|
參考文獻 1.楊德仁、顏怡文,「太陽能電池材料」,五南圖書出版股份有限公司,台北2008. 2.J.P. Benner, Inorganic Thin Films : Future Perspectives. Global Climate Energy Project, Solar Energy Workshop : Thin Film Photovoltaics (2004). 3.S.T. Lakshmikumar, and A.C. Rastogi, Selenization of Cu and In Thin Films for the Preparation of Selenide Photo-Absorber Layers in Solar cells using Se Vapour Source, Sol. Energy Mater. Sol. Cells, 32, 7-19 (1994). 4.M. Lakshmi, K. Bindu, S. Bini, K.P. Vijayakumar, C.Sudha Kartha, T. Abe, and Y. Kashiwaba, Chemical Bath Deposition of Different Phases of Copper Selenide Thin Films by Controlling Bath Parameters, Thin Solid Films, 370, 89-95 (2000). 5.C.H.d. Groot, and J.S. Moodera, Growth and Characterization of a Novel In2Se3 Structure, J. Appl. Phys, 89, 8 (2001). 6.C. Julien, A. Chevy, and D. Siapkas, Optical Properties of In2Se3 Phases, Phys. Stat. Sol.(a), 118, 553-559 (1990). 7.S. Marsillac, A.M. Combat-Marie, J.C. Berne:de, and A. Conan, Experimental Evidence of the Low-Temperature Formation of γ-In2Se3 Thin Films Obtained by a Solid-State Reaction, Thin Solid Films, 288, 14-20 (1996). 8.J.P. Ye, S. Sodeda, Y. Nakamura, and O. Nittono, Crystal Structure and Phase Transformation in In2Se3 Conpound Semiconductor, Jpn. J. Appl. Phys, 37, 4264-4271 (1998). 9.M. Yudasaka, T. Matsuoka, and K. Nakanishi, Indium Selenide Film Formation by the Double-Source Evaporation of Indium and Selenium, Thin Solid Films, 146, 65-73 (1987). 10.N. Yamamoto , S. Ishida, and H. Horinaka, Solid State Growth of CuInSe2 and CuInTe2, Jpn. J. Appl. Phys 28, 1780-1783 (1989). 11.W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd Edition, John Wiley and sons, New York 1991. 12.J.L. Shay, and J.H. Wernick, Ternary Chalcopyrite Semiconductors:Growth Electronic Properties And Applications, in Pergamon, New York, 1975. 13.J.C. Rife, R.N. Dexter, P.M. Bridenbaugh, and B.W. Veal, Magnetoluminescence and Magnetoreflectance of the A Exciton of CdS and CdSe, Phys. Rev. B, 16, 4419 (1977). 14.W. Horig, H. Neumann, H. Sobotta, B. Schumann, and G. Kuhn, The Optical Properties of CuInSe2 Thin Films, Thin Solid Films, 48, 67-72 (1978). 15.L.L. Kazmerski, M. Hallerdt, P.J. Ireland, R.A. Mickelsen, and W. S.Chen, Optical properties and grain boundary effects in CuInSe2, J. Vac. Sci. Technol, A1, 395 (1983). 16.K. Loschke, and J. Baumgarten, Applicability of Multiple Angle of Incidence Ellipsometry (MAI). Measurements to GaAs anodic oxide and GaP anodic oxide systems at the wavelength 632.8 nm, Krist. Tech, 13, 1235 (1978). 17.C. Rincon, J. Gonzalez, and G. Sanchez-Perez, Optical Absorption of CuInSe2 in Bulk Single Crystal, Phys. Stat. Sol.(b), 108, K19-K22 (1981). 18.M. Krunks, O.Bijakina, T.Varema, V. Mikli, and E. Mellikov, Structural and Optical Properties of Sprayed CuInS2 Films, Thin Solid Films, 338, 125-130 (1999). 19.李長健, 朱踐如與飛海東. 「CIS和CIGS薄膜太陽能電池研究」,太陽能學報, 17, 297 (1996). 20.R.W. Birkmire, and E. Eser, Polycrytalline Thin Film Solar Cells: Present Status and Future Potential, Annu. Rev. Mater. Sci, 27, 625-653 (1997). 21.B. Li, Y. Xie, J.X. Huang, amd Y.T. Qian, Sythesis by Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticles, Adv. Mater, 11, 1456 (1999). 22.K.H. Kim, Y.G. Chun, B.O. Park, and K.H. Yoon, Synthesis of CuInSe2 and CuInGaSe2 Nanoparticles by Solvothermal Route, Mater. Sci. Forum, 449-452, 273-276 (2004). 23.Q. Guo, S.J. Kim, M. Kar, W.N. Shafarman, R.W. Birkmire, E.A. Stach, R.Agrawal, and H.W. Hillhouse, Development of CuInSe2 Nanocrystal and Nanoring lnks for Low-Cost Solar Cells, Nano Lett, 8, 2982-2987 (2008). 24.H. Zong, Y. Li, Z. Zhu, C. Yang, and Y. Li. A Facile Route to Synthesize Chalcopyrite CuInSe2 Nanocrystals in Non-Coordinating Solvent, Nanotechnology, 18, 025602 (2007). 25.J.S. Park, Z. Dong, S. Kim, and J.H. Perepezko, CuInSe2 Phase Formation During Cu2Se/In2Se3 Interdiffusion Reaction, J. Appl. Phys. 87, 3683-3690 (2000). 26.T. Wada, and H. Kinoshita, Rapid Exothermic Synthesis of Chalcopyrite-Type CuInSe2, J. Phys. Chem. Solids, 66, 1987-1989 (2005). 27.T. Wada, Y. Matsuo, S. Nomura, Y. Nakamira, A. Miyamura, Y. Chiba, A. Yamada, and M. Konagai, Fabrication of Cu(In,Ga)Se2 Thin Films by a Combination of Mechanochemical and Screen-Printing/Sintering Processes, Phys. Stat. Sol.(a) , 203, 2593-2597 (2006). 28.K.J. Bachmann, H. Goslowsky, and S. Fiechter, The Phase Relations in the System Cu,In,Se. J. Cryst. Growth, 89, 160-164 (1988). 29.C.H. Chang, A. Davydov, B.J. Stambery, T.J. Anderson, in Proceedings of the 25th IEEE PVSC 849 (Proceedings of IEEE, 1996). 30.J. Parkers, R.D. Tomlinson, and M.J. Hampshire, The Fabrication of P and N Type Single Crystals of CuInSe2, J. Cryst. Growth, 20, 315-318 (1973). 31.O. Madelung, M. Schulz, and H. Weiss, Landolt-Bornstein - Group III Condensed Matter Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, Berlin, 1998). 32.V.Milman. Klockmannite, CuSe: Structure, Properties and Phase Stability from ab Anitio Modeling, Acta Crystallogr. B, 58, 437-447 (2002). 33.Y. Zhang, Z.P. Qiao, and X.M. Chen, Microwave-Assisted Elemental Direct Reaction Route to Nanocrystalline Copper Chalcogenides CuSe and Cu2Te, J. Mater. Chem, 12, 2747-2748 (2002). 34.V.M. Glazov, A.S. Pashinkin, and V.A. Fedorov, Phase Equilibria in the Cu-Se System, Inorg. Mater, 36, 641-652 (2000). 35.W. Wang, P. Yan, F. Liu, Y. Geng, and Y. Qian, Preparation and Characterization of Nanocrystalline Cu2–xSe by a Novel Solvothermal Pathway, J. Mater. Chem, 8, 2321-2322 (1998). 36.C. Heske, U. Winkler, H. Neureiter, M. Sokolowski, and R. Fink, Preparation and Termination of Well-Defined CdTe(100) and Cd(Zn)Te(100) Surfaces, Appl. Phys. Lett, 70, 1022-1024 (1997). 37.O. Milat, Z. Vuˇci?c, and B. Ruˇsˇci?c, Stoichiometric Cuprous Selenide, Solid State Ionics, 23, 37-47 (1987), Reference [1-3]. 38.M. Oliveria, R.K. McMullan, and B.J. Wuensch, Single Crystal Neutron Diffraction Analysis of the Cation Distribution in the High-Temperature Phases α-Cu2-xS, α-Cu2-xSe, and α-Ag2Se, Solid State Ionics, 28-30, 1332-1337 (1988). 39.K. Yamamoto, and S. Kashida, X-ray Study of the Average Structures of Cu2Se and Cu1.8S in the Room Temperature and the High Hemperature Phases, J. Solid State Chem, 93, 202-211 (1991). 40.K.D. Machado, J.C. de Lima, T.A. Grandi, C.E. Campos, C.E. Maurmann, A.A. Gasperini, S.M. Souza, and A.F. Pimenta Structural Study of Cu2?xSe Alloys Produced by Mechanical Alloying, Acta Crystallogr. B 60 (2004). 41.S. Kashida, and J. Akai, X-ray diffraction and electron microscopy studies of the room-temperature structure of Cu2Se, J. Phys. C Solid State Phys, 21, 5329-5336 (1988). 42.O. Milat, Z. Vuˇci?c, and B. Ruˇsˇci?c, Stoichiometric Cuprous Selenide, Solid State Ionics, 23, 37-47 (1987). 43.K.G. Liu, H. Liu, J.Y. Wang, and L. Shi, Synthesis and Characterization of Cu2Se Prepared by Hydrothermal Co-reduction, J. Alloy Compd, 484, 674-676 (2009). 44.Z.T. Deng, M. Mansuripur, and A.J.Muscat, Synthesis of Two-Dimensional Single-Crystal Berzelianite Nanosheets and Nanoplates with Near-Infrared Optical Absorption, J. Mater. Chem, 19, 6201-6206 (2009). 45.Y.X. Hu, M. Afzaal, M. Malik, and P.A.O'Brien, Deposition of Copper Selenide Thin Films and Nanoparticles, J. Cryst. Growth, 297, 61-65 (2006). 46.Q.T. Wang, Electrochemical Template Synthesis of Large-Scale Uniform Copper Selenides Nanowire Arrays, Mater. Lett, 63, 1493-1495 (2009). 47.A.Y. Zhang, Q. Ma, M.K Lu, G.G. Zhou, C.Z. Li, and Z.G. Wang Nanocrystalline Metal Chalcogenides Obtained Open to Air: Synthesis, Morphology, Mechanism, and Optical Properties, J. Phys. Chem. C, 113, 15492-15496 (2009). 48.T.S. Li, S.P. Liu, Z.X. Lu, and Z.F. Liu, Synthesis and Characterization of Cuprous Selenide Nanocrystals at Room Temperature, Chinese Chem. Lett, 18, 617-620 (2007). 49.F. Lin, G.Q. Bian, Z.X. Lei, Z.J. Lu, and J.Dai, Solvothermal Growth and Morphology Study of Cu2Se Films, Solid State Sci, 11, 972-975 (2009). 50.S.B. Ambade, R.S. Mane, S.S. Kale, S.H. Sonawane, A.V. Shaikh and S.H. Han Chemical Synthesis of P-Type Nanocrystalline Copper Selenide Thin Films for Heterojunction Solar Cells, Appl. Surf. Sci. 253, 2123-2126 (2006). 51.M.Z. Xue, M.Z. Xue, Y.N. Zhou, Z. Bin, Y. Le, Z. Hua, and Z.W. Fu, Fabrication and Electrochemical Characterization of Copper Selenide Thin Films by Pulsed Laser Deposition, J. Electrochem. Soc. 153, A2262-A2268 (2006). 52.Z. Zainal, S. Nagalingam, and T.C. Loo, Copper Selenide Thin Films Prepared Using Combination of Chemical Precipitation and Dip Coating Method, Mater. Lett, 59, 1391-1394 (2005). 53.H.M. Pathan, C.D. Lokhande, D.P. Amalnerkar, and T. Seth, Modified Chemical Deposition and Physico-Chemical Properties of Copper(I) Selenide Thin Films, Appl. Surf. Sci. 211, 48-56 (2003). 54.余樹楨, 「晶體之結構與性質」, 渤海堂文化事業有限公司, 台北, 1987. 55.M. Emziane, S. Marsillac, and J.C. Berne?de, Preparation of Highly Oriented a-In2Se3 Thin Films by a Simple Technique, Mater. Chem. Phys, 62, 84-87 (2000), Reference [13]. 56.C. Amory, J.C. Berne`de, and S. Marsillac, Study of a Growth Instability of γ-In2Se3, J. Appl. Phys, 94, 10 (2003). 57.T. Ohtsuka, T. Okamoto, A. Yamada, and M. Konagai, Mocular Beam Epitaxy and Characterization of Layered In2Se3 Films Grown on Slightly Misoriented (001) GaAs Substrates, Jpn. J. Appl. Phys, 38, 668-673 (1999). 58.D. Eddike, A. Ramdani, G. Brun, J.C. Tedenac, and B. Liautard, Phase Diagram Equilibria In2Se3–Sb2Se3 Crystal Growth of the β-In2Se3 Phase (In1.94Sb0.06Se3), Mater.Res. Bull, 33, 519-523 (1998). 59.P.C. Newman, Ordering in AIII2BVI3 compounds, J. Phys. Chem. Solids, 23, 19-23 (1962). 60.P.C. Newman, Crystal Structures of Adamantine Compounds, J. Phys. Chem Solids, 24, 45-50 (1963). 61.J. Jasinski, W. Swider, J. Washburn, and Z. Liliental-Weber, Crystal Structure of k-In2Se3, Appl. Phys. Lett, 81, ,23 (2002). 62.A. Chaiken, K. Nauka, G.A. Gibson, H. Lee, and C.C. Yang, Structural and Electronic Properties of Amorphous and Polycrystalline In2Se3 Films, J. Appl. Phys, 94, 4 (2003). 63.K.J. Chang, S.M. Lahn, Z.J. Xie, J.Y. Chang, W.Y. Uen, T.U. Lu, J.H. Lin, and T.Y. Lin, The Growth of Single-phase In2Se3 by Using Metal Organic Chemical Vapor Deposition with AlN Buffer Layer, J. Cryst. Growth, 306, 283-287 (2007). 64.J.H. Park, M. Afzaal, M. Helliwell, M.A. Malik, P. O'Brien, and J. Raftery, Chemical Vapor Deposition of Indium Selenide and Gallium Selenide Thin Films from Mixed Alkyl/Dialkylselenophosphorylamides, Chem. Mater, 15, 4205-4210 (2003). 65.H.J. Gysling, A.A. Wernberg, and T.N. Blanton, Molecular Design of Single-Source Precursors for 3-6 Semiconductor Films : Control of Phase and Stoichiometry in Indium Selenide(InxSey) Film Deposited by A Spray MOCVD Process Using Single-Source Reagents, Chem. Mater, 4, 4 (1992). 66.J. Sandino, and G. Gordillo, Determination of the Optical Constants of InxSey Thin Films Deposited by Evaporation and Coevaration, Surf. Rev. Lett, 9, 1687-1691 (2002). 67.M. Emziane, S. Marsillac, and J.C. Berne?de, Preparation of Highly Oriented a-In2Se3 Thin Films by a Simple Technique, Mater. Chem. Phys, 62, 84-87 (2000). 68.M. Emziane, and R.L. Ny, Crystallization of In2Se3 Semiconductor Thin Films by Post-Deposition Heat Treatment. Thickness and Substrate Effects, J. Phys. D: Appl. Phys, 32, 1319-1328 (1999). 69.M. Emziane, S. Marsillac, J. Ouerfelli, J.C. Bernde, and R.L. Ny, γ-In2Se3 Thin Films Obtained by Annealing Sequentially Evaporated In and Se Layers in Flowing Argon, Vacuum, 48, 871-878 (1997). 70.S.N. Sahu, Preparation, Structure, Composition, Optical and Photoelectrochemical Properties of Vacuum Annealed In-Se Thin Films, Thin Solid Films, 261, 98-106 (1995). 71.H.T. El-Shair, and A.E. Bekheet, Effect of Heat Treatment on the Optical Properties of In2Se3 Thin Films. J. Phys. D: Appl. Phys, 25, 1122-1130 (1992). 72.R. Lewandowska, R. Bacewicz, J. Filipowicz, and W. Paszkowicz, Raman Scattering in a-In2Se3 Crystals, Mater. Res. Bull, 36, 2577-2583 (2001). 73.Y. Cheng, T.J. Emge,and J.G. Brennan, Pyridineselenolate Complexes of Copper and Indium: Precursors to CuSex and In2Se3, Inorg. Chem, 35, 7339-7344 (1996). 74.S.S. Zumdahl, and S.A. Zumdahl, Chemistry,in Houghton Mifflin Company, Boston 2007. 75.J.N. Park, J. Joo, S.K. Kwon, Y.J. Jang, and T.H. Hyeon, Synthesis of Monodisperse Spherical Nanocrystals, Angew. Chem. Int. Edit 46, 4630-4660 (2007). 76.C.B. Murray, D.J. Norris, and M.G. Bawendi, Synthesis and Characterization of Nearly Monodisperse CdE (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites, J. Am. Chem. Soc. 115, 8706-8715 (1993). 77.D.C. Pan, L.J. An, Z.M. Sun, W. Hou, Y. Yang, Z.Z. Yang, and Y.F. Lu Sythesis of Cu#In#S Ternary Nanocrystals with Tunable Structure and Composition, J. Am. Chem. Soc, 130, 5620-5621 (2008). 78.K. Nose, Y. Soma, Takahisa and S. Otsuka-Yao-Matsuo, Synthesis of Ternary CuInS2 Nanocrystals;Phase Determination by Complex Ligand Species, Chem. Mater, 21, 2607-2613 (2009). 79.W. Jander, Reaktionen im Festen Zustande bie Hoheren Temperaturen, Z.Anorg. Allg. Chem. (in Ger) 163, 1 (1927). 80.A.M. Ginstling, and B.I. Brounshtein, Concerning the Diffusion Kinetics of Reactions in Spherical Particles, J. Appl. Chem. USSR, 23, 1327 (1950). 81.G. Valensi, Cinetique de I'Oxydation de Spherules et de Poudres Matallics. C. R. Hebd. Seances Acad. Sci. (in Fr.), 203, 309 (1936). 82.A. Putnis, Introduction to Mineral Sciences , Cambridge University Press, Cambridge 1992. 83.M. Lakshmi, K. Bindu, S. Bini, K.P. Vijayakumar, C.S. Kartha, T. Abe, and Y. Kashiwaba, Reversible Cu2-xSe <~> Cu3Se2 Phase Transformation in Copper Selenide Thin Films Prepared by Chemical Bath Deposition, Thin Solid Films, 386, 127-132 (2001 ). 84.D. Lippkow, and H.H. Strehblow, Structural Investigation of Thin Fulms of Copper-Selenide Electrodeposited at Elevated Temperatures, Electrochim. Acta, 43, 2131-2140 (1998). 85.A. Ghezelbash, and B.A. Korgel, Nickel Sulfide and Copper Sulfide Nanocrystal Synthesis and Polymorphism, Langmuir, 21, 9451-9456 (2005). 86.H. Zhang,Y.Q. Zhang, J.X. Xue, and D. Yang, Phase-Selective Synthesis and Self-Assembly of Monodisperse Copper Sulfide Nanocrystals, J. Phys. Chem. C, 112, 13390-13394 (2008). 87.Y.S. Xiong, J. Zhang, F. Huang, G.Q. Ren, W.Z. Liu, D.S. Li, C. Wang, and Z. Lin, Growth and Phase-Transformation Mechanisms of Nanocrystalline CdS in Na2S Solution, J. Appl. Chem. C, 112, 9229-9233 (2008). 88.D. Wolf, and G. Miller, Kinetics of CIS-Formation Studied in Situ by Thin Film Calorimetry, Thin Solid Films 361-362, 155-160 (2000). 89.S. Kim, W.K. Kim, R.M. Kaczynski, R.D. Acher, S. Yoon, T.J. Anderson, and O.D. Crisalle, Reaction Kinetics of CuInSe2 Thin Films Grown From Bilayer InSe/CuSe Precursors, J. Vac. Sci. Technol, 2, A 23 (2005). 90.W.K. Kim, S. Kim, E.A. Payzant, S.A. Speakman, S. Yoon, R.M. Kaczynski, R.D. Acher, T.J. Anderson, O.D.Crisalle, S.S. Li, and V. Craciun, Reaction Kinetics of a-CuInSe2 Formation from an In2Se3/CuSe Bilayer Precursor Film, J. Phys. Chem. Solids, 66, 1915-1919 (2005). 91.W.K. Kim, E.A. Payzant, S. Yoon, and T.J. Anderson, In Situ Investigation on Selenization Kinetics of Cu-In Precursor Using Time-Resolved, High Temperature X-ray Diffraction, J. Cryst. Growth, 294, 231-235 (2006). 92.M. Purwins, A. Weber, P. Berwian, G. Muller, F.Hergert, S. Jost, and R. Hock Kinetics of the Reactive Crystallization of CuInSe2 and CuGaSe2 Chalcopyrite Films for Solar Cell Applications, J. Cryst. Growth, 287, 408-413 (2006).
|