跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2026/01/16 09:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏正帆
研究生(外文):Cheng-Fan Wei
論文名稱:多層薄膜式耦合傳輸線共模濾波器設計之研究
論文名稱(外文):Study on Multi Thin Film Coupled Transmission Line Common Mode Filter Design
指導教授:張培仁
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:131
中文關鍵詞:薄膜式耦合傳輸線共模濾波器有損耦合傳輸線混模散射參轉換式散佈式等效電路模型散佈式參數磁耗損性Scc21第一個及小值頻率點
外文關鍵詞:thin-film coupled transmission line common filterlossy coupled transmission linemixed-mode scattering parameter transformationdistributed equivalent circuit modeldistributed parametersmagnetic lossthe first lowest peak of Scc21
相關次數:
  • 被引用被引用:0
  • 點閱點閱:786
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
薄膜式共模濾波器被應用於抑制當IEEE1394、USB2.0 以及HDMI等以差動式傳輸(differential transmission)方式傳遞訊號時,因線路本身不完美對稱或外在輻射干擾等原因造成的「共模雜訊」。本研究中,提出一從元件相關尺寸與材料性質等出發,直接預測薄膜式耦合傳輸線共模濾波器(thin-film coupled transmission line common mode filter)相關電性表現的方法。本研究成功地以類解析解的方式建立一數學模型,將薄膜式耦合傳輸線共模濾波器電性表現以公式型式表示出來。本研究先利用有限元模擬軟體建立數個相異元件模型驗證公式預測之準確性,並驗證改變相關參數所造成濾波器效能的影響;除此之外,也驗證當鐵磁層具隨頻率變化與否之磁耗損性(magnetic loss)時所造成濾波器效能的影響;最後針對薄膜式耦合傳輸線共模濾波器Scc21 第一個極小值頻率點進行理論預測與模擬驗證以達到濾波器設計的初衷。從相關比較圖表顯示,本研究所提出的方法除了能夠有效地預測薄膜式耦合傳輸線共模濾波器相關之電性表現外,在參數改變的預測上也極正確,且符合物理意義;並且也能藉本研究之方法看出磁耗損性對薄膜式耦合傳輸線共模濾波器濾波效能的影響;濾波器Scc21 第一個極小值頻率點的預測也能符合趨勢。本研究所提出之薄膜式耦合傳輸線共模濾波器分析與設計方法,物理意義明確;並且由於是從元件尺寸及材料性質直接預測濾波器電性表現,將提供設計者一初期設計時的參考指標。未來將能以本研究所提出之分析方法進一步對濾波器進行優化設計;更能將此分析方法,延伸分析其他不同傳輸金屬佈局型式的薄膜式共模濾波器。
Thin-film common mode filter is applied to suppress the common mode noise which results from non-perfect-symmetric circuit or external radiation. This work derives a method which predicts the electric performance of thin-film coupled transmission line common filter from component dimensions and material property. This work sets up a mathematical model and expresses the electric performance of thin-film coupled transmission line common filter with quasi-analytical formulae. Firstly, this work derives mixed-mode scattering parameter transformation by lossy coupled transmission line model. This work constructs the distributed equivalent circuit model of thin-film coupled transmission line common filter, and derives the analytical formulae of the distributed parameters; then puts them into the transformation above and rearranges to obtain the mixed-mode scattering parameters we concern. This work utilizes FEM simulator to construct several components to verify the formulae prediction and the influence on the filter while changing related parameters; also to verify the influence on the filter while the magnetic loss (frequency-dependent or frequency-independent) of the ferrite layer is considered; finally, to verify the prediction of the first lowest peak of Scc21 of thin-film coupled transmission line common filter. According to the verification, it shows that the method this work introduces is effective and corresponds with physical sense. The method that directly predicts the electric performance from component dimensions and material property also provide a reference for filter design. In the future, one can optimize the common mode filter design by this work and can also extend this work to analyze other thin-film common mode filter with various type of transmission line layout.
論文口試委員審定書
誌謝 ................................................... i
中文摘要 .................................................... ii
Abstract ............................................. iii
目錄 ................................................... v
圖目錄 ................................................ ix
表目錄 ............................................... xii
符號說明 ............................................ xiii
第1 章 導論 ............................................ 1
1.1 研究動機 ........................................... 1
1.2 文獻回顧與探討 ..................................... 4
1.2.1 集總式(lump)等效電路模型 ..................................................... 4
1.2.2 散佈式(distributed)等效電路模型 .................. 7
1.2.3 比較與討論 ....................................... 9
1.3 論文架構 .......................................... 11
第2 章 薄膜式共模濾波器之介紹 ......................... 15
2.1 差動式(differential)訊號傳輸 ...................... 15
2.1.1 簡介 ............................................ 15
2.1.2 差模(differential-mode)與共模(common-mode) ...... 17
2.1.3 差動阻抗(differential impedance) ................ 19
2.2 集總式(lump)元件之濾波機制 ........................ 21
2.3 常見薄膜式共模濾波器形式 .......................... 22
2.3.1 依金屬線佈局(layout)分類 ........................ 22
2.3.2 依耦合形式(coupled type)分類 .................... 25
2.3.3 依製程(process)方式分類 ......................... 25
2.4 薄膜式共模濾波器之量測技術與電性表現評估 .......... 27
2.4.1 量測技術 ........................................ 27
2.4.2 電性表現評估 .................................... 29
2.5 結語 .............................................. 31
第3 章 薄膜式耦合傳輸線共模濾波器之理論建立與設計公式推導..................................................... 33
3.0 簡言 .............................................. 33
3.1 耦合傳輸線共模濾波器之理論 ........................ 35
3.1.1 散佈式(distributed)等效電路 ..................... 35
3.1.2 散佈式電路之濾波機制 ............................ 36
3.2 四埠阻抗矩陣與二埠混模散射矩陣 .................... 39
3.2.1 耦合傳輸線四埠阻抗參數 .......................... 39
3.2.2 混模散射參數(mixed-mode scattering parameters) .. 43
3.2.3 [Z]和[Smixed-mode]之轉換 ........................ 47
3.3 具鐵磁性(Ferromagnetic)介電層耦合傳輸線模型 ....... 49
3.3.1 鐵磁性介電層對傳輸線的影響之討論 ................ 49
3.3.2 具非磁耗損性(magnetic-lossless)鐵磁層模型 ....... 51
3.3.2.1 共模濾波器分析模型 ............................ 51
3.3.2.2 奇模與偶模操作之單位並聯電容 .................. 52
3.3.2.2.1 電容的變分(variational)表示式 ............... 52
3.3.2.2.2 奇模單位並聯電容 ............................ 54
3.3.2.2.2.1 利用等效傳輸線求解Green’s function ....... 56
3.3.2.2.2.2 有限薄度傳輸線之考量 ...................... 59
3.3.2.2.2.3 奇模單位並聯電容變分表示式 ................ 60
3.3.2.2.2.4 奇模單位並聯電容表示式 .................... 61
3.3.2.2.3 偶模單位並聯電容 ............................ 63
3.3.2.2.3.1 利用等效傳輸線求解Green’s function ....... 65
3.3.2.2.3.2 有限薄度傳輸線之考量 ...................... 66
3.3.2.2.3.3 偶模單位並聯電容變分表示式 ................ 67
3.3.2.2.3.4 偶模單位並聯電容表示式 .................... 68
3.3.2.3 奇模與偶模操作之單位串聯電感 .................. 70
3.3.2.3.1 統御方程式(government equation)之推導 ....... 70
3.3.2.3.2 奇模單位串聯電感 .............................72
3.3.2.3.2.1 奇模操作下之磁通量邊界條件 ................ 72
3.3.2.3.2.2 奇模單位串聯電感之解析式 .................. 73
3.3.2.3.3 偶模單位串聯電感 ............................ 75
3.3.2.3.3.1 偶模操作下之磁通量邊界條件 ................ 75
3.3.2.3.3.2 偶模單位串聯電感之解析式 .................. 76
3.3.2.4 奇模與偶模操作之單位並聯電導 .................. 77
3.3.2.4.1 等效導電度(effective conductivity)之推導 .... 77
3.3.2.4.2 等效介電係數(effective dielectric constant) . 79
3.3.2.4.3 單位並聯電導解析公式 ........................ 80
3.3.2.4.3.1 奇模空氣單位並聯電容 ...................... 80
3.3.2.4.3.2 偶模空氣單位並聯電容 ...................... 83
3.3.2.4.3.3 奇模與偶模單位並聯電導之表示式 ............ 86
3.3.2.5 奇模與偶模操作之單位串聯電阻 .................. 87
3.3.2.5.1 考慮渦電流(eddy current)效應之單位串聯電阻 .. 87
3.3.2.5.2 奇模單位串聯電阻 ............................ 90
3.3.2.5.3 偶模單位串聯電阻 ............................ 91
3.3.3 具磁耗損性(magnetic-lossy)鐵磁層模型 ............ 93
3.3.3.1 複導磁係數與鐵磁共振(ferrite-magnetic resonance, FMR) .. 93
3.3.3.2 複單位串聯電感 ................................ 94
3.4 公式整理與討論 .................................... 96
3.4.1 公式整理 ........................................ 96
3.4.2 公式討論 ....................................... 103
第4 章 數值模擬驗證與結果討論 ........................ 106
4.1 數值模型建立 ..................................... 106
4.2 驗證結果與探討 ................................... 107
4.2.1 具非磁耗損性(magnetic-lossless)鐵磁層模型之驗證 107
4.2.1.1 電性表現之預測 ............................... 107
4.2.1.2 參數影響之預測 ............................... 111
4.2.2 具磁耗損性(magnetic-lossy)鐵磁層模型之驗證 ..... 117
4.2.2.1 複導磁係數之影響 ............................. 117
4.2.2.2 鐵磁性共振(FMR)效應 .......................... 118
4.3 共模濾波器設計概念之體現與討論 ................... 120
第5 章 結論與未來展望 ................................ 123
5.1 結論 ............................................. 123
5.2 未來展望 ......................................... 123
參考文獻 ............................................. 125
[1] B.-C. Tseng, L.-K. Wu, J.-W. Sheen, and A.-L. Wang, "Design of miniaturized
common-mode filter by multi-layer low temperature co-fired ceramic," Boston,
MA, United States, 2003, pp. 378-383.
[2] B.-C. Tseng and L.-K. Wu, "Design of miniaturized common-mode filter by
multilayer low-temperature co-fired ceramic," IEEE Transactions on
Electromagnetic Compatibility, vol. 46, pp. 571-579, 2004.
[3] A. technologies, "Concepts in Balanced Device Measurement," Application
note, vol. 1373-2, 2002.
[4] D. E. Bockelman and W. R. Eisenstadt, "Combined differential and
common-mode scattering parameters: theory and simulation," IEEE
Transactions on Microwave Theory and Techniques, vol. 43, pp. 1530-9, 1995.
[5] T. Sato, S. Ikeda, Y. Hara, K. Yamasawa, and T. Sakuma, "A new multilayered
common-mode filter on Ni-Zn ferrite substrate," San Antonio, TX, USA, 2001,
pp. 2900-2.
[6] D. Brooks, "Differntial impedance," in Printed Circuit Design, 1998.
[7] F. Lee, "Thin film type HDMI CM filter reverse analysis report," CPBG/RD
Center 2006.
[8] Y. Kaizaki, F. Tsuda, and S. Shinohara, "Development of common mode filter
with a multilayer structure," Tokyo, Japan, 1999, p. 794.
[9] M. Damnjanovic, G. Stojanovic, L. Zivanov, and V. Desnica, "Comparison of
different structures of ferrite EMI suppressors," Microelectronics International,
vol. 23, pp. 42-8, 2006.
[10] T. Sato, T. Kokai, A. Moroishi, K. Yamasawa, H. Karasawa, and T. Sakuma,
"Mn-Zn ferrite particle/polyimide composite thick film and its application to a
coupled transmission line common-mode filter," Amsterdam, Netherlands,
2002, p. BU4.
[11] Y. Sudo, K. Watanabe, T. Sato, K. Yamasawa, Y. Miura, Y. Miryale, M. Akie,
and Y. Uehara, "A coplanar-coupled-line common-mode filter using CoZrNb
soft magnetic thin film for GHz frequency band," Nagoya, Japan, 2005, pp.
1097-8.
[12] B.-C. Tseng, Z.-H. Chen, and L.-K. Wu, "Improvement of mode conversion
for LTCC multi-layer common mode filter by twisted differential lines
structure," Portland, OR, United States, 2006, pp. 456-459.
[13] Y. J. Toru Harada, "Noise filter," U. S. Patent, Ed. Japan: Murata
Manufacturing CO., Ltd, 2003.
[14] S. Shoji, "THIN-FILM COMMON MODE FILTER AND THIN-FILM
COMMON FILTER ARRAY," U. S. Patent, Ed. Japan: TDK Corporation,
2004.
[15] T. K. Tomokazu Ito, Makoto Omoto, "Thin-film type common-mode choke
coil and manufacturing method therof," U. s. patents, Ed. Japan: TDK
CORPARATION, 2004.
[16] Z. Li, D. Pommerenke, and Y. Shimoshio, "Common-mode and
differential-mode analysis of common mode chokes," Boston, MA, United
States, 2003, pp. 384-387.
[17] D. M. Pozar, Microwave engineering, 3rd ed ed.: Hoboken, NJ : J. Wiley,
2005.
[18] R. J. Weber, Introduction to microwave circuits : radio frequency and design
applications / Robert J. Weber ; IEEE Microwave Theory and Techniques
Society, sponsor. New York IEEE, 2001.
[19] S. Ikeda, T. Sato, A. Ohshiro, K. Yamasawa, and T. Sakuma, "A thin film type
magnetic/dielectric hybrid transmission-line with a large wavelength
shortening," San Antonio, TX, USA, 2001, pp. 2903-5.
[20] S. K. K. Bharathi Bhat, Stripline-like transmission lines for microwave
integrated circuits. New York, N.Y.: Wiley, 1988.
[21] R. E. Jones, Jr., "ANALYSIS OF THE EFFICIENCY AND INDUCTANCE
OF MULTITURN THIN FILM MAGNETIC RECORDING HEADS," IEEE
Transactions on Magnetics, vol. MAG-14, pp. 509-511, 1978.
[22] D. K. D. K. Cheng, Field and wave electromagnetics Reading, Mass. :
Addison-Wesley Pub. Co., 1989.
[23] T. Sato, T. Inoue, H. Tomita, S. Yatabe, K. Nishijima, Y. Tokai, M. Nameki, N.
Saito, and T. Mizoguchi, "5 MHz switching micro DC-DC converter using
planar inductor," Boston, MA, USA, 1996, pp. 485-90.
[24] B.-L. Ooi, D.-X. Xu, P.-S. Kooi, and F.-J. Lin, "An improved prediction of
series resistance in spiral inductor modeling with Eddy-current effect," IEEE
Transactions on Microwave Theory and Techniques, vol. 50, pp. 2202-2206,
2002.
[25] T. Sato, K. Sato, K. Yamasawa, Z. Fuchun, and K. Yanagisawa, "Spiral-type
transmission line with an Mn-Zn ferrite core," Boston, MA, USA, 2003, pp.
3205-7.
[26] K. Takizawa, M. Nakazawa, T. Sato, K. Yamasawa, Y. Miura, M. Munakata,
and M. Yagi, "Directional coupler composed of CoFeB metallic magnetic
film/polyimide dielectric film hybrid transmission line," Suzhou, China, 2006,
p. 4 pp.
[27] T. Inoue, M. Furukawa, T. Sato, K. Yamasawa, T. Takahashi, Y. Sasaki, Y.
Yamamoto, Y. Hatanai, and A. Makino, "A novel transmission-line type high
frequency transformer using a fine-grain Mn-Zn ferrite [for ballasts],"
Kyongju, South Korea, 1999, pp. 3538-40.
[28] H. Suzuki, N. Sugiyama, T. Sato, K. Yamasawa, Y. Miura, Y. Miyale, M. Akie,
and Y. Uchara, "A thin film spiral microstrip transmission-line using CoZrNb
soft magnetic thin film for a quarter wavelength transformer," Nagoya, Japan,
2005, pp. 1095-6.
[29] R. E. Collin, Foundations for microwave engineering ,New York :
McGraw-Hill, 1966.
[30] D. J. Masse and R. A. Pucel, "Microstrip propagation on magnetic substrates.
II. Experiment," IEEE Transactions on Microwave Theory and Techniques, vol.
MTT-20, pp. 309-13, 1972.
[31] R. A. Pucel and D. J. Masse, "Microstrip propagation on magnetic substrates. I.
Design theory," IEEE Transactions on Microwave Theory and Techniques, vol.
MTT-20, pp. 304-8, 1972.
[32] H. M. Greenhouse, "Design of planar rectangular microelectronic inductors,"
IEEE Transactions on Parts, Hybrids and Packaging, vol. PHP-10, pp. 101-9,
1974.
[33] A. Balakrishnan, W. D. Palmer, W. T. Joines, and T. G. Wilson, "Inductance of
planar rectangular-spiral strip conductors for low-profile inductors," Toledo,
Spain, 1992, pp. 1401-8.
[34] I. Huynen and A. Vander Vorst, "A new variational formulation, applicable to
shielded and open multilayered transmission lines with gyrotropic
non-Hermitian lossy media and lossless conductors," IEEE Transactions on
Microwave Theory and Techniques, vol. 42, pp. 2107-11, 1994.
[35] T. Sato, H. Tomita, A. Sawabe, T. Inoue, T. Mizoguchi, and M. Sahashi, "A
magnetic thin film inductor and its application to a MHz switching dc-dc
converter," IEEE Transactions on Magnetics, vol. 30, pp. 217-23, 1994.
[36] W. G. Hurley and M. C. Duffy, "Calculation of self and mutual impedances in
planar magnetic structures," IEEE Transactions on Magnetics, vol. 31, pp.
2416-22, 1995.
[37] R. West, "Common mode inductors for EMI filters require careful attention to
core material selection," Powerconversion & Intelligent Motion, vol. 21, pp.
52-59, 1995.
[38] K. Yasumoto, "Coupled-mode formulation of multilayered and multiconductor
transmission lines," IEEE Transactions on Microwave Theory and Techniques,
vol. 44, pp. 585-90, 1996.
[39] M. S. Alam, M. Koshiba, K. Hirayama, and Y. Hayashi, "Hybrid-mode
analysis of multilayered and multiconductor transmission lines," IEEE
Transactions on Microwave Theory and Techniques, vol. 45, pp. 205-11, 1997.
[40] W. G. Hurley and M. C. Duffy, "Calculation of self- and mutual impedances in
planar sandwich inductors," IEEE Transactions on Magnetics, vol. 33, pp.
2282-90, 1997.
[41] M. Matsunaga and K. Yasumoto, "Coupled-mode analysis of modal
characteristic impedance of coupled bi-level microstrip lines," Hong Kong,
1997, pp. 965-8.
[42] A. Cwikia, P. Kutysz, and J. Mazur, "Propagation in ferrite microstrip
structures magnetised longitudinally," Krakow, Poland, 1998, pp. 486-90.
[43] T. Inoue, K. Nishijima, S. Yatabe, T. Mizoguchi, and T. Sato, "The effect of
magnetic film structure on the inductance of a planar inductor," San Francisco,
CA, USA, 1998, pp. 1372-4.
[44] K. Yasumoto, M. Matsunaga, and B. S. Rawat, "Coupled-mode theory of
terminal characteristic parameters for multilayered and multiconductor lines,"
Beijing, China, 1998, pp. 561-4.
[45] W. G. Hurley, M. C. Duffy, S. O''Reilly, and S. C. O''Mathuna, "Impedance
formulas for planar magnetic structures with spiral windings," IEEE
Transactions on Industrial Electronics, vol. 46, pp. 271-278, 1999.
[46] T. Sato, H. Yokoyama, K. Yamasawa, K. Toya, S. Kobayashi, and T.
Minamasawa, "Multilayered transformer utilizing Mn-Zn ferrite and its
application to forward type DC-DC converter," Transactions of the Institute of
Electrical Engineers of Japan, Part A, vol. 120-A, pp. 266-71, 2000.
[47] C. P. Yue and S. S. Wong, "Physical modeling of spiral inductors on silicon,"
IEEE Transactions on Electron Devices, vol. 47, pp. 560-568, 2000.
[48] H. Wu, W. T. Beyene, N. Cheng, C.-C. Huang, and C. Yuan, "Design and
verification of differential transmission lines," Cambridge, MA, 2001, pp.
85-88.
[49] 宋自恆林慶仁, "切換式供應器的EMI 濾波器設計方法," in 新電子科技雜
誌. vol. 187, 2001.
[50] R. L. Bunch, D. I. Sanderson, and S. Raman, "Quality factor and inductance in
differential IC implementations," IEEE Microwave Magazine, vol. 3, pp.
82-84, 2002.
[51] M. Danesh and J. R. Long, "Differentially driven symmetric microstrip
inductors," Microwave Theory and Techniques, IEEE Transactions on, vol. 50,
pp. 332-341, 2002.
[52] K. Dong Gun, L. Heeseok, K. Jonghoon, and K. Joungho, "A new twisted
differential line structure on high-speed printed circuit boards to enhance
immunity to crosstalk and external noise," IEEE Microwave and Wireless
Components Letters, vol. 13, pp. 411-13, 2003.
[53] L. Yo-Shen and C. Chun Hsiung, "Novel balanced microstrip coupled-line
bandpass filters," Pisa, Italy, 2004, pp. 567-9.
[54] C.-Y. Kim, H.-J. Kim, and J.-R. Kim, "An integrated LTCC inductor," IEEE
Transactions on Magnetics, vol. 41, pp. 3556-3558, 2005.
[55] K. Yanagisawa, Z. Fuchun, T. Sato, K. Yamasawa, and Y. Miura, "A new
wideband common-mode noise filter consisting of Mn-Zn ferrite core and
copper/polyimide tape wound coil," Nagoya, Japan, 2005, pp. 3571-3.
[56] J. Jayabalan, B. L. Ooi, M. S. Leong, and M. K. Iyer, "Novel circuit model for
three-dimensional geometries with multilayer dielectrics," IEEE Transactions
on Microwave Theory and Techniques, vol. 54, pp. 1331-9, 2006.
[57] H. J. Kim, Y. J. Kim, and J. R. Kim, "An Integrated LTCC Inductor
Embedding NiZn Ferrite," Magnetics, IEEE Transactions on, vol. 42, pp.
2840-2842, 2006.
[58] V. Minerva, "Comments on "differentially driven symmetric microstrip
inductors"," IEEE Transactions on Microwave Theory and Techniques, vol. 55,
p. 809, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top