|
[1] B.-C. Tseng, L.-K. Wu, J.-W. Sheen, and A.-L. Wang, "Design of miniaturized common-mode filter by multi-layer low temperature co-fired ceramic," Boston, MA, United States, 2003, pp. 378-383. [2] B.-C. Tseng and L.-K. Wu, "Design of miniaturized common-mode filter by multilayer low-temperature co-fired ceramic," IEEE Transactions on Electromagnetic Compatibility, vol. 46, pp. 571-579, 2004. [3] A. technologies, "Concepts in Balanced Device Measurement," Application note, vol. 1373-2, 2002. [4] D. E. Bockelman and W. R. Eisenstadt, "Combined differential and common-mode scattering parameters: theory and simulation," IEEE Transactions on Microwave Theory and Techniques, vol. 43, pp. 1530-9, 1995. [5] T. Sato, S. Ikeda, Y. Hara, K. Yamasawa, and T. Sakuma, "A new multilayered common-mode filter on Ni-Zn ferrite substrate," San Antonio, TX, USA, 2001, pp. 2900-2. [6] D. Brooks, "Differntial impedance," in Printed Circuit Design, 1998. [7] F. Lee, "Thin film type HDMI CM filter reverse analysis report," CPBG/RD Center 2006. [8] Y. Kaizaki, F. Tsuda, and S. Shinohara, "Development of common mode filter with a multilayer structure," Tokyo, Japan, 1999, p. 794. [9] M. Damnjanovic, G. Stojanovic, L. Zivanov, and V. Desnica, "Comparison of different structures of ferrite EMI suppressors," Microelectronics International, vol. 23, pp. 42-8, 2006. [10] T. Sato, T. Kokai, A. Moroishi, K. Yamasawa, H. Karasawa, and T. Sakuma, "Mn-Zn ferrite particle/polyimide composite thick film and its application to a coupled transmission line common-mode filter," Amsterdam, Netherlands, 2002, p. BU4. [11] Y. Sudo, K. Watanabe, T. Sato, K. Yamasawa, Y. Miura, Y. Miryale, M. Akie, and Y. Uehara, "A coplanar-coupled-line common-mode filter using CoZrNb soft magnetic thin film for GHz frequency band," Nagoya, Japan, 2005, pp. 1097-8. [12] B.-C. Tseng, Z.-H. Chen, and L.-K. Wu, "Improvement of mode conversion for LTCC multi-layer common mode filter by twisted differential lines structure," Portland, OR, United States, 2006, pp. 456-459. [13] Y. J. Toru Harada, "Noise filter," U. S. Patent, Ed. Japan: Murata Manufacturing CO., Ltd, 2003. [14] S. Shoji, "THIN-FILM COMMON MODE FILTER AND THIN-FILM COMMON FILTER ARRAY," U. S. Patent, Ed. Japan: TDK Corporation, 2004. [15] T. K. Tomokazu Ito, Makoto Omoto, "Thin-film type common-mode choke coil and manufacturing method therof," U. s. patents, Ed. Japan: TDK CORPARATION, 2004. [16] Z. Li, D. Pommerenke, and Y. Shimoshio, "Common-mode and differential-mode analysis of common mode chokes," Boston, MA, United States, 2003, pp. 384-387. [17] D. M. Pozar, Microwave engineering, 3rd ed ed.: Hoboken, NJ : J. Wiley, 2005. [18] R. J. Weber, Introduction to microwave circuits : radio frequency and design applications / Robert J. Weber ; IEEE Microwave Theory and Techniques Society, sponsor. New York IEEE, 2001. [19] S. Ikeda, T. Sato, A. Ohshiro, K. Yamasawa, and T. Sakuma, "A thin film type magnetic/dielectric hybrid transmission-line with a large wavelength shortening," San Antonio, TX, USA, 2001, pp. 2903-5. [20] S. K. K. Bharathi Bhat, Stripline-like transmission lines for microwave integrated circuits. New York, N.Y.: Wiley, 1988. [21] R. E. Jones, Jr., "ANALYSIS OF THE EFFICIENCY AND INDUCTANCE OF MULTITURN THIN FILM MAGNETIC RECORDING HEADS," IEEE Transactions on Magnetics, vol. MAG-14, pp. 509-511, 1978. [22] D. K. D. K. Cheng, Field and wave electromagnetics Reading, Mass. : Addison-Wesley Pub. Co., 1989. [23] T. Sato, T. Inoue, H. Tomita, S. Yatabe, K. Nishijima, Y. Tokai, M. Nameki, N. Saito, and T. Mizoguchi, "5 MHz switching micro DC-DC converter using planar inductor," Boston, MA, USA, 1996, pp. 485-90. [24] B.-L. Ooi, D.-X. Xu, P.-S. Kooi, and F.-J. Lin, "An improved prediction of series resistance in spiral inductor modeling with Eddy-current effect," IEEE Transactions on Microwave Theory and Techniques, vol. 50, pp. 2202-2206, 2002. [25] T. Sato, K. Sato, K. Yamasawa, Z. Fuchun, and K. Yanagisawa, "Spiral-type transmission line with an Mn-Zn ferrite core," Boston, MA, USA, 2003, pp. 3205-7. [26] K. Takizawa, M. Nakazawa, T. Sato, K. Yamasawa, Y. Miura, M. Munakata, and M. Yagi, "Directional coupler composed of CoFeB metallic magnetic film/polyimide dielectric film hybrid transmission line," Suzhou, China, 2006, p. 4 pp. [27] T. Inoue, M. Furukawa, T. Sato, K. Yamasawa, T. Takahashi, Y. Sasaki, Y. Yamamoto, Y. Hatanai, and A. Makino, "A novel transmission-line type high frequency transformer using a fine-grain Mn-Zn ferrite [for ballasts]," Kyongju, South Korea, 1999, pp. 3538-40. [28] H. Suzuki, N. Sugiyama, T. Sato, K. Yamasawa, Y. Miura, Y. Miyale, M. Akie, and Y. Uchara, "A thin film spiral microstrip transmission-line using CoZrNb soft magnetic thin film for a quarter wavelength transformer," Nagoya, Japan, 2005, pp. 1095-6. [29] R. E. Collin, Foundations for microwave engineering ,New York : McGraw-Hill, 1966. [30] D. J. Masse and R. A. Pucel, "Microstrip propagation on magnetic substrates. II. Experiment," IEEE Transactions on Microwave Theory and Techniques, vol. MTT-20, pp. 309-13, 1972. [31] R. A. Pucel and D. J. Masse, "Microstrip propagation on magnetic substrates. I. Design theory," IEEE Transactions on Microwave Theory and Techniques, vol. MTT-20, pp. 304-8, 1972. [32] H. M. Greenhouse, "Design of planar rectangular microelectronic inductors," IEEE Transactions on Parts, Hybrids and Packaging, vol. PHP-10, pp. 101-9, 1974. [33] A. Balakrishnan, W. D. Palmer, W. T. Joines, and T. G. Wilson, "Inductance of planar rectangular-spiral strip conductors for low-profile inductors," Toledo, Spain, 1992, pp. 1401-8. [34] I. Huynen and A. Vander Vorst, "A new variational formulation, applicable to shielded and open multilayered transmission lines with gyrotropic non-Hermitian lossy media and lossless conductors," IEEE Transactions on Microwave Theory and Techniques, vol. 42, pp. 2107-11, 1994. [35] T. Sato, H. Tomita, A. Sawabe, T. Inoue, T. Mizoguchi, and M. Sahashi, "A magnetic thin film inductor and its application to a MHz switching dc-dc converter," IEEE Transactions on Magnetics, vol. 30, pp. 217-23, 1994. [36] W. G. Hurley and M. C. Duffy, "Calculation of self and mutual impedances in planar magnetic structures," IEEE Transactions on Magnetics, vol. 31, pp. 2416-22, 1995. [37] R. West, "Common mode inductors for EMI filters require careful attention to core material selection," Powerconversion & Intelligent Motion, vol. 21, pp. 52-59, 1995. [38] K. Yasumoto, "Coupled-mode formulation of multilayered and multiconductor transmission lines," IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 585-90, 1996. [39] M. S. Alam, M. Koshiba, K. Hirayama, and Y. Hayashi, "Hybrid-mode analysis of multilayered and multiconductor transmission lines," IEEE Transactions on Microwave Theory and Techniques, vol. 45, pp. 205-11, 1997. [40] W. G. Hurley and M. C. Duffy, "Calculation of self- and mutual impedances in planar sandwich inductors," IEEE Transactions on Magnetics, vol. 33, pp. 2282-90, 1997. [41] M. Matsunaga and K. Yasumoto, "Coupled-mode analysis of modal characteristic impedance of coupled bi-level microstrip lines," Hong Kong, 1997, pp. 965-8. [42] A. Cwikia, P. Kutysz, and J. Mazur, "Propagation in ferrite microstrip structures magnetised longitudinally," Krakow, Poland, 1998, pp. 486-90. [43] T. Inoue, K. Nishijima, S. Yatabe, T. Mizoguchi, and T. Sato, "The effect of magnetic film structure on the inductance of a planar inductor," San Francisco, CA, USA, 1998, pp. 1372-4. [44] K. Yasumoto, M. Matsunaga, and B. S. Rawat, "Coupled-mode theory of terminal characteristic parameters for multilayered and multiconductor lines," Beijing, China, 1998, pp. 561-4. [45] W. G. Hurley, M. C. Duffy, S. O''Reilly, and S. C. O''Mathuna, "Impedance formulas for planar magnetic structures with spiral windings," IEEE Transactions on Industrial Electronics, vol. 46, pp. 271-278, 1999. [46] T. Sato, H. Yokoyama, K. Yamasawa, K. Toya, S. Kobayashi, and T. Minamasawa, "Multilayered transformer utilizing Mn-Zn ferrite and its application to forward type DC-DC converter," Transactions of the Institute of Electrical Engineers of Japan, Part A, vol. 120-A, pp. 266-71, 2000. [47] C. P. Yue and S. S. Wong, "Physical modeling of spiral inductors on silicon," IEEE Transactions on Electron Devices, vol. 47, pp. 560-568, 2000. [48] H. Wu, W. T. Beyene, N. Cheng, C.-C. Huang, and C. Yuan, "Design and verification of differential transmission lines," Cambridge, MA, 2001, pp. 85-88. [49] 宋自恆林慶仁, "切換式供應器的EMI 濾波器設計方法," in 新電子科技雜 誌. vol. 187, 2001. [50] R. L. Bunch, D. I. Sanderson, and S. Raman, "Quality factor and inductance in differential IC implementations," IEEE Microwave Magazine, vol. 3, pp. 82-84, 2002. [51] M. Danesh and J. R. Long, "Differentially driven symmetric microstrip inductors," Microwave Theory and Techniques, IEEE Transactions on, vol. 50, pp. 332-341, 2002. [52] K. Dong Gun, L. Heeseok, K. Jonghoon, and K. Joungho, "A new twisted differential line structure on high-speed printed circuit boards to enhance immunity to crosstalk and external noise," IEEE Microwave and Wireless Components Letters, vol. 13, pp. 411-13, 2003. [53] L. Yo-Shen and C. Chun Hsiung, "Novel balanced microstrip coupled-line bandpass filters," Pisa, Italy, 2004, pp. 567-9. [54] C.-Y. Kim, H.-J. Kim, and J.-R. Kim, "An integrated LTCC inductor," IEEE Transactions on Magnetics, vol. 41, pp. 3556-3558, 2005. [55] K. Yanagisawa, Z. Fuchun, T. Sato, K. Yamasawa, and Y. Miura, "A new wideband common-mode noise filter consisting of Mn-Zn ferrite core and copper/polyimide tape wound coil," Nagoya, Japan, 2005, pp. 3571-3. [56] J. Jayabalan, B. L. Ooi, M. S. Leong, and M. K. Iyer, "Novel circuit model for three-dimensional geometries with multilayer dielectrics," IEEE Transactions on Microwave Theory and Techniques, vol. 54, pp. 1331-9, 2006. [57] H. J. Kim, Y. J. Kim, and J. R. Kim, "An Integrated LTCC Inductor Embedding NiZn Ferrite," Magnetics, IEEE Transactions on, vol. 42, pp. 2840-2842, 2006. [58] V. Minerva, "Comments on "differentially driven symmetric microstrip inductors"," IEEE Transactions on Microwave Theory and Techniques, vol. 55, p. 809, 2007.
|