 2013.
[52] G. Korpanty, S. Chen, R. V. Shohet, J. Ding, B. Yang, P. A. Frenkel, et al., "Targeting of VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction of microbubbles," Gene Ther, vol. 12, pp. 1305-12, Sep 2005.
[53] H. Leong-Poi, M. A. Kuliszewski, M. Lekas, M. Sibbald, K. Teichert-Kuliszewska, A. L. Klibanov, et al., "Therapeutic arteriogenesis by ultrasound-mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle," Circ Res, vol. 101, pp. 295-303, Aug 3 2007.
[54] Y. H. Li, Q. S. Shi, J. Du, L. F. Jin, L. F. Du, P. F. Liu, et al., "Targeted delivery of biodegradable nanoparticles with ultrasound-targeted microbubble destruction-mediated hVEGF-siRNA transfection in human PC-3 cells in vitro," Int J Mol Med, vol. 31, pp. 163-71, Jan 2013.
[55] M. Shimoda, S. Chen, H. Noguchi, S. Matsumoto, and P. A. Grayburn, "In vivo non-viral gene delivery of human vascular endothelial growth factor improves revascularisation and restoration of euglycaemia after human islet transplantation into mouse liver," Diabetologia, vol. 53, pp. 1669-79, Aug 2010.
[56] C. H. Su, Y. J. Wu, C. Y. Chang, T. Y. Tien, S. W. Tseng, C. H. Tsai, et al., "The increase of VEGF secretion from endothelial progenitor cells post ultrasonic VEGF gene delivery enhances the proliferation and migration of endothelial cells," Ultrasound Med Biol, vol. 39, pp. 134-45, Jan 2013.
[57] J. Dorner, R. Struck, S. Zimmer, C. Peigney, G. D. Duerr, O. Dewald, et al., "Ultrasound-mediated stimulation of microbubbles after acute myocardial infarction and reperfusion ameliorates left-ventricular remodelling in mice via improvement of borderzone vascularization," PLoS One, vol. 8, p. e56841, 2013.
[58] S. Florinas, J. Kim, K. Nam, M. M. Janat-Amsbury, and S. W. Kim, "Ultrasound-assisted siRNA delivery via arginine-grafted bioreducible polymer and microbubbles targeting VEGF for ovarian cancer treatment," J Control Release, vol. 183, pp. 1-8, Jun 10 2014.
[59] S. Florinas, H. Y. Nam, and S. W. Kim, "Enhanced siRNA delivery using a combination of an arginine-grafted bioreducible polymer, ultrasound, and microbubbles in cancer cells," Mol Pharm, vol. 10, pp. 2021-30, May 6 2013.
[60] H. Fujii, Z. Sun, S. H. Li, J. Wu, S. Fazel, R. D. Weisel, et al., "Ultrasound-targeted gene delivery induces angiogenesis after a myocardial infarction in mice," JACC Cardiovasc Imaging, vol. 2, pp. 869-79, Jul 2009.
[61] J. Kobulnik, M. A. Kuliszewski, D. J. Stewart, J. R. Lindner, and H. Leong-Poi, "Comparison of gene delivery techniques for therapeutic angiogenesis ultrasound-mediated destruction of carrier microbubbles versus direct intramuscular injection," J Am Coll Cardiol, vol. 54, pp. 1735-42, Oct 27 2009.
[62] M. Cochran and M. A. Wheatley, "In vitro gene delivery with ultrasound-triggered polymer microbubbles," Ultrasound Med Biol, vol. 39, pp. 1102-19, Jun 2013.
[63] Z. Fan, D. Chen, and C. Deng, "Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles," J Control Release, vol. 170, pp. 401-13, Sep 28 2013.
[64] Y. Hu, J. M. Wan, and A. C. Yu, "Membrane perforation and recovery dynamics in microbubble-mediated sonoporation," Ultrasound Med Biol, vol. 39, pp. 2393-405, Dec 2013.
[65] S. Ibsen, G. Shi, C. Schutt, L. Shi, K. D. Suico, M. Benchimol, et al., "The behavior of lipid debris left on cell surfaces from microbubble based ultrasound molecular imaging," Ultrasonics, vol. 54, pp. 2090-8, Dec 2014.
[66] H. L. Liu, C. H. Fan, C. Y. Ting, and C. K. Yeh, "Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview," Theranostics, vol. 4, pp. 432-44, 2014.
[67] D. Omata, Y. Negishi, S. Hagiwara, S. Yamamura, Y. Endo-Takahashi, R. Suzuki, et al., "Bubble liposomes and ultrasound promoted endosomal escape of TAT-PEG liposomes as gene delivery carriers," Mol Pharm, vol. 8, pp. 2416-23, Dec 5 2011.
[68] S. R. Sirsi and M. A. Borden, "Advances in ultrasound mediated gene therapy using microbubble contrast agents," Theranostics, vol. 2, pp. 1208-22, 2012.
[69] S. P. Wrenn, S. M. Dicker, E. F. Small, N. R. Dan, M. Mleczko, G. Schmitz, et al., "Bursting bubbles and bilayers," Theranostics, vol. 2, pp. 1140-59, 2012.
[70] R. Suzuki, Y. Oda, N. Utoguchi, and K. Maruyama, "Progress in the development of ultrasound-mediated gene delivery systems utilizing nano- and microbubbles," J Control Release, vol. 149, pp. 36-41, Jan 5 2011.
[71] Y. Taniyama, J. Azuma, Y. Kunugiza, K. Iekushi, H. Rakugi, and R. Morishita, "Therapeutic option of plasmid-DNA based gene transfer," Curr Top Med Chem, vol. 12, pp. 1630-7, 2012.
[72] Y. Taniyama, J. Azuma, H. Rakugi, and R. Morishita, "Plasmid DNA-based gene transfer with ultrasound and microbubbles," Curr Gene Ther, vol. 11, pp. 485-90, Dec 2011.
[73] Y. I. Yoon, Y. S. Kwon, H. S. Cho, S. H. Heo, K. S. Park, S. G. Park, et al., "Ultrasound-mediated gene and drug delivery using a microbubble-liposome particle system," Theranostics, vol. 4, pp. 1133-44, 2014.
[74] S. L. Yang, Y. M. Mu, K. Q. Tang, X. K. Jiang, W. K. Bai, E. Shen, et al., "Enhancement of recombinant adeno-associated virus mediated transgene expression by targeted echo-contrast agent," Genet Mol Res, vol. 12, pp. 1318-26, 2013.
[75] C.-Y. Lin, H.-Y. Hsieh, W. G. Pitt, C.-Y. Huang, I. C. Tseng, C.-K. Yeh, et al., "Focused ultrasound-induced blood-brain barrier opening for non-viral, non-invasive, and targeted gene delivery," Journal of Controlled Release, vol. 212, pp. 1-9, 8/28/ 2015.
[76] S. Wang, O. O. Olumolade, T. Sun, G. Samiotaki, and E. E. Konofagou, "Noninvasive, neuron-specific gene therapy can be facilitated by focused ultrasound and recombinant adeno-associated virus," Gene Ther, vol. 22, pp. 104-110, 01//print 2015.
[77] Y.-C. Chen, C.-F. Chiang, S.-K. Wu, L.-F. Chen, W.-Y. Hsieh, and W.-L. Lin, "Targeting microbubbles-carrying TGFβ1 inhibitor combined with ultrasound sonication induce BBB/BTB disruption to enhance nanomedicine treatment for brain tumors," Journal of Controlled Release, vol. 211, pp. 53-62, 8/10/ 2015.
[78] M. E. Downs, A. Buch, C. Sierra, M. E. Karakatsani, S. Chen, E. E. Konofagou, et al., "Long-Term Safety of Repeated Blood-Brain Barrier Opening via Focused Ultrasound with Microbubbles in Non-Human Primates Performing a Cognitive Task," PLoS ONE, vol. 10, p. e0125911, 05/06
11/09/received
03/23/accepted 2015.
[79] X. Wang, P. Liu, W. Yang, L. Li, P. Li, Z. Liu, et al., "Microbubbles coupled to methotrexate-loaded liposomes for ultrasound-mediated delivery of methotrexate across the blood–brain barrier," International Journal of Nanomedicine, vol. 9, pp. 4899-4909, 10/23 2014.
[80] L. C. Phillips, A. L. Klibanov, B. R. Wamhoff, and J. A. Hossack, "Intravascular ultrasound detection and delivery of molecularly targeted microbubbles for gene delivery," IEEE Trans Ultrason Ferroelectr Freq Control, vol. 59, pp. 1596-601, Jul 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top