跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/02 06:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇峻輝
研究生(外文):Chun-Hui Su
論文名稱:不同P/C負荷下厭氧好氧活性污泥系統之污泥代謝行為
論文名稱(外文):Sludge Metabolism Behaviors of Anaerobic-oxic (A/O) Activated Sludge System under Different P/C Load
指導教授:張維欽張維欽引用關係
指導教授(外文):Chun-Hui Su
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:防災與環境工程研究所
學門:環境保護學門
學類:環境防災學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:110
中文關鍵詞:丙酸葡萄糖乙酸乳酸
外文關鍵詞:PAOsPropionateLatateGlucoseAcetateGAOs
相關次數:
  • 被引用被引用:4
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
在新設立之生物除磷系統啟動時,都需要以不同之汙泥來進行植種,其主要目的是希望能夠馴養出富含磷蓄積菌(PAO-enriched sludge)之污泥,來達到生物除磷的效果。有學者認為PAOs必須要與一些厭氧菌共生,因為進流基質中有部分物質需要發酵成為短鏈脂肪酸後,PAOs才能夠在厭氧段進行攝取,而發酵與攝取的反應幾乎是同時進行的。並且也有文獻中提出PAO-enriched sludge的菌群結構十分複雜,而其中又以Betaproteobacteria與Actinobacteria為主要優勢菌群(Eschenhagen et al., 2003)。那麼如果利用一般傳統生物處理系統之廢棄污泥(生活汙水廠、工業廢水廠)來進行植種,是否能夠使新設立之生物除磷系統達到我們所期望的除磷效果還未經過證實,因此本研究希望能夠加以證實。
實驗結果發現連續操作馴養約3倍污泥停留時間(SRT)後(40~60天),系統即呈現穩定狀態,並獲致COD與磷去除成效均極為接近之生物除磷系統。另外,於馴養前的批次實驗結果顯示,於馴養前系統幾乎無釋攝磷現象或僅具極低之釋攝磷行為,但在經過相同條件馴養後,皆能馴養出富含磷蓄積菌之生物處理系統,如此之結果顯示磷蓄積菌應普遍存在於各式傳統活性污泥系統中。最後,由馴養期間水質數據,配合批次實驗與菌相觀察結果發現,雖植種污泥來源不同,但在進流基質與操作條件相同情形下,均可馴養出族群結構相似之富含磷蓄積菌污泥。
另外,厭氧好氧活性污泥系統經長時間的發展已證實具有加強除磷的功能,惟該系統常因某些因素造成除磷效果不彰甚至喪失,肝醣蓄積菌 (Glycogen Accumulating Organisms, GAOs) 與磷蓄積菌 (Phosphate Accumulating Organisms, PAOs) 的競爭被視為最主要的原因之一。對一般廢水處理廠而言,其進流水中的有機物種類極為複雜,因為當進流水經過厭氧段時,即開始產生發酵反應,發酵的產物包含有:乙酸、丙酸、乳酸……等等。另外,當以Glucose為碳源時,可能會導致EBPR效果的喪失 (Cech and Hartman, 1990、1993) ,但亦有其他研究指出此時的EBPR仍可正常穩定的操作 (Nakamura and Dazai, 1986; Arun et al. 1989) 。明顯發現以Glucose為碳源時對EBPR的效果呈現極端的現象。因此研究各種有機物是否對系統除磷效果造成影響,應有進一步探討之必要。本研究即在以醋酸、丙酸、葡萄糖與乳酸為基質,並且分別以三種不同P/C比所馴養的活性污泥來進行實驗,以期能夠求取此三種污泥對於不同碳源的攝取動力參數以及計量關係。
實驗結果發現,乙酸和葡萄糖為單一基質時,對於三種不同P/C比的污泥都不會產生基質攝取抑制的現象,但是當以丙酸和乳酸為單一基質時,三種污泥在基質濃度較高時,皆有基質攝取抑制的現象。進ㄧ步求取三種不同P/C比之污泥對於各種基質的動力參數值,計算結果如下表所示。另外,在計量關係部份,嘗試以不同基質濃度來進行計算,結果顯示不同的基質濃度的確會使計量關係產生變化。
carbon kinetic parameters GAOs (2.8/600) PAOs (11/600) PAOs (22/600)
source
Acetate qm a 0.55 0.70 0.69
Ks b 153.98 132.13 93.67
Glucose qm a 4.00 4.17 4.04
Ks b 176.65 211.80 253.89
Propionate qm a 1.47 1.60 1.30
Ks b 70.73 47.85 20.26
KSI c 176.18 124.42 111.48
Lactate qm a 0.84 0.83 0.76
Ks b 22.86 23.60 44.41
KSI c 219.94 138.48 82.75
a.最大基質攝取速率 (mg/g MLSS/min) b.半飽和常數 (mg/L) c.抑制常數 (mg/L)
綜合實驗結果,可以得知生物處理系統進流中若含有乙酸,對除磷系統有益。至於葡萄糖的部份,三者的最大基質攝取率相似,不過PAOs能夠蓄積較多的PHAs於胞內,因此,推測進流中含有葡萄糖應該不至於對生物除磷系統產生衝擊。丙酸部分,雖然最大基質攝取速率沒有依定的趨勢,但由半飽和常數發現PAOs對於丙酸較具親和力,因此,推測當進流中含有丙酸時,對於生物除磷系統不會產生太大的影響。在乳酸的實驗當中則發現其最大基質攝取速率與半飽和常數都是以GAOs較佳,不過,在計量方面卻發現PAOs能夠蓄積較多的PHAs,到此實驗產生矛盾的現象,因此還無法確定在進流中含有乳酸時,對於生物除磷系統的影響為何。
Abstract

Starting-up of newly established Enhanced Biological Phosphorus Removal (EPBR) system requires seeding sludge from other biological treatment plant so as to obtain a PAO-enriched sludge. Some scholars believe PAOs have to coexist with anaerobic bacteria, as PAOs can only take up short chain fatty acid in the anaerobic stage. Some researches mention that micro flora structure of PAO-enriched sludge is very complicated while Betaproteobacteria and Actinobacteria are the main superiority micro flora. However, whether seeding with waste sludge from traditional biological treatment system (sewage treatment, industry waste water treatment plants) can have the biologically phosphorus removal result of the newly established biological system is still left for further study. Therefore, the research aims at verifying this by seeding different sludge to anaerobic-oxic (A/O) activated sludge system.
After continuous operation of 3 folds of SRT (i.e. 40 to 60 days), the A/O systems become stable and we have similar process performance for the EBPR system. From the results of the batch tests before seeding, almost no phosphorous release/uptake was obseved. However, batch tests after seeding demonstrated excellent phosphorous removal;which means PAOs exist in various traditional active sludge system. Finally, same influent substrate and operation conditions can obtain, PAO-enriched sludge with similar microbial.
It has long been prove although the sludge source is different that anaerobic-oxic (A/O) activated sludge system enhances biologically phosphorus removal, although the effect is often hindered due to some factors. The main reason is the competition between Glycogen Accumulating Organisms (GAOs) and Phosphate Accumulating Organisms (PAOs). The organic substances in influent water of common waste water treatment plants are complicated. When the influent water is in anaerobic stage, fermentation reaction starts. The fermentation products includes acetate, propionate, and lactate, etc. It is, therefore, suspected whether different organic substances affect the biologically phosphorus removal of the system. Therefore, this study investigated the stoichiometries and kinetic constants of PAO-enriched sludge by using batch tests fed with acetate, propionate, glucose, and latate.
When acetate and glucose are the single substrate, they do not inhibit the substrate uptake of sludge in three different P/C ratios. However, with propionate and lactic as single substrate, higher substrate concentration exhibited self inhibition effects. We have listed the kinetic parameter of sludge from three ratios of P/C on various substrates in the following table. Besides, results show that different substrate concentrations do change their stoichiometry relation.
carbon kinetic parameters GAOs (2.8/600) PAOs (11/600) PAOs (22/600)
source
Acetate qm a 0.55 0.70 0.69
Ks b 153.98 132.13 93.67
Glucose qm 4.00 4.17 4.04
Ks 176.65 211.80 253.89
Propionate qm 1.47 1.60 1.30
Ks 70.73 47.85 20.26
KSI c 176.18 124.42 111.48
Lactate qm 0.84 0.83 0.76
Ks 22.86 23.60 44.41
KSI 219.94 138.48 82.75
a..maximum specific substrate utilization rates (mg/g MLSS/min)
b. saturation constant (mg/L)
c. inhibition constants (mg/L)
Experimented results infer that acetate in biological treatment influent does help biologically phosphorus removal. As for glucose, the maximum specific substrate utilization rates of the three sludge are similar. It is speculated that glucose influent shall not make impacts on EPBR. Although maximum specific substrate utilization rates in propionate has no fixed trend, as PAOs is more affinitive to propionate from KS, it is speculated that propionate in influent does not make much difference on EPBR. In lactic experiment, it is found GAOs has better maximum specific substrate utilization rates and KS. Yet, PAOs can accumulate more PHAs. Therefore, one can still not be sure of the impact on EPBR from lactate influent.
目錄
中文摘要……………………………………………………..………….………x
英文摘要…………………………………………………………….……..……x
誌謝……………………………………………………………….………..……x
目錄 ………………………………………………………………….……….x
表目錄 ……………………………………………………………….…...........xiii
圖目錄 …………………………………………………………………..............xv
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的及內容 3
第二章 文獻回顧 4
2.1 除磷概論 4
2.1.1加強生物處理系統(EBPR) 4
2.1.2生物除磷的原理 4
2.2 影響除磷效果之外在因素 6
2.2.1揮發性脂肪酸 6
2.2.2溫度 7
2.2.3 pH值 8
2.3 肝醣蓄積菌 9
2.3.1 肝醣蓄積菌的發現 9
2.3.2 肝醣蓄積菌與磷蓄積菌之交互關係 10
2.4 以不同基質為碳源時活性污泥之代謝路徑 11
2.4.1 乙酸為單一基質 11
2.4.2 葡萄糖為單一基質 14
2.4.3 丙酸為單一基質 15
2.4.4 乳酸為單一基質 17
第三章 實驗設備與方法 21
3.1 實驗架構 21
3.2 連續操作SBRs模廠 22
3.3 批次實驗 26
3.3.1不同植種污泥進行生物除磷系統啟動之批次實驗 26
3.3.2不同碳源對活性污泥系統厭氧代謝行為影響之批次實驗 26
3.4 分析方法與實驗設備 27
第四章 結果與討論 29
4.1以不同植種污泥進行生物除磷系統啟動之實驗 29
4.1.1 不同植種污泥馴養期間水質監測 29
4.1.2 不同植種污泥馴養前後以乙酸為碳源之批次實驗 31
4.1.4 不同植種污泥馴養前後微生物族群變化情形 36
4.2模廠穩定期間水質數據 37
4.2.1 高磷(22/600)SBR模廠 37
4.2.2 中磷(11/600)SBR模廠 38
4.2.3 低磷(2.8/600)SBR模廠 38
4.3不同碳源對活性污泥系統厭氧代謝行為之影 39
4.3.1 以乙酸為單一碳源 39
4.3.1.1 厭氧代謝行為 39
4.3.1.2 動力關係 40
4.3.1.3 基質攝取計量關係 43
4.3.2 以葡萄糖為單一碳源 46
4.3.2.1 厭氧代謝行為 46
4.3.2.2 動力關係 47
4.3.2.3 基質攝取計量關係 49
4.3.3以丙酸為單一碳源 51
4.3.3.1 厭氧代謝行為 52
4.3.3.2 動力關係 52
4.3.3.3 基質攝取計量關係 56
4.3.4 以乳酸為單一碳源 58
4.3.4.1 厭氧代謝行為 58
4.3.4.2 動力關係 60
4.3.4.3 基質攝取計量關係 64
第五章 結論與建議 67
5.1結論 67
5.1.1 以不同植種污泥進行生物除磷系統啟動之實驗 67
5.1.2 不同碳源對活性污泥系統厭氧代謝行為之影響 67
5.2建議 69
5.2.1 以不同植種污泥進行生物除磷系統啟動之實驗 69
5.2.2 不同碳源對活性污泥系統厭氧代謝行為之影響 69
參考文獻 70
附錄A-1:以醋酸為碳源之批次實驗 (22/600) 77
附錄A-2:以葡萄糖為碳源之批次實驗 (22/600) 79
附錄A-3:以丙酸為碳源之批次實驗 (22/600) 81
附錄A-4:以乳酸為碳源之批次實驗 (2.8/600) 83
附錄A-5:以乳酸為碳源之批次實驗 (11/600) 85
附錄A-6:以乳酸為碳源之批次實驗 (22/600) 87
附錄B-1:不同植種污泥馴養前批次實驗 89
附錄B-2:不同植種污泥馴養後批次實驗 91
附錄B-3:不同植種污泥馴養期間水質變化 93
參考文獻
1.Abu-Ghararah, Z.H. and Randall, C.W. (1991)“The effect of organic compounds on biological phosphorus removal.”Wat.Sci.Tech., 23, 585-594.
2.Arun, V., Mino, T. and Matsuo, T. (1989)“ Metabolism of glucose during the anaerobic phase of the enhanced biological phosphorus removal process. ”Int. Conf. on Water and Wastewater, Beijing
3.Barnard, J. L., Stevens, G. M. and Leslie, P. J. (1985)“Design strategies for nutrient removal plant.”Wat. Sci. Tech. 17(11-12),233-242.
4.Brdjanovic, D., van Loosdrecht, M. C. M., Hooijmans, C. M., Mino, T., Alaerts, G. J. and Heijnen, J. J., (1997a), “Bioassay for glycogen determination in biological phosphorus removal systems.”Proc. 2nd Int. Conf. on Microorganisms in Activated sludge and Biofilm Processes, Berkeley, U.S.A.
5.Brdjanovic, D., van Loosdrecht, M. C. M., Hooijmans, C. M., Mion, T., Alaerts, G. J. and Jeijnen J. J., (1998c), “Bioassay for glycogen determination in biological phosphorus removal systems.”Wat. Sci. Tech. 37(4-5), 541-547.
6.Brdjanovic, D., Hooijmans, C. M., van Loosdrecht, M. C. M., Alaerts, G. J. and Heijnen, J. J. (1996) “The dynamic effect of potassium limitation on biological phosphorus removal.”Wat. Res.30(10),2323–2328.
7.Brdjanovic, D., van Loosdrecht, M. C. M., Hooijmans, C. M., Alaerts, G. J. and Heijnen, J. J. (1997)“Temperature effects on physiology of biological phosphorus removal.”J. Environ. Eng.123(2),144–153.
8.Brdjanovic, D., Logemann, S., van Loosdrecht, M. C. M., Hooijmans, C. M., Alaerts, G. J. and Jeijnen, J. J. (1998a)“Influence of temperature on biological phosphorus removal: process and molecular ecological studies.” Wat. Res.32(4),1035–1048.
9.Brdjanovic, D., Slamet, A., van Loosdrecht, M. C. M., Hooijmans, C. M., Mino, T., Alaerts, G. J. and Heijnen, J. J. (1998b)“Impact of excessive aeration on biological phosphorus removal from wastewater.”Wat. Res. 32,200.
10.Brdjanovic, D., van Loosdrecht, M. C. M., Hooijmans, C. M., Mion, T., Alaerts, G. J. and Jeijnen, J. J. (1998c)“Bioassay for glycogen determination in biological phosphorus removal systems.”Wat. Sci. Tech.37(4-5),541-547.
11.Cech, J. S. and Hartman, P. (1990)“Glucose induced break-down of enhanced biological phosphate removal.”Environ. Tech.11,651-656.
12.Cech, J. S. and Hartman, P. (1993)“Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal system.”Wat. Res.27,1219-1225.
13.Che, O. J. and Jong, M. P. (2000) “Enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose as a sole carbon source. ” Wat. Res.34,2160-2170.
14.Comeau, Y., Hall, K. J., Hancock, R. E. W. and Oldham, W. K. (1986) “Biochemical model enhanced biological phosphorus removal.”Wat. Res.20(12),1511-1521.
15.Converti, A., Rovatti, M. and del Borghi, M. (1995) “Biological removal of phosphorus.”Wat. Res.29(1),263-267.
16.Fillipe, C. D.M., Daigger, G. T., Grady, C. P. L. (2001a) “Effects of pH on the rates of aerobic metabolism of phosphate-accumulating andglycogen accum ulating organisms.”Water Environ Res. 73(2),213–222.
17.Fillipe, C. D. M., Daigger, G. T., Grady, C. P. L. (2001b) “pH as a key factor in the competition between glycogen-accumulating organisms andphosphor us-accumulating organisms.”Wat. Environ Res. 73(2),223–232.
18.Fillipe, C. D. M., Daigger, G. T., Grady, C. P. L. (2001c) “A metabolic model for acetate uptake under anaerobic conditions by glycogen accumulating organisms: stoichiometry, kinetics and the effect of pH.” Biotechnol. Bioeng.76(1),17-31.
19.Fillipe, C. D. M., Daigger, G. T., Grady, C. P. L. (2001d)“Stoichiometry and kinetics of acetate uptake under anaerobic condition by an enriched culture of phosphorus-accumulating organisms at different pHs.”Biotechnol. Bioeng.76(1),32-43.
20.Florentz, M., Caille, D., Bourdon, F. and Sibony, J. (1987)“Biological phosphorus removal in France.”Wat. Sci. Tech. 19(4),1171-1173.
21.Fukase, T., Shibata , M. and Miyaji, Y.(1985)“The role of an anaerobic stage on biological phosphorus removal.”Wat. Sci. Tech. 17,68-80.
22.Helmer, C. and Kunst , S. (1998)“Low temperature effects on phosphorus release and uptake by microorganisms in EBPR plants.”Wat. Sci. Tech. 37(4-5),531-539.
23.Hesselmann RPX, VonRummell R, Resnick SM, Hany R, Zehnder AJB. (2000). “Anaerobic metabolism of bacteria performing enhanced biological phosphate removal.”Water Res. 34:3487-3494.
24.Hood, C.R., Randall, A.A. (2001)“A biochemical hypothesis explaining the response of enhanced biological phosphorus removal biomass to organic substrates.”Water Res. 35:2758-2766.
25.Jeon, C.O., Park, J.M. (2000)“Enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose as a sole carbon source.” Water Res. 34:2160-2170.
26.Jeon, C. O., Lee, D. S., Lee, M. W. and Park , J. M. (2001)“Enhanced biological phosphorus removal in an anaerobic –aerobic sequencing batch reactor: effect of pH.”Wat. Environ Res. 73(2),301-306.
27.Kuba, T., Wachtmeister, A., van Loosdrecht, M. C. M. and Heijnen, J. J. (1994) “Effect of nitrate on phosphorus release in biological phosphorus removal system.”Wat. Sci. Tech. 30(6), 263-269.
28.Lemos, P.C., Viana, C., Salgueiro, E.N., Ramos, A.M., Crespo, J.P.S.G., and Reis, M.A.M. (1998) “Effect of carbon source addition on the formation of polyhydroxyalkanoates(PHAs) by a phosphate-accumulating mixed culture.”Enz. Micro.Tech. 22, 662-671.
29.Liu, W. T., Mino, T., Nakamura, K. and Matsuo, T. (1994)“Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaerobic-aerobic activated sludge with a minimized polyphosphate content.”J. Ferment. Biotechnol.77,535-540.
30.Liu, W. T., Mino, T. Nakamura, K. and Matsuo, T. (1996a) “Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal.”Wat. Res. 30(1), 75-82.
31.Liu, W. T., Nakamura, K., Matsuo, T. and Mino, T. (1997a) “Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors - effect of P/C feeding ratio.”Wat. Res. 31(6), 1430-1438.
32.Louie, T.M., Mah, T.J., Oldham, W. and Ramey, W.D., (2000) “Use of metabolic inhibitors and gas chromatography / mass spectrometry to study poly-β-hydroxyalkanoates metabolism involving cryptic nutrients in enhanced biological phosphorus removal systems.”Wat. Res. 34(5), 1507- 1514.
33.Liu, W. T., Mino, T. Nakamura, K. and Matsuo, T. (1996a)“Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal.”Wat. Res. 30(1), 75-82.
34.Mamais, D. and Jenkins, D. (1992)“The effect of mean cell residence time and temperature on enhanced biological phosphorus removal.”Wat. Sci. Tech. 26(5–6),955–965.
35.Matsuo, Y. (1994)“Effect of the anaerobic solid retention time on enhanced biological phosphorus removal.”Wat. Sci. Tech. 30(6),193-202.
36.McClintock, S. A., Randall, C. W., Pattarkine, V. M. (1993) “ Effects of temperature and mean cell residence time on biological nutrient removal process.”Wat. Envir. Res. 65(2),110–118.
37.Mino, T., Tsuzuki, Y. and Matsuo, T. (1987) “Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process. Proc.IAWPRC Int. Conf. on Biological Phosphate Removal from Wastewaters.”Rome, Adv. Water Pollut. Cont., ed., R.Ramadori, 27-38. Pergamon Press.
38.Mino, T., Satoh, H, Matsuo, T. (1994).“Metabolisms of different bacterial populations in enhanced biological phosphate removal processes.”Water Sci Technol 29 (7):67-100.
39.Mino, T., van Loosdrecht, M. C. M. and Hejjnen, J. J. (1998) “Microbiology and biochemistry of the enhanced biological phosphate removal process.” Wat. Res. 32(11), 3193-3207.
40.Oa, S. W. and Choi, E. (1997)“Phosphorus removal from nightsoil wuth sequencing batch reactor.”Wat. Sci. Tech.36(12)55-60.
41.Panswad, T., Doungchai, A. and Anotai, J. (2003)“Temperature effect on microbial community of enhanced biological phosphorus removal system.”Wat. Res. 37(2), 409-415.
42.Pereira, H., Lemos, P. C., Reis, M. A. M., Crespo, J. P. S. G., Carrondo, M. J. T. and Santos, H. (1996) “Model for carbon metabolism in biological phosphorus removal process based on in vivo C13-NMR labeling experiments.”Wat. Res.,30(9),2128-2138.
43.Pijuan, M, Saunders, AM, Guisasola, A, Baeza, JA, Casas, C, Blackall, LL. (2004) “Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source.”Biotechnol Bioeng 85(1): 56-67.
44.Randall, CW, Chapin, RW. (1997)“Acetic acid inhibition of biological phosphorus removal.”Water Environ Res. 69:955-960.
45.Romansky, J., Heider, M. and Wiesmann, U. (1997)“Kinetics of anaerobic orthophosphate release and substrate uptake in enhanced biological phosphorus removal from wastewater.”Wat. Res. (G.B.)35, 3193.
46.Satoh, H.; Mino, T. and Matsuo, T., (1992)“Uptake of organic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobic conditions in the biological excess phosphate removal processes.”Wat. Sci. Tech. 23 (5-6) 933-942.
47.Schuler, A. J. and Jenkins, D. (2002)“Effects of pH on enhanced biological phosphorus removal metabolisms.”Wat. Sci. Tech. 46(4–5),171–178.
48.Sell, R. L., Krichten, D. J., Noichl, O. J. and Hartzog, D. G. (1981)“Low temperature biological phosphorus removal.”Proc.,54th WPCF Conf.
49.Shapiro, J., Levin, G. V. and Humberto, Z. G. (1965)“Metabolic uptake of phosphorus by wastewater organisms.”J. Water Pollution Control Fed.,37(6),800-824.
50.Smolders, G. L. F., van, d. J., van Loosdrecht, M. C. M. and Heijnen J. J. (1994)“Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and H influence.”Biotechnol. Bioeng.43,461-470
51.Sudiana, I. M., Mino, T., Satoh, H., Nakamura, k. and Matsuo, T. (1999) “Metabolism of enhanced biological phosphorus removal and non-enhanced biological phosphorus removal sludge with acetate and glucose as carbon source.”Wat. Sci. Tech. 39(6),29-35.
52.Spazierer, G., Ludwig, C. and Matsche, N. (1985)“Biological phosphorus removal in combination with simultaneous precipitation.”Wat. Sci. Tech. 17(11-12),163-167.
53.Van, L M. C. M. and Heijnen, J. J., (1997)“Importance of bacterial storage polymers in bioprocesses.”Water Sci. Tech. 35(1), 41-47.
54.Whang, L. M. and Park, J. M. (2002)“Competition between polyphosphate and glycogen accumulating organisms in biological phosphorus removal system-effect of temperature.”Wat. Sci. Tech. 46(1-2),191-194.
55.Yeoman, S., Stephenson, T., Lester, J. N. and Perry, R. (1988)“The removal of phosphorus during wastewater treatment: a review.”Environ. Pollut,149,183-233.
56.Zeng, R.J, Yuan, Z, van, L M.C.M, Keller, J. (2002)“Proposed modifications to metabolic model for glycogen accumulating organisms under anaerobic conditions.”Biotechnol Bioeng 80:277-279.
57.歐陽嶠暉 (2004) 下水道工程學,長松文化公司出版。
58.黃雅琪.(2003) 低磷負荷厭氧選種系統pH、溫度效應與菌群結構之研究,碩士論文,國立雲林科技大學環境與安全工程研究所。
59.施博文(2004) 厭氧耗氧活性污泥系統微生物族群分布及動力特性之研究碩士論文,國立雲林科技大學環境與安全工程研究所。
60.游千慧(2006) 不同有機基質對厭氧好氧活性污泥系統厭氧代謝行為之影響,碩士論文,國立雲林科技大學環境與安全工程研究所。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top