跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/08 00:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭良諶
研究生(外文):Liang-chen Cheng
論文名稱:溶膠-凝膠法製備奈米錫鎢氧化薄膜於一氧化氮氣體感測之研究
論文名稱(外文):Research of nitrogen oxide sensing by sol-gel method to synthesis nano-crystalline tin oxide doping with tungsten thin film
指導教授:王詩涵王詩涵引用關係
指導教授(外文):Shih-han Wang
學位類別:碩士
校院名稱:義守大學
系所名稱:生物技術與化學工程研究所碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:59
中文關鍵詞:二氧化錫氣體感測器溶膠-凝膠法三氧化鎢
外文關鍵詞:tin oxidesol-gel methodtungsten oxidegas sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:663
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
一氧化氮與血液中的血紅素很容易結合,形成亞硝基血素,當吸入之濃度過高,會慢慢的抑鬱中樞神經,所以試圖發展奈米錫鎢氧化薄膜來偵測空氣中低濃度一氧化氮之含量,此外,人體所呼出氣體中NO的量增加,可作為肺炎或氣喘之警訊。
價格昂貴、偵測費時、且笨重的氣體感測器如今已經不敷使用,所以撇去過去的厚膜與薄膜感測器,近幾年製備奈米薄膜氣體感測器已經廣泛被討論到。
本研究利用奈米技術的發展使得氣體感測器不僅偵測快、體積小、耗能低,分別利用四氯化錫及六氯化鎢當作前驅物,以溶膠-凝膠法製備出二氧化錫及三氧化鎢之凝膠作為氣體感測器的感測材料,使用可以在高溫及惡劣環境生存且機械性質穩定的二氧化錫做為基本材料,並且摻雜對於氮氧化物(NOx)具有高度靈敏度的WO3,並且嘗試摻雜能提升氧化能力之CuO,比較其間之差異,同時利用液晶模板的方式來輔助電泳方式製備薄膜,並調整膠體溶液之表面電位到pH值為10,以電泳的方式讓材料在已經鍍有梳狀電極之氧化鋁板上形成薄膜,經過一小時不同溫度的鍛燒後,可得到奈米錫鎢氧化薄膜,經過XRD、SEM、ESCA來鑑定成分並觀察結晶及化學結構以及表面型態,再分別探討不同條件下所製備出的氣體感測器。
實驗結果發現二氧化錫與三氧化鎢對於一氧化氮均有感測能力,但是並不具有選擇性,是以無法判斷ㄧ氧化氮或二氧化氮;經過實驗後,發現薄膜中添加微量的硫酸銅,有助於提高感測器的選擇性。在莫耳濃度比為Sn :W : Cu = 1:1:0.0125% 時,操作溫度在200 ℃時可以偵測0.1 ~ 25ppm範圍之ㄧ氧化氮,並且在相同的操作條件下,對於二氧化氮並不具有感測效果,因此本研究發展出ㄧ選擇性高之一氧化氮感測器。
NO is easy to combine with hemoglobin of blood and become nitro-hemoglobin. When exposed in high NO concentration environment for a long period of time, our central nerve will be inhibited, so the objective of this work is to invent nanocrystalline tin-tungsten oxide thin film to detect the NO concentration in atmosphere. Also, an increasing of NO concentration exhaled from human can be an indication of important symptom of pneumonia or asthma.
Expensive, long detecting time and heavy sensors are no longer used in recent years. Instead of thick film and thin film sensor technologies, nanocrystalline thin film gas sensors are widely considered in these few year because of its fast detect, small size and low energy consumption.
In this research, SnCl4 and WCl6 were utilized as precursor to synthesis SnO2 and WO3 sol for sensing materials of gas sensor by sol-gel method. Tin oxide was used as the based material because of its high mechanism properties, stable in high temperature and bad environment. Doped WO3 ,which has high sensitivity to NOx, and doped CuO ,which can enhance ability of oxidization, were both utilized to compare the relationship between these few condition. Electrophoresis method was adopted to make sensing films with the help of liquid crystal template method and adjusted surface potential of sol solution to pH=10. After calcination one hour at several different temperatures, a high surface area nanocrystalline tin-tungsten oxide thin film with interdigitate electrode by electrophroesis was produced. XRD, SEM and ESCA were utilized to define the different parameters of its crystal and chemical structure, its surface morphology and component.
It is observed that both tin oxide and tungsten oxide have sensing ability to nitric oxide but didn’t have any selectivity to distinguish between NO and NO2 ;By adding a hint of copper sulphate, the selectivity of sensor was enhanced, when molar concentration of mixed solution is Sn : W : Cu = 1 : 1 : 0.0125%, NO sensor can detect NO from 0.1 ~ 25 ppm at operating temperature 200 ℃, at the same operating temperature, however it didn’t work when it contacted to NO2. Consequently, a highly selective nanocrytalline copper doped NO sensor was developed in this study.
中文摘要 Ⅰ
英文摘要 Ⅲ
誌謝 Ⅴ
目錄 Ⅵ
圖目錄 Ⅷ
表目錄 ⅩⅠ
第一章 前言 1
第二章 文獻回顧 3
2.1 NO之簡介 3
2.2 金屬氧化物半導體氣體感測器 4
2.3 二氧化錫及三氧化鎢之結構與特性 6
2.4 奈米錫鎢氧化薄膜之製備方式 9
2.4.1 溶膠-凝膠法 9
2.4.2 液晶模板機制 11
2.4.3 電泳 12
2.4.4 摻雜( Dopping ) 14
2.5 金屬氧化物氣體感測器之原理(導電機制) 16
2.6 半導體氧化物薄膜之氣體偵測性及應用 20
第三章 實驗方法與步驟 22
3.1 藥品資料表 22
3.2 實驗設備 23
3.3 實驗架構圖 24
3.4 感測材料的製備方式 25
3.5 氧化鋁板的清洗方法 28
3.6 鍍膜方式 29
3.6.1 浸鍍法 ( Dip Coating ) 29
3.6.2 電泳( Electrophoresis ) 30
3.7 氣體系統 31
3.8 感測系統 32
第四章 結果與討論 34
4.1 金屬氧化物薄膜 34
4.1.1 XRD 分析 34
4.1.2 SEM 分析 37
4.1.3 ESCA 分析 41
4.2 氣體感測結果與討論 43
4.2.1 界面活性劑之影響 43
4.2.2 操作溫度對感測之影響 44
4.2.3 靈敏度( Sensitivity ) 44
4.2.4 選擇性( Selectivity ) 47
第五章 結論 53
第六章 未來發展 54
參考文獻 55
圖目錄

圖 2.1 二氧化錫之單位晶格圖。大圓為O,小圓為Sn 7
圖 2.2 典型ReO3結構:Re可座落在立方體單位晶胞之 (a)角落位置或 (b) 中心位置 8
圖 2.3 液晶模板機制示意圖 12
圖 2.4 電泳示意圖 13
圖 2.5 添加摻雜物到金屬半導體氧化物後所發生的現象 15
圖 2.6 晶界理論模型示意圖 17
圖 2.7 不同的Debye 會造成半導體晶粒與奈米晶粒之導電度及巨蝻⑩漣幭?18
圖 3.1 實驗架構圖 24
圖 3.2 SnO2製備流程圖 26
圖 3.3 WO3製備流程圖 27
圖 3.4 氧化鋁板基材之清洗步驟 28
圖 3.5 溫度曲線分佈圖 29
圖 3.6 電泳裝置示意圖 30
圖 3.7 氣體測試系統 31
圖 3.8 氣體感測裝置 32
圖 3.9 氣體感測器製備流程圖 33
圖 4.1 SnO2鍛燒於400、500、600、700、800 ℃的XRD繞射光譜 35
圖 4.2 電泳製備薄膜,經過600 ℃鍛燒 (a) WO3 (b) Sn:W:Cu= 1:1:0.0125% 36
圖 4.3 鍛燒600 ℃ 各薄膜之SEM 表面型態 (a) SnO2 (b) WO3 (c) Sn:W= 1:1 (d) Sn:W:Cu= 1:1:0.0125% 38
圖 4.4 浸鍍法製備薄膜,固定鍛燒溫度在600 ℃,Sn:W:Cu=1:1:0.0125% 加入不同濃度(a)0.5 M (b)0.1 M (c)0.05 M (d)0.001 M (e)0.0005 M 的界面活性劑 39
圖 4.5 電泳製備薄膜,固定鍛燒溫度在600 ℃,Sn:W:Cu=1:1:0.0125% 加入不同濃度(a)0.5 M (b)0.1 M (c)0.05 M (d)0.001 M (e)0.0005 M 的界面活性劑 40
圖 4.6 利用浸鍍法與電泳製備Sn:W:Cu = 1:1:0.0125%之ESCA光譜
圖比較(虛線為浸鍍法,實線為電泳) 42
圖 4.7 WO3 (不加CTAB),鍛燒600 ℃,操作溫度分別為 (a)150 (b)200 (c) 250 ℃製備 44
圖 4.8 電泳,SnO2鍛燒600 ℃,操作溫度200 ℃ 46
圖 4.9 電泳製備WO3 ,鍛燒600 ℃,操作溫度 (a) 150 ℃ (b) 200 ℃ 46
圖 4.10 電泳,莫爾濃度比Sn :W =1 : 1 鍛燒 600 ℃在操作溫度
(a) 150 ℃ (b) 200 ℃ 46
圖 4.11 電泳,莫爾濃度比Sn :WO3 =1 : 5鍛燒600 ℃,操作溫度200 ℃ 47
圖 4.12 將電泳製備的(a) SnO2 (b) WO3 薄膜固定操作溫度在200 ℃,並通入NO2 47
圖 4.13 電泳,莫耳濃度比Sn:W:Cu=1:5:0.1% 鍛燒600 ℃,操作溫度(a)150 (b) 200 ℃ 49
圖 4.14 電泳,莫耳濃度比Sn:W:Cu=1:5:0.0125%,操作溫度250 ℃鍛燒溫度(a) 400 (b) 500 (c) 600 (d) 700 ℃ 49
圖 4.15 電泳,鍛燒600 ℃,操作溫度250 ℃,莫耳濃度比(a) Sn:W:Cu=1:1:0.0225% (b) Sn:W:Cu=1:1:0.0325% 50
圖 4.16 電泳,莫爾濃度比Sn:W:Cu=1:1:0.0125%,鍛燒600 ℃,操作溫度 (a) 180 (b) 200 ℃ 50
圖 4.17 電泳,莫爾濃度比Sn:W:Cu=1:1:0.0125%,鍛燒600 ℃,操作溫度(a)200 (b) 250 ℃ 通入NO2 50
圖 4.18 各薄膜靈敏度之比較圖 52

















表目錄

表1-1 恕限值( Threshold Limited Value, TLV ) 2
表2-1 二氧化錫為基底,摻雜或加入觸媒的氣體感測器 4
表2-2 一般氣體感測器的偵測方式與原理 5
表2-3 各類氣體感測器優缺點比較 6
表2-4 二氧化錫做為感測材料之優缺點 18
表3-1 藥品資料表 22
表3-2 溶膠凝膠法之優缺點 25
表4-1 電泳製備薄膜之反應時間與恢復時間 51
[1] Yude Wang, Xinghui Wu, Yanfeng Li, Zhenlai Zhou, Mesostructured SnO2 as sensing material for gas sensors, Solid-State Electronics 48 (2004) 627.
[2] Karsten Henkel, Micro-hotplate-sensors, 2001.
[3] Morito AKIYAMA, Jun TAMAKI, Norio MIURA, and Noboru YAMAZOE, Tungsten Oxide-Based Semiconductor Sensor Highly Sensitive to NO and NO2, Chemistry Letters (1991) 1611.
[4] L.Bruno, C. Pijolat and R. Lalauze, Sensors and Actuators B 18-19 (1994) 195.
[5] C. T. Kresge, M. J. Roth, J. C. Vartuli, and J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 359(1992) 710.
[6] J. Santos-Pena, T. Brousse, L. Sanchez, J. Morales, D.M. Schleich, Antimony doping effect on the electrochemical behavior of SnO2 thin film electrodes, Journal of Power Sources 97-98(2001) 232.
[7] J.P. Chatelon, C. Terrier, E. Bernstein, R. Berjoan and J. A. Roger, Thin Solid Films, 247(1994) 162.
[8] G. B. Barbi, J.P. Santos, P. Serrini, P.N. Gibson, M.C. Horrillo, L. Manes, Ultrafine grain-size tin-oxide films for carbon monoxide monitoring in urban environments, Sensor and Actuators B, 24-25 (1995) 559.
[9] P.Nelli, L.E. Depero, M.Farroni,S.Groppelli, V. Guidi, F.Runomi, L.
Sangaletti, G.Sberveglieri, Sensors and Actuators B 31 (1996) 89.
[10] M.C. Horrillo, J. Gutierrez, L.Ares, J.I. Robla, I. Sayago, J.Getino, Sensors and Actuators B 24-25 (1995) 507.
[11] Zhihong Jin, Huan-Jun Zhou, Zhang-Ki Jin, Robert F. Savinell, Chung-Chiun Liu, Application of nano-crystalline porous tin oxide thin film for CO sensing, Sensors and Actuators B 52 (1998) 188.
[12] Sitthisuntorn Supothina, Gas sensing properities of nanocrystalline SnO2 thin films prepared by liquid flow deposition, Sensors and Actuators B 93(2003) 526.
[13] H. Pink, L.Treitinger and L. Vite :Japanses J. of Appl. Phys. 19 (1980) 513.
[14] Shih-Han Wang, Tse-Chuan Chou, Chung-Chiun Liu,Nano-crystalline tungsten oxide NO2 sensor, Sensors and Actuators B 94 (2003) 343.
[15] Niranjan Kissoon, Laurie Duckworth, Kathryn Blake, Suzanne Murphy, Pediatric Pulmonology 28 (1999) 282.
[16] 蔡嬪嬪, 曾明漢, 氣體感測器之簡介、應用及市場, 材料與社會, 68 (1992) 50.
[17] Davis M.L. and D.A. ,Cornwell, Introduction to Environmental Engineering, Mcgraw Hill, Inc. 2nd Edition, New York (1991).
[18] I. Sayago, J. Gutiĕrrez, L. Arĕs, J.I. Robla, M.C. Horrillo, The interaction of different oxidizing agents on doped tin oxide, Sensor and Actuators B 24-25 (1995) 512.
[19] Martin Hausner, Johannes Zacheja, Josef Binder, Multi-electrode substrate for selectivity enhancement in air monitoring, Sensors and Actuators B 43 (1997) 11.
[20] I. Sayago, J Gutiĕrrez a, L. Arĕs , J.I. Robla , M.C Horrillo , J. Getmo , J. Rmo ,J.A. Agapito, Long-term reliability of sensors for detection of nitrogen oxides, Sensors and Actuators B 26-27 (1995) 56.
[21] H. Gourari, M. Lumbreras, R. Van Landschoot, J. Schoonman, Elaboration and Characterization of SnO2-Mn2O3 thin layers prepared by electrostatic spray deposition, Sensors and Actuators B 47 (1998) 189.
[22] Uwe Lampe, Josef Gerblinger, Hans Meixner, Nitrogen oxide sensors based on thin films of BaSnO, Sensors and Actuators B 26-27 (1995) 97.
[23] T.W. Capehart and S.C. Chang, The interaction of tin oxide films with O2, H2, NO and H2S, J. Vac. Sci. Technol. 18 (1981) 393.
[24] S.C. Chang, Thin film semiconductor NOx sensor, IEEE trans. Electron Devices ED-26 (1979) 1875.
[25] G. Sberveglieri, S. Groppelli and P. Nelli, Highly sensitive and selective NOx and NO2 sensor based on Cd-doped SnO2 thin films, Sensors and Actuators B 4 (1991) 457.
[26] G. Sberveglieri, S. Groppelli and P. Nelli, V. Lantto, H. Torvcla, P. Romppainen and S. Lcppavuori, Response to nitric oxide of thin and thick SnO2 films containing trivalent additives, Sensors and Actuators B 1 (1990) 79.
[27] A. Chaturvedi, V.N. Mishra, R. Dwivedi, S. K. Srivastava, Selectivity
and sensitivity studies on plasma treated thick film tin oxide gas sensors,
Microelectronics Journal 31 (2000) 283.
[28] G. Sberveglieri, S. Groppelli, G. Coccoli, Radio frequency magnetron sputtering growth and characterization of indium-tin oxide (ITO) thin films for NO2 gas sensors, Sensors and Actuators B 15 (1998) 235.
[29] G. Sberveglieri, P. Benussi, G. Coccoli, S. Groppelli, P. Nelli, Reactively sputtered indium tin oxide polycrystalline thin films as NO and NO2 gas sensors, Thin Solid Films 186 (1990) 349.
[30] Giovanna Ghiotti, Anna Chiorino, Federica Prinetto, Chemical and electronic characterization of pure SnO2, and Cr-doped SnO2, pellets through their different response to NO, Sensors and Actuators B 24-25 (1995) 564.
[31] S. A. Pianaor: J. Mater. Sci. Lett., 14 (1995) 692.
[32] 楊明長, 曾坤億, 王瓊紫, 一氧化碳感測器之原理與應用.
[33] Kousuke Ihokura, Joseph Watson, The Stannic Oxide Gas Sensor.
[34] 胡興中, 觸媒原理與應用, 高立圖書有限公司, p48.
[35] R. W. G. Wyckoff, Crystal Structures, Interscience, New York .(1951).
[36] P.M. Woodward, A.W. Sleight, and T. Vogt, Ferroelectric tungsten trioxide, J. Solid State Chem. 131 (1997) 9 .
[37] Stegenga S., Soest R. V., Kapteijn F., and Moulijn, J. A., Nitric Oxide Reduction and Carbon Monoxide Oxidation over Carbon-Supported Copper-Chromium Catalysts, Appl. Cata. B: 2(1998) 359.
[38] R.B. Vasiliev, M.N. Rumyantseva, N.V. Yakovlev, A.M. Gaskov, CuO/SnO2 thin film heterostructures as chemical sensors to H2S, Sensor and Actuators B 50(1998) 186.
[39] J. F. Goodman and S. J. Gregg: J. Chem. Soc. 237(1960) 1162.
[40] R. T. Presecatan, S. H. Pulcinelli and C. V. Santilli: J. Non-Crys. Solids
147-148 (1992) 304.
[41] Q. Chen, Y. Qian, G. Zhou and Y. Zhang: Thin Solid Films 264 (1995) 25.
[52] B. Ruhland, Th. Becker, G. Müller, Gas-kinetic interactions of nitrous
oxides with SnO2 surface, Sensor and Actuators B 50 (1998) 85.
[44] M.S. Berberich, J.G. Zheng, U. Weimar, W. Gopel, N. Baran, E. Pentia
and A. Tomescu, The effect of Pt and Pd surface doping on the response
of nanocrystalline tin dioxide gas sensors to CO, Sensors and Sctuators
B 31 (1996) 7.
[45] N.Yamazoe, New approaches for improving semiconductor gas sensors,
Sensors and Actuators B 5 (1991) 7.
[46] H. Geistlinger, Electron theory of thin-file gas sensors, Sensors and
Actuators B 17(1993) 47.
[47] K. I. , J. W. ,The Stannic Oxide Gas Sensor.
[48] 吳泉毅、楊宗燁、林鴻明,物理雙月刊,奈米半導體材料之氣體感測
性質, p405-415.
[49] C.Xu, J.Tamaki, N. Miura and N. Yamazoe, Grain size effects on gas
sensitivity ofporous SnO2-based elements, Sensors and Actuators
B 3 (1991) 147.
[50] N. Barsan, M. Schweizer-Berberich and W. Göpel, Fundamental and
practical aspects in the design of nanoscaled SnO2 gas sensors: a status
report, Fresenius J.Anal.Chem., 365 (1999) 287.
[51] Chaonan Xu, Jun Tamaki, Norio Miura and Noboru Yamazoe, Grain
size effects on gas sensitivity of porous SnO2-based elements, Sensors
and Actuators B 3 (1991) 147.
[42] W.D.Kingery, H. K. Bowen, D.R. Uhlmann, “Introduction to Ceramics”,
2nd edition, Wiley-Interscience Publication, New York, 1975. P841~912
(chap.17).
[43] N. Yamazoe and N. Miura, “Environmental gas sensing “, Sensors and
Actuator B, 20 (1994) 95.
[53] Alan Wilson, John D. Wright, Julian J. Murphy,Mark A. M. Stroud,
Stephen C. Thorpe, Sol-gel materials for gas-sensing applications,
Sensors and Actuators B 18-19 (1994) 506.
[54] Xio-Lin Li, Tian-Jun Lou, Xiao-Ming Sun, Ya-Dong Li, Highly
Sensitive WO3 Hollow-Sphere Gas Sensors, Inorg. Chem. 43 (2004)
5442.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top