跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/13 22:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭于珊
研究生(外文):Yu-Shan Peng
論文名稱:臺灣西南海域永安海脊熱流變化對天然氣水合物穩定帶的影響
論文名稱(外文):The Effect of Heat Flow on the Base of Gas Hydrate Stability Zone in the Yung-An Ridge Area Offshore Southwestern Taiwan
指導教授:劉家瑄劉家瑄引用關係
口試委員:戚務正許樹坤王詠絢
口試日期:2012-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:熱流海底仿擬反射天然氣水合物穩定帶底部流體移棲永安海脊
外文關鍵詞:Heat FlowBSRBGHSFluid MigrationYung-An Ridge
相關次數:
  • 被引用被引用:5
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
許多地球物理、地質與地球化學的海域調查結果顯示台灣西南海域應有廣泛的天然氣水合物蘊藏。由於天然氣水合物的形成必須滿足一定的溫壓條件,相較於壓力的影響而言,溫度的影響顯然大得多,即溫度的變化成為控制天然氣水合物分布的一個主要因素。本研究分析台灣西南海域永安海脊地區的熱流變化,並透過震測剖面探討影響熱流變化的可能因素。我們根據地貌特徵及地質構造,將研究地區自東向西分成五個區帶: (1)東側斷層區 (2)東側斜坡盆地 (3)海脊區 (4)西側斜坡盆地 (5)古海底峽谷堆積區。研究地區中熱流值最高的區域位在永安海脊東側斜坡盆地東緣的逆衝斷層出露附近,熱流高值僅次於東側斷層區的為海脊區,而斜坡盆地之熱流值則一般偏低。本研究認為永安海脊區域熱流值高低主要受控於地層中是否有提供流體移棲的管道,使深部的高溫流體向上移棲,如斷層構造與傾斜角度大的地層可能易使高溫流體向上移棲,造成高熱流值,而高溫也使得該處之BSR深度明顯變淺或是消失;沉積作用則會降低表層地溫梯度造成低熱流值,說明了構造與沉積環境均會影響熱流值高低。本研究亦比較海底仿擬反射(BSR)與天然氣水合物穩定帶底部(BGHS)深度的差異,以及BSR深度估算出的熱流值與實際量測熱流值的差異,結果顯示兩者差異大的地區均是流體移棲活躍的地區,這可能是因表層沉積物受高溫流體擾動或是沉積、侵蝕作用的影響,導致深部與淺層地溫梯度尚未達到一致的結果。由震測剖面影像與構造解釋,再配合BSR的深度變化與熱流值分布,本研究證實在永安海脊區域由於受到流體移棲的影響,導致局部的天然氣水合物穩定帶狀態改變,進而觀察到BSR、BGHS深度及熱流值的變化。整體來說,永安海脊區域有許多測站量測到高熱流值,高熱流現象扮演破壞天然氣水合物穩定帶的角色,造成BSR深度變淺。因此透過分區的熱流解釋與震測剖面上所顯示的地下構造變化,便能清楚了解永安海脊天然氣水合物穩定帶的分布與變化。

Geophysical, geological and geochemical investigation results indicate that gas hydrates are widely distributed in the area offshore southwestern Taiwan. The formation of gas hydrate is controlled by temperature and pressure conditions. In the offshore environment, pressure normally follow water depths, thus gas hydrate stability is more susceptible to changes in temperature then in pressure. In this study, we analyze the variation of heat flow values in the Yung-An Ridge area, and compare them with the seismic profile to discuss the possible reasons. We divide the study area into five zones based on morpho-structure and sedimentary characteristics, from east to west, they are 1. the fault located at the eastern edge of the slope basin; 2. the slope basin east of the Yung-An Ridge; 3. the Yung-An ridge;4.the slope basin west of the Yung-An Ridge, and 5. the paleo-canyon cut and fill zone. Our study indicates that fluid migration is a major factor controlling heat flow variations in this area. The highest heat flow values are observed near fault outcrops located at eastern edge of the slope basin, thus are caused by fluid migration through faults. Another zone has high heat flow values is the Yung-An Ridge where steeply dipping strata provide good fluid migration paths. In both of the above zones, we can see the BSR depths become shallower or even disappear. We suggest that high values of heat flow are primarily caused by warm fluids flowing upward along faults or dipping porous strata, while low heat flow values could be caused by rapid sedimentation. It appears that the heat flow values are influenced by structural and sedimentary processes. Furthermore, we compare the depths of BSR and BGHS at heat flow stations, calculate heat flow values based on BSR depths and compare them with the measured heat flow values. We found that discrepancies are large in the locations where active fluid migration occur. So the thermal gradient may not be a constant from shallow to deep. In summary, based on multichannel seismic reflection and, chirp sonar profile data, structural interpretation, the distribution of BSR depths and measured heat flow values, we suggest that the base of gas hydrate stability zone could be changed by high temperature fluids from deep, high heat flow may shift BSR to be shallow, and produce measured high heat flow values. Through interpretation of the observed heat flow values and seismic data in the Yung-An ridge, we could explain the distribution and variation of gas hydrate stability zone.

口試委員審定書 I
誌謝 II
摘要 III
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 X
第一章 緒論 1
1-1 天然氣水合物 1
1-1.1甲烷氣來源 1
1-1.2 天然氣水合物生成條件 1
1-2 天然氣水合物探測方法 5
1-3 研究動機與目的 10
第二章 區域背景 14
2-1 地質背景 14
2-2台灣天然氣水合物研究調查 16
2-3 研究重點區域 19
第三章 地熱量測 22
3-1 儀器介紹與施測流程 22
3-1.1利氏海底熱探針 22
3-1.2 小型附著式溫度探針 22
3-1.3 熱傳導分析儀 23
3-2 資料處理 30
3-2.1 溫度校正 30
3-2.2 溫度梯度 30
3-2.3 熱傳導係數 31
3-3 BGHS深度計算 35
3-4熱流值計算 35
第四章 資料處理與整編 36
4-1 資料來源 36
4-2 資料收集與處理 36
4-2.1 連續變頻聲納 36
4-2.2 多頻道反射震測 36
4-2.3三維震測資料 37
4-3 研究區域之資料整編 40
4-3.1 地熱量測資料 40
4-3.2 震測資料 40
第五章 結果與討論 45
5-1 熱流值分佈 45
5-1.1 東側斷層區 45
5-1.2 東側斜坡盆地 45
5-1.3 海脊區 46
5-1.4 西側斜坡盆地 47
5-1.5 古海底峽谷堆積區 47
5-2 BSR、BGHS與熱流之間的關係 56
5-2.1 BSR分布 56
5-3 熱流值比較 65
第六章 結論 72
參考文獻 74



中文部分
李信宏 (2008) 台灣西南海域之天然氣水合物穩定帶底部與沉積物熱導係數異常之探討。國立台灣大學理學院海洋研究所碩士論文。共60頁。
林哲銓 (2005) 台灣西南海域含天然氣水合物地層之構造架構與沉積特徵。國立中央大學地球科學院地球物理研究所碩士論文。共152頁。
林殿順 (2009) 台灣西南海域新興能源 -天然氣水合物資源調查與評估: 震測及地熱調查(2/4)。含天然氣水合物地層的構造與沉積特徵研究。經濟部中央調查所報告第98-25-F號。共77頁。
林曉武 (2008) 台灣西南海域新興能源 -天然氣水合物資源調查與評估: 地球化學調查研究(1/4)。台灣西南海域自生性碳酸鹽及硫物種之變化與天然氣水合物賦存之關係。經濟部中央調查所報告第97-29C號。共80頁。
徐春田 (2011) 台灣西南海域天然氣水合物蘊藏區之地熱。2011天然氣水合物調查研究成果研討會論文集。經濟部中央地質調查所。第62-66頁。
徐春田 (2011) 台灣西南海域新興能源-天然氣水合物資源調查與評估: 震測及地熱調查(4/4)。天然氣水合物賦存區之地熱調查。經濟部中央調查所報告第100-24-E號。共94頁
翁榮南 (2005) 從氣體生成來源觀點探討天然氣水合物系統。石油季刊,第41卷,第4期。第15-24頁。
陳冠宇 (2006) 台灣西南外海之構造與地形特徵及澎湖海底峽谷演化。國立中央大學地球科學院地球物理研究所碩士論文。共111頁。
黃奇瑜 (2005) 臺灣附近大地構造與新生代造山時空演化- 九二一集集大地震。行政院國科會。第4-42頁。
楊燦堯 (2008) 台灣西南海域新興能源 -天然氣水合物資源調查與評估: 地球化學調查研究(1/4)。台灣西南海域海水與沉積物之氣體化學組成。經濟部中央調查所報告第97-29A號。共57頁。
廖士瑋 (2010) 應用三維反射震測技術調查台灣西南海域天然氣水合物系統。國立台灣大學理學院海洋研究所碩士論文。共84頁。
劉家瑄 (2011) 台灣西南海域新興能源 -天然氣水合物資源調查與評估: 震測及地熱調查(4/4)。總論。經濟部中央調查所報告第100-24號。共228頁。
樓文琳 (2009) 使用有限元素法修正淺層地溫梯度之地形效應並推估天然氣水合物的底部深度。國立台灣大學理學院海洋研究所碩士論文。共87頁。
蔡佑聰 (2010) 利用P波速度修正地溫梯度與天然氣水合物穩定帶底部深度。國立台灣大學理學院海洋研究所碩士論文。共85頁。
鐘三雄 (2007) 新型態潔淨能源-天然氣水合物。科學發展,4月,412期。第6-13頁。

英文部分
Blackwell, J. H., 1954, A transient-flow method for determination of thermal constants of insulating materials in bulk .1. Theory: Journal of Applied Physics, v. 25, no. 2, p. 137-144.
Bullard, E., 1954, The flow of heat through the floor of the Atlantic Ocean: Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, v. 222, no. 1150, p. 408-429.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of heat in solids, Oxford, Clarendon Press, 510 p. p.:
Chang, H. I., and Shyu, C. T., 2011, Compact high-resolution temperature loggers for measuring the thermal gradients of marine sediments: Marine Geophysical Research, v. 32, no. 4, p. 465-479.
Chiu, J. K., Tseng, W. H., and Liu, C. S., 2006, Distribution of gassy sediments and mud volcanoes offshore southwestern Taiwan: Terrestrial Atmospheric and Oceanic Sciences, v. 17, no. 4, p. 703-722.
Davie, M. K., Zatsepina, O. Y., and Buffett, B. A., 2004, Methane solubility in marine hydrate environments: Marine Geology, v. 203, no. 1-2, p. 177-184.
Dickens, G. R., and QuinbyHunt, M. S., 1997, Methane hydrate stability in pore water: A simple theoretical approach for geophysical applications: Journal of Geophysical Research-Solid Earth, v. 102, no. B1, p. 773-783.
Floodgate, G. D., and Judd, A. G., 1992, The Origins of Shallow Gas: Continental Shelf Research, v. 12, no. 10, p. 1145-1156.
Foucher, J. P., Nouze, H., and Henry, P., 2002, Observation and tentative interpretation of a double BSR on the Nankai slope: Marine Geology, v. 187, no. 1-2, p. 161-175.
Ganguly, N., Spence, G. D., Chapman, N. R., and Hyndman, R. D., 2000, Heat flow variations from bottom simulating reflectors on the Cascadia margin: Marine Geology, v. 164, no. 1-2, p. 53-68.
Gardner, T. N., 2000, An acoustic study of soils that model seabed sediments containing gas bubbles: Journal of the Acoustical Society of America, v. 107, no. 1, p. 163-176.
Hamilton, E. L., 1980, Geoacoustic modeling of the seafloor: Journal of the Acoustical Society of America, v. 68, no. 5, p. 1313-1340.
Handa, Y. P., and Stupin, D., 1992, Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-Angstrom-radius silica-gel pores: Journal of Physical Chemistry, v. 96, no. 21, p. 8599-8603.
Huang, C. Y., Wu, W. Y., Chang, C. P., Tsao, S., Yuan, P. B., Lin, C. W., and Xia, K. Y., 1997, Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan: Tectonophysics, v. 281, no. 1-2, p. 31-51.
Hyndman, R. D., and Dallimore, S. R., 2001, Natural gas hydrate studies in Canada: Canadian Society of Exploration Geophysicists Recorder, v.26, p.11-20.
Hyndman, R. D., Wang, K., Yuan, T., and Spence, G. D., 1993, Tectonic sediment thickening, fluid expulsion, and the thermal regime of subduction zone accretionary prisms - the Cascadia margin off Vancouver-Island: Journal of Geophysical Research-Solid Earth, v. 98, no. B12, p. 21865-21876.
Jaeger, J. C., 1965, Application of the theory of heat conduction to geothermal measurements, Terrestrial Heat Flow: American Geophysical Union, v. 8, p. 7-23.
Kaul, N., Rosenberger, A., and Villinger, H., 2000, Comparison of measured and BSR-derived heat flow values, Makran accretionary prism, Pakistan: Marine Geology, v. 164, no. 1-2, p. 37-51.
Kvenvolden, K. A., 1993, Gas Hydrates - Geological perspective and global change: Reviews of Geophysics, v. 31, no. 2, p. 173-187.
Liu, C. S., Huang, I. L., and Teng, L. S., 1997, Structural features off southwestern Taiwan: Marine Geology, v. 137, no. 3-4, p. 305-319.
Liu, C. S., Schnurle, P., Wang, Y. S., Chung, S. H., Chen, S. C., and Hsiuan, T. H., 2006, Distribution and characters of gas hydrate offshore of southwestern Taiwan: Terrestrial Atmospheric and Oceanic Sciences, v. 17, no. 4, p. 615-644.
Lu, H. L., Matsumoto, R., Tsuji, Y., and Oda, H., 2001, Anion plays a more important role than cation in affecting gas hydrate stability in electrolyte solution? a recognition from experimental results: Fluid Phase Equilibria, v. 178, no. 1-2, p. 225-232.
Lundberg, N., Reed, D. L., Liu, C. S., and Lieske, J., 1997, Forearc-basin closure and arc accretion in the submarine suture zone south of Taiwan: Tectonophysics, v. 274, no. 1-3, p. 5-23.
Martin, V., Henry, P., Nouze, H., Noble, M., Ashi, J., and Pascal, G., 2004, Erosion and sedimentation as processes controlling the BSR-derived heat flow on the Eastern Nankai margin: Earth and Planetary Science Letters, v. 222, no. 1, p. 131-144.
Matsumoto, R., Tomaru, H., and Lu, H. L., 2004, Detection and evaluation of gas hydrates in the eastern Nankai Trough by geochemical and geophysical methods: Resource Geology, v. 54, no. 1, p. 53-67.
Minshull, T., and White, R., 1989, Sediment compaction and fluid migration in the Makran Accretionary Prism: Journal of Geophysical Research-Solid Earth and Planets, v. 94, no. B6, p. 7387-7402.
Nisbet, E. G., and Fowler, C. M. R., 1982, The thermal background to metamorphism .1. Simple one-dimensional conductive models: Geoscience Canada, v. 9, no. 3, p. 161-164.
Pecher, I. A., Kukowski, N., Huebscher, C., Greinert, J., Bialas, J., and Grp, G. W., 2001, The link between bottom-simulating reflections and methane flux into the gas hydrate stability zone - new evidence from Lima Basin, Peru Margin: Earth and Planetary Science Letters, v. 185, no. 3-4, p. 343-354.
Schnurle, P., and Liu, C. S., 2009, Structural controls on the formation of BSR offshore southwestern Taiwan from a dense seismic reflection survey, in Collett, T., Johnson, A., Knapp, C., and Boswell, R., eds., Natural gas hydrates-Energy resource potential and associated geologic hazards: American Association of Petroleum Geologists Memoir, v.89, p.490-504
Schwalenberg, K., Wood, W., Pecher, I., Hamdan, L., Henrys, S., Jegen, M., and Coffin, R., 2010, Preliminary interpretation of electromagnetic, heat flow, seismic, and geochemical data for gas hydrate distribution across the Porangahau Ridge, New Zealand: Marine Geology, v. 272, no. 1-4, p. 89-98.
Shyu, C. T., and Chang, H. I., 2005, Determination of seafloor temperatures using data from high-resolution marine heat probes: Terrestrial Atmospheric and Oceanic Sciences, v. 16, no. 1, p. 137-153.
Shyu, C. T., Chen, Y. J., Chiang, S. T., and Liu, C. S., 2006, Heat flow measurements over bottom simulating reflectors, offshore southwestern Taiwan: Terrestrial Atmospheric and Oceanic Sciences, v. 17, no. 4, p. 845-869.
Tréhu, A. M., Ruppel, C., Holland, M., Dickens, G. R., Torres, M. E., Collett, T. S., Goldberg, D., Riedel, M., and Schultheiss, P., 2006, Gas hydrates in marine sediments- Lessons from scientific ocean drilling: Oceanography, v. 19, no.4, p. 124–142.
Yamano, M., Uyeda, S., Aoki, Y., and Shipley, T. H., 1982, Estimates of heat-flow derived from gas hydrates: Geology, v. 10, no. 7, p. 339-343.
Zwart, G., Moore, J. C., and Cochrane, G. R., 1996, Variations in temperature gradients identify active faults in the Oregon accretionary prism: Earth and Planetary Science Letters, v. 139, no. 3-4, p. 485-495.

網路資源
U.S. Geological Survey (http://www.usgs.gov/).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top