跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/02 07:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許孝慈
研究生(外文):Hsiao-Tzu Hsu
論文名稱:控制性低強度材料添加有害廢棄物焚化底灰 之耐久性研究
論文名稱(外文):Durability of Controlled Low Strength Materials Blended with Hazardous Waste Incinerator Bottom Ash
指導教授:林宗曾
指導教授(外文):Tzong-Tzeng Lin
口試委員:李良輝賴進興
口試委員(外文):Liang-Hwei LeeChin-Hsing Lai
口試日期:2013-07-09
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:土木工程與防災科技研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:95
中文關鍵詞:控制性低強度材料有害廢棄物硫酸鈉浸泡試驗毒性特性溶出程序
外文關鍵詞:Controlled Low Strength MaterialsHazardous Waste IncineratorSodium Sulfate Immersion TestToxicity Characteristic Leaching Procedure
相關次數:
  • 被引用被引用:5
  • 點閱點閱:453
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:2
廢棄物焚化底灰再利用國內已廣泛應用於土木材料,不過,對於用途產品添加有害廢棄物焚化底灰是否具有耐久性以及含有重金屬底灰在酸性環境下是否具有長期穩定性,是值得探討之研究課題。有鑑以此,本研究之焚化底灰分為水洗過後與未經水洗兩部分,利用重金屬全量分析瞭解底灰中所含之重金屬總量,再藉由硫酸鈉浸泡試驗觀察控制性低強度材料( Controlled Low Strength Materials, CLSM )在長期鹽類侵蝕下之破壞行為,並以毒性特性溶出程序,觀察CLSM重金屬溶出之可能性。研究結果顯示:從全量分析中得知底灰添加量最高為45% ,CLSM在長期鹽類侵蝕耐久特性而言,未經過水洗的焚化底灰添加量皆不宜過30%;至於重金屬溶出結果,除銅有少量溶出外,其餘金屬皆無溶出。因此,本研究之有害廢棄物焚化底灰添加於CLSM是具有長期環境友善性。
In Taiwan the recovery of incineration bottom ash has usually been used as the construction material. However, the issue of durability is continually worth of research to study on the addition of hazardous waste incineration bottom ash regarding engineering construction products. Thus, the bottom ash in this study is divided into washed and unwashed samples. The total amount analysis of heavy metals in bottom ash used to understand the amount of heavy metals. Moreover, this study investigated for observing the failure behavior of controlled low strength materials under sulfate attack by using the sodium sulfate immersion test. The possibility of heavy metals leached from CLSM was observed by toxicity characteristic leaching procedure test. The results from the total amount analysis show that the largest amount of bottom ash added in CLSM is 45%. The result of sodium sulfate immersion test showed that CLSM has the ability of corrosion resistance. However, the addition of hazardous waste incineration bottom ash has below 30%. The result of leaching test showed that a small amount of copper is leached. Consequently, hazardous waste incinerator bottom ash added in CLSM is possessed of the long-term environmental friendliness.
摘 要 I
ABSTRACT II
誌 謝 IV
目錄 V
圖目錄 VIII
表目錄 X
符號解說 XII
第一章 緒論 1
1.1. 研究動機 1
1.2. 研究目的 2
1.3. 研究流程 3
第二章 文獻回顧 4
2.1 焚化灰渣 4
2.1.1 物理特性 5
2.1.2 化學性質 6
2.1.3 底灰處理方式 9
2.1.4 重金屬溶出之檢測方法與標準 12
2.2 混凝土之耐久性 16
2.2.1 組成材料對混凝土耐久性之影響 17
2.2.2 配比設計對混凝土耐久性之影響 19
2.2.3 環境因素對混凝土耐久性之影響 19
2.2.4 中性化對混凝土耐久性之影響 21
2.3 CLSM 定義與規範 24
第三章 試驗材料、方法與設備 27
3.1 試驗材料 27
3.2 新拌性質試驗 28
3.2.1 配比設計 28
3.2.2 坍度及坍流度試驗 29
3.2.3 管流度驗試驗 30
3.2.4 凝結時間 32
3.3 硬固性質試驗 34
3.3.1 落沉試驗 34
3.3.2 抗壓強度試驗 35
3.3.3 超音波波速量測 36
3.3.4 乾縮試驗 37
3.3.5 吸水率試驗 38
3.4 耐久性質試驗 39
3.4.1 硫酸鹽浸泡試驗 39
3.4.2 毒性特性溶出程序 ( TCLP ) 40
3.5 試驗流程 43
第四章 結果與分析 44
4.1 底灰基本性質 44
4.1.1 物理性質 44
4.1.2 化學性質 46
4.2 CLSM 混凝土基本性質 49
4.2.1 最佳配比 49
4.2.2 CLSM 混凝土工作性 51
4.2.3 初凝時間 52
4.2.4 落沉試驗 53
4.2.5 抗壓試驗 55
4.2.6 超音波波速 59
4.3 耐久性試驗 63
4.3.1 乾縮試驗 63
4.3.2 硫酸鹽浸泡試驗 68
4.3.3 毒性特性溶出程序 ( TCLP ) 72
4.4 小結 75
第五章 結論與建議 76
5.1 結論 76
5.2 建議 76
參考文獻 77

英文
1.Chimenos, J. M., M. Segarra, M. A. Fernandez, and F. Espiell, 1999“Characterization of the Bottom Ash in Municipal Solid Waste Incinerator”, Journal of Hazardous Materials, v64, n3, pp.211-222.
2.Hjelmar, O. 1996 “Disposal Strategies for Municipal Solid Waste Incineration Residues”, Journal of Hazardous Materials, v47, n1-3, pp. 345-368.
3.Wiles, C. C., “ Municipal solid waste combustion ash :State-of-the-knowledge.” Journal of Hazardous Materials, Vol. 47, pp. 325-344, ( 1996 ).
4.Pera, J., Coutaz, L., Ambroise, J., Chababbet, M., “Use of incinerator bottom ash in concrete.” Cement and Research, Vol.27, pp. 1-5 ( 1997 ).
5.Johnson, C.A., Brandenberger, S., Baccini, P., “Acid neutralizizing capacity of municipal solid waste combustion ash.” Enviromental Science & Technology, Vol.29, No.1, pp. 142-147 ( 1995 ).
6.Meima, J.A., Comans, R.n.J., “Application of surface comolexation /municipal solid waste incinerator bottom ash.” Enviromental Science & Technology, Vol.32, No.5, pp. 688-693 ( 1998 ).
7.ACI Committee 201, “Guide to Durable Concrete , American Concrete Institute, 1992.
8.Mehta, P.K. and B.C. Gerwick , Journal of Concrete International, 4, pp. 45-51, ( 1982 ).
9.Mehta , P.K. and J.M. Monteior , Concrete Structures, Properties and Materials, 2nd Edition , Prentice Hall Inc, New Jersey , ( 1993 ).
10.Clear, K. C., and Hay, R.E., “Time-to-Corrosion of Reinforcing Steel Slabs, Vol.1: Effect of Mix Design and Construction Parameters,” Inter. Report No.FHWA-RA-73-32, Federal Highway Administration, Washington, D.C., pp.103-105,1973.
11.ASTM, “1995 Annual Book of ASTM Standard”, Vol.04.0104.24, 1995.
12.Cook, J., “ Research and Application of High Strength Concrete Using Class C Fly Ash ,“ Concrete International, Design and Construction, Vol. 4, No.7, pp. 72-80, 1982.
13.Mangat, P. S. and Molloy, B.T., “ Influence of PFA, Slag and Microsilica on Chloride Induced Corrosion of Reinforced in Concrete,” Cement and Concrete Research, Vol.21, No.5, pp.819-834, 1991.
14.Roy, D. M. and G. M. Idorn, “Hydration, Structure, and Properties of Blast Furnace Slag Cements, Mortars, and Concrete,” ACI Journal, Vol.26, Mar., pp.444~457, 1982.
15.Sivasundaram, V. and V. M. Malhotra, “Properties of Concrete Incorporating Low Quantity of Cement and High Volumes of Ground Granulated Slag,” ACI Materials Journal, Vol.89, No.6, pp.554~563, 1992.
16.Osborne, G.J., “Durability of Portland Blast-Furnace Slag Cement Concrete,” Cement and Concrete Composites, Vol.21, pp.21-29, 1999.
17.Page, C.L., Short, N.R., and El Tarras, A.,“Diffusion of Chloride Ions in Hardened Cement Paste,” Cement and Concrete Research, Vol. 11(3), pp. 395-406, 1981.
18.Nagataki, S. and Ujike, I. “Effect of Heating Condition on Air Permeability of Concrete at Elevated Temperature,” Transactions of the Japanese Concrete Institute, Vol.10, pp.147-154, 1980.
19.Thomas, M.D.A., Matthews, J.D. and Haynes, C.A., “ The Effect of Curing on the Strength and Permeability of PFA Concrete, in Fly ash, Silica fume, Slag and Natural Pozzolans in Concrete,” Proceedings 3rd International Conference, V.M. Malhotra (Ed), Trondheim, ACI SP-114, Vol. 1, pp.191-217, 1989.
20.Hurling, H. “ Oxygen permeability of Concrete,” in Proc. RILEM Seminar on Durability of Concrete Structures under Normal Outdoor Exposure, Hanover, March, pp.91-101, 1984.
21.Leber, I. and Blakey, F.A. “ Some Effects of Carbon Dioxide on Mortars and Concrete,” ACI, SP-53, pp.295-308, 1956.
22.R. Feldman, L. R. Prudencio Jr. , G. Chan, “ Rapid chloride permeability test on blended cement and other concrete: correlations between charge, initial current and conductivity”, Construction and Building Materials, Vol.13, pp.149-154, 1999.
23.W. S. Adaska,ed., Detroit,mich. "Controlled Low Strength Materials", ACI 229R-94,pp.229R-1~229R-13, 1994.
24.B.W. Ramme "Controlled Low-Strength Materials" reported by ACI Committee 229,1999.

中文
25.何啟華 ( 1993 ) 垃圾焚化灰燼之大地工程特性與應用,國立中央大學土木工程系碩士論文。
26.廖錦聰,「從日本的經驗談台灣焚化灰渣資源化方向」,一般廢棄物焚化資源化技術與實務研討會,台北市,第29-42 頁, ( 1996 )。
27.張旭彰,「都市焚化灰渣熔融處理操作特性之研究」,國立中央大學環境工程研究所碩士論文, ( 1992 )。
28.詹炯淵,「垃圾焚化飛灰管理對策之研究」,國立台灣大學環境工程學研所碩士論文,(2001)。
29.李釗、江少鋒、郭文田,「垃圾焚化爐底灰作為混凝土細骨材之可行性研究」,中國環境工程學刊,第七卷,第三期,第289~296 頁, ( 1997 ) 。
30.詹炯淵,垃圾焚化飛灰管理對策之研究,國立台灣大學環境工程學研究所,碩士論文,台北,2000。
31.黃錦明、楊萬發,「焚化灰渣管理對策」,環境工程會刊,第五卷,第二期,pp.21-28 (1994)。
32.王櫻茂,混凝土構造物的耐久性系列 鹼骨材反應 ( Ⅰ ) 中性化 ( Ⅱ ) ,台南, ( 2000 ) 。
33.鄭瑞濱,「新拌及硬固CLSM 材料試驗」,高性能回填材料(CLSM)產製,台灣營建研究院叢書,P51~P67,2002。
34.曹有財,“道路挖掘作業及施工案例”,台灣營建研究院叢書,2001 年4 月。
35.蘇梅怡,「廢玻璃砂於高性能低強度材料之應用」,淡江大學土木工程學系,碩士論文,(2004)。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top