1. 蔡瀚賢,「成交量放大訊號及技術指標綜合策略在台灣股市之實證研究」,國立成功大學企業管理學系,碩士論文,2001。2. 游英裕,「股價與成交量因果關係之研究-台灣股市的實證」,義守大學管理科學研究所,碩士論文,2004。3. 羅一翬,「價量技術指標之獲利性研究--線性與非線性模式之比較」,靜宜大學企業管理研究所,碩士論文,20024. 張秀華,「股價指數與交易量動態關係之實證研究」,東海大學企業管理學系碩士班,碩士論文,2001。5. 李良俊,「台灣股票市場技術分析有效性之研究」,實踐大學企業管理研究所碩士班,碩士論文,2003。6. 紀岱良,「台灣加權指數與技術指標之關連分析」,國立東華大學企業管理學系碩士班,碩士論文,2008。7. 劉邦杰,「台灣上市公司股票交易筆數與平均每筆交易量對股價波動影響之實證研究」,國立高雄第一科技大學金融營運所,碩士論文,2003。8. 林俊宏,「成交量對技術分析指標在期貨市場操作績效之影響」,國立交通大學管理科學系所,碩士論文,2006。9. 黃鯤義,「結合成交量於頭肩底型態之研究」,華梵大學資訊管理學系碩士班,碩士論文,2012。10. 林睦融,「K線理論應用於台股市場之績效分析」,東吳大學資訊管理學系研究所,碩士論文,2012。11. 林天運,「大盤未來走勢預測-KD指標的實證分析」,國立成功大學國際企業研究所,碩士論文,2007。12. Kenneth A. Kavajecz and Elizabeth R. Odders-White , “ Technical Analysis and Liquidity Provision” , The
Review of Financial Studies,4, P1043-P1071, 2004.
13. Tsung-Hsun Lu , Yung-Ming Shiu , Tsung-Chi Liu, “ Profitable candlestick trading strategies—The evidence from
a new perspective” , Review of Financial Economics, 21, P63–P68, 2012.
14. Yan-Leung Cheung ,Yin-Wong Cheung ,Alan T.K Wan, “ A High-Low Model of Daily Stock Price Ranges” , Journal of
Forecasting,28 , P103-P119, 2009.
15. Coutts, J. A. and Cheung, K. C. , “ Trading rule and stock return: some preliminary short run evidence from
the Hang Seng 1985-1997 ” , Applied Finance Economics, 10, P579-P586, 2000.
16. Janchung Wang, “ Stock Market Volatility and the Forecasting Performance of Stock Index Futures ” , Journal of
Forecasting,28 , P276-P292, 2009.
17. Sotiris K.Staikouras, “ The Impact of Volatility Derivatives on S&P500 Volatility ” , Journal of Futures
Markets , 10 , P1190-P1213, 2010.
18. Brock, W., Lakonishok, J. and Lebaron, B. , “ Simple technical trading rules and the stochastic properties of
stock return ”. Journal of Finance , 47 , P1731-P1764, 1992.
19. Le, Van, and ralfZurbruegg, “ The role of trading volume in volatility forecasting ” , Journal of
International Financial Markets, Institutions & Money 20, P533-P555, 2010.
20. Stephan Schulmeister, “ Profitability of technical stock trading: Has it moved from daily to intraday
data? ” , Review of Financial Economics ,18 , P190–P201, 2009.
21. Chang, P.-C., Liao, T. W., Lin, J.-J., & Fan, C.-Y. , “ A dynamic threshold decision system for stock trading
signal detection ” , Applied Soft Computing, 11 , P 3998- P 4010, 2011.
22. Chen Shiu-Sheng , “ Predicting the bear stock market: Macroeconomic variables as leading indicators ” ,
Journal of Banking & Finance ,33, P211–P223, 2009.
23. Alexander, S. S. , “ Price movements in speculative markets:rends or random walks ” , Industrial Management
Review, 2, P7-P26, 1961.
24. Corrado, J. C. and Lee, S. H. , “ Filter rule tests of the economic significance of serial dependence in daily
stock return ” , Journal of Finance,15, 369-387, 1992.
25. Gunasekaragea, A. and Power, D. , “ The profitability of moving average trading rules is South Asian stock
markets ” , Emerging Markets Review, 2,P17-P33, 2001.
26. Blume, Easley, and O’Hara, “ Market statistics and technical analysis: the role of volume ”, Journal of
Finance, 49, P153-P181, 1994.