跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 22:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許揮旋
研究生(外文):Hui-Xuan Xu
論文名稱:棕櫚殼以水蒸氣及KOH 活化法製備活性碳吸附研究及其應用
論文名稱(外文):Palm Oil Shell with Steam and KOH Activation Preparation Activated Carbon Adsorption and its Application
指導教授:曾如玲曾如玲引用關係
指導教授(外文):Ru-Ling Tseng
口試委員:翁文爐劉炳嵐吳豐智
口試委員(外文):Wen-Lu WengBing-Lan LiuFeng-Chin Wu
口試日期:2013-07-30
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:環境與安全衛生工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:191
中文關鍵詞:棕櫚殼活性碳吸附CO2吸附比電容值
外文關鍵詞:palm oil shellactivated carbonadsorptioncarbon dioxide adsorbedspecific capacitance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:884
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本研究以棕櫚殼為原料,利用水蒸氣及KOH活化法製備活性碳。本文活性碳經BET表面積儀、熱重分析儀、FTIR和元素分析,瞭解不同活性碳之物理和化學特性。水蒸氣活化法活性碳,比表面積介於612~1268 m2/g間,最大熱裂解溫度介於553~572oC間,表面具羥基、醌類(C=O)及芳香環(C=C、C−H)等官能基;KOH活化法活性碳,比表面積介於875~1929 m2/g間,最大熱裂解溫度介於448~499 oC間,表面具酯或醚類(C−O−C),其餘官能基與水蒸氣活化法活性碳相似。吸附動力使用顆粒內部擴散模式、Elovich式和擬二次式等三種動力學模式探討,等溫平衡吸附以Langmuir和Freundlich等溫平衡式解析,瞭解活性碳吸附之行為。動力學以擬二次式解析較佳,其中浸泡KOH/char值為3時,吸附染料(MB, BB1, AB74)及酚類(4-CP, 4-cresol, phenol, 2,4-DCP),其吸附半生期(t1/2)分別為2.42、4.41、13.96及0.95、3.65、1.06、2.97 min,展現快速吸附能力;等溫平衡以Langmuir式解析較佳,單層覆蓋吸附量(qmon)以材料50 g、900C活化8小時,吸附染料分別為660、809及391 g/kg和以材料50 g、930C活化6小時,吸附酚類分別為337、442、693及232 g/kg,吸附能力最佳。於273K下進行CO2吸附,以材料100 g,900C活化4小時,達3.60 mol/kg最佳。利用循環伏安法測定活性碳電化學性質,浸泡KOH/char值為2時,於0.5 M H2SO4溶液中比電容值達265.68 F/g。綜合上述本文活性碳在工程上具有個別的應用潛力。
Activated carbons (ACs) were prepared from palm oil shell with steam activation and KOH activation methods. The physical and chemical properties were measured by BET Specific Surface Area Analyzer, FTIR, and Elemental analysis. Among steamed ACs, the specific surface areas were between 612 and 1268 m2/g; the maximum degraded temperature (Td) were between 553 and 572oC. The surface functional groups included hydroxyl, quinine (C=O) and aromatic rings (C=C、C−H) were observed. Parallely, the specific surface areas were founded between 875 and 1929 m2/g for KOH ACs. The maximum Tds were between 448 and 499oC. The surface functional groups were similar to steamed ACs, except ester and ether (C−O−C). Three simplified models including the Intraparticle diffusion mode, Pseudo-second-order, and Elovich equation were used to fitted the adsorption kinetics. Furthermore, the equilibrium isotherm was analyzed by Langmuir and Freudlich equations to understand the adsorption behavior of ACs. Accordingly, the adsorption kinetics was best fitted with the Pseudo-second-order model. The half life (t1/2) for the adsorption of dyes (MB, BB1, AB74) and phenols (4-CP, 4-cresol, phenol, 2,4-DCP) were 2.42, 4.41, 13.96, 0.95, 3.65, 1.06 and 2.97 mins, respectively, demonstrated a rapidly adsorption capability on prepared ACs. Isotherm equilibrium adsorption was best fitted with Langmuir equation. The monolayer coverage adsorbed amounts (qmon) for the adsorption of dyes (MB, BB1, AB74) on S9008(50) were 660, 809, and 391 g/kg, respectively; for those of phenols (4-CP, 4-cresol, phenol, 2,4-DCP) on S9306(50) were 337, 442, 693, and 232 g/kg, respectively. The best adsorbed amount of carbon dioxide reached 3.60 mol/kg at 273K on S9004(100). The highest specific capacitance was found to be 265.68 F/g for K2 in 0.5 M H2SO4 as determined by cyclic voltammetry. In conclusion, the activated carbons prepared in this study exhibit an individual potential application in engineering.
摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 X
符號表 XII
第一章 前言 1
1.1 研究緣起與目的 1
1.2 研究內容 4
第二章 文獻回顧 7
2.1 活性碳之原料 7
2.2 活性碳製備技術 11
2.2.1 物理活化法 11
2.2.2 氣體活化法 12
2.2.3 化學活化法 13
2.3 活性碳孔隙結構 15
2.4 活性碳吸附 20
2.4.1 吸附動力學 20
2.4.2 吸附等溫平衡 22
2.5 其他應用 26
2.5.1 CO2吸附 26
2.5.2 超高電容器之應用 29
第三章 實驗方法與設備 32
3.1 實驗設備及藥品 32
3.2 活性碳製備 37
3.2.1 以水蒸氣活化法製備活性碳 37
3.2.2 以KOH活化法製備活性碳 37
3.3 活性碳之物理性質分析 39
3.3.1 BET比表面積分析及孔徑分佈 39
3.3.2 掃瞄式電子顯微鏡(Scanning Electron Microscope;SEM ) 39
3.3.3 熱重分析(TGA, Thermogravimetric Analysis) 40
3.4 活性碳之化學性質分析 41
3.4.1 元素分析(EA, elemental analysis) 41
3.4.2 傅立葉轉換紅外線光譜儀(FT-IR) 42
3.4.3 反滴定法(Boehm`s titration method) 42
3.5 液相吸附實驗 44
3.5.1 吸附動力學 44
3.5.2 吸附等溫平衡 44
3.6 活性碳之應用 46
3.6.1 二氧化碳吸附測試 46
3.6.2 電化學測試 46
第四章 結果與討論 49
4.1 活性碳之物理與化學性質特性 49
4.1.1 不同活化溫度之活性碳 49
4.1.2 不同活化時間之活性碳 61
4.1.3 提升材料重量與活化時間之活性碳 69
4.1.4 KOH活化法之活性碳 78
4.1.5 商用活性碳之F300 90
4.2 活性碳之液相吸附 92
4.2.1 吸附動力學 92
4.2.2 吸附等溫平衡 124
4.3 其他應用 147
4.3.1 CO2吸附 147
4.3.2 電化學應用 151
第五章 結論與建議 166
5.1 結論 166
5.2 建議 169
參考文獻 170
附錄 183

Aharoni, C., Tompkins, F.C. (1970), Kinetics of adsorption and desorption and the Elovich equation, in: D.D. Eley, H. Pines, P.B. Weisz (Eds.). Advances in Catalysis and Related Subjects 21, 1-49.

Ahmad, A.L., Tan, L.S., Shukor, S.R.A. (2008), Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes. Journal of Hazardous Materials. 151, 71–77.

Ahmed, M.J., Theydan S.K. (2012), Adsorption of cephalexin onto activated carbons from Albizia lebbeck seed pods by microwave-induced KOH and K2CO3 activations. Chemical Engineering Journal 211, 200-207.

Ahmed, M.J., Theydan S.K. (2013), Microporous activated carbon from Siris seed pods by microwave-induced KOH activation for metronidazole adsorption. Journal of Analytical and Applied Pyrolysis 99, 101-109.

Arash, A.N., Wan, M.A.W.D., Farouq S.M. (2010), Using granular activated carbon prepared from oil palm shell by ZnCl2 and physical activation for methane adsorption. Journal of Analytical and Applied Pyrolysis 89, 197-203.

Aungpradit, T., Sutthivaiyakit, P., Martens, D., Sutthivaiyakit, S., Kettrup, A.A.F. (2007), Photocatalytic degradation of triazophos in aqueous titanium dioxide suspension: identification of intermediates and degradation pathways. Journal of Hazardous Materials. 146, 204-213.

Barrett, E.P., Joyner, L.G., Halenda, P.P. (1951), The determination of pore volume and area distribution in porous substances I. Computation from nitrogen isotherms. Journal of the American Chemical Society 73, 373.


Basta, A.H., Fierro, V., El-Saied, H., Celzard, A. (2009), 2-Steps KOH activation of rice straw: An efficient method for preparing high-performance activated carbons. Bioresource Technology 100, 3941–3947.

Boehm, H.P. (2002), Surface oxides on carbon and their analysis: a critical assessment. Carbon 40, 145–149.

Brateka, W., Swiatkowski, A., Pakuac, M., Biniak, S., Bystrzejewski, M., Szmigielski, R. (2013), Characteristics of activated carbon prepared from waste PET by carbon dioxide activation. Journal of Analytical and Applied Pyrolysis 100, 192-198.

Brunauer, S., Emmett, P. H., Teller, E. (1938), Adsorption of Gases in Multimolecular Layers. Journal of the Chemical Society 60, 309-319.

Cazetta, A.L., Vargas, A.M.M., Nogami, E.M., Kunita, M.H., Guilherme, M.R., Martins, A.C., Silva, T.L., Moraes, J.G.G., Almeida, V.C. (2011), NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chemical Engineering Journal 174, 117- 125.

Ching, S.L., Yusoff, M.S., Aziz, H.A., Umar, M. (2011), Influence of impregnation ratio on coffee ground activated carbon as landfill leachate adsorbent for removal of total iron and orthophosphate. Desalination 279, 225-234.

de Boer, J.H., Lippens, B.C., Linsen, B.G., Broekhoff, J.C.P., van den Heuvel, A., Osiga, T.J. (1966), The t-curve of multimolecular N2-adsorption. Journal of Colloid and Interface Science 21, 405.

Deng, H., Li, G., Yanga, H., Tanga, J., Tanga, J. (2010), Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chemical Engineering Journal 163, 373-381.

Duckett, M.; Ruhemann, M. (1985), Cryogenic Gas Separation. Chemical Engineering Journal 420, 14-17.

Ehrburger, P.; Addoun, A.; Addoun, F.; Donnet, J. B. (1986), Carbonization of Coals in The Presence of Alkaline Hydroxodes and Carbonates: Formation of Activated Carbons. Fuel 65, 1447.

Erol, A., Numan, H. (2005), Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth. Chemosphere 60, 1600–1607.

Esfandiari, A., Kaghazchi, T., Soleimani, M. (2012), Preparation and evaluation of activated carbons obtained by physical activation of polyethyleneterephthalate (PET) wastes. Journal of the Taiwan Institute of Chemical Engineers 43, 631-637.

Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R.D. (2008), Advances in CO2 capture technology-The U.S. Department of Energy's Carbon Sequestration Program. International Journal of Greenhouse Gas Control 2, 9-20.

Foo, H.Y., Hameed, B.H. (2012), Coconut husk derived activated carbon via microwave induced activation: Effects of activation agents, preparation parameters and adsorption performance. Chemical Engineering Journal 184, 57-65.

Foo, K.Y., Hameed, B.H. (2011), Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption. Chemical Engineering Journal 166, 792-795.

Foo, K.Y., Hameed, B.H. (2011), Preparation of oil palm (Elaeis) empty fruit bunch activated carbon by microwave-assisted KOH activation for the adsorption of methylene blue. Desalination 275, 302-305.

Foo, K.Y., Hameed, B.H. (2012), Dynamic adsorption behavior of methylene blue onto oil palm shell granular activated carbon prepared by microwave heating. Chemical Engineering Journal 203, 81-87.

Foo, K.Y., Hameed, B.H. (2012), Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation. Bioresource Technology 104, 679-686.

Guo, J., Luo Y., Lua A.C., Chi R.A., Chen Y.L., Bao X.T., Xiang S.X. (2007), Adsorption of hydrogen sulphide (H2S) by activated carbonsderived from oil-palm shell. Carbon 45, 330-336.

Hao, W., Bjorkman, E., Lilliestrale, M., Hedin, N. (2013), Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2. Applied Energy

Ho, Y.S., McKay, G. (1999), Pseudo-second order model for sorption processes. Process Biochem 34, 451-465.

Hsiao, H.Y., Huang, C.M., Hsu, M.Y., Chen, H. (2011), Preparation of high-surface-area PAN-based activated carbon by solution-blowing process for CO2 adsorption. Separation and Purification Technology 82, 19-27.

Jung, M.J., Jeonga, E., Kim, S., Lee, S.I., Yoo, J.S., Lee, Y.S. (2011), Fluorination effect of activated carbon electrodes on the electrochemical performance of electric double layer capacitors. Journal of Fluorine Chemistry 132, 1127–1133.

Jung, M.J., Jeonga, E., Lima, J.W., Lee, S.I., Lee, Y.S. (2011), Physico-chemical surface modification of activated carbon by oxyfluorination and its electrochemical characterization. Colloids and Surfaces A 389, 274- 280.

Kaouah, F., Boumaza, S., Berrama, T., Trari, M., Bendjama, Z. (2013), Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 46. Journal of Cleaner Production 54, 296-306.

Kawano, T., Kubota, M., Onyango, M.S., Watanabe, F., Matsuda, H. (2008), Preparation of activated carbon from petroleum coke by KOH chemical activation for adsorption heat pump. Applied Thermal Engineering 28, 865-871.

Kim, Y.J., Horie, Y., Ozaki, S., Matsuzawa, Y., Suezaki, H., Kim, C., Miyashita, N., Endo, M. (2004), Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons. Carbon 42, 1491–1500.

Kong, J., Yue, Q., Huang, L., Gao, Y., Sun, Y., Gao, B., Li, Q., Wang, Y. (2013), Preparation, characterization and evaluation of adsorptive properties of leather waste based activated carbon via physical and chemical activation. Chemical Engineering Journal 221, 62-71.

Lee, Y.J., Park, H.W., Park, S., Song, I.K. (2012), Electrochemical properties of Mn-doped activated carbon aerogel as electrode material for supercapacitor. Current Applied Physics 12, 233-237.

Li, G., Xiao, P., Webley, Paul A., Zhang, J., Singh, R. (2009), Competition of CO2/H2O in Adsorption Based CO2 Capture. Energy Procedia 1, 1123-1130.

Li, W., Yanga, K., Penga, J., Zhanga, L., Guoa, S., Xiaa, H. (2008), Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Industrial Crops and Products 28, 190-198.

Lin, L., Zhai, S.R., Xiao, Z.Y., Song, Y., An, Q.D., Song, X.W. (2013), Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks. Bioresource Technology 136, 437-443.

Liu, Y., Guo, Y., Gao, W., Wang, Z., Ma, Y., Wang, Z. (2012), Simultaneous preparation of silica and activated carbon from rice husk ash. Journal of Cleaner Production 32, 204-209.

Lu, C., Xu, S., Liu, C. (2010), The role of K2CO3 during the chemical activation of petroleum coke with KOH. Journal of Analytical and Applied Pyrolysis 87, 282–287.

Ma, X., Feng, Q. (2013), Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation. Applied Surface Science 268, 566- 570.

Mahalakshmi, M., Arabindoo, B., Palanichamy, M., Murugesan, V. (2007), Photocatalytic degradation of carbofuran using semiconductor oxides. Journal of Hazardous Materials. 143, 240-245.

Maldonado, M.I., Malato, S., Estrada, L.A.P., Gernjak, W., Oller, I., Domenech, X., Peral, J. (2006), Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor. Journal of Hazardous Materials. 38, 363-369.

Qian, Q., Machida, M., Tatsumoto, H. (2007), Preparation of activated carbons from cattle-manure compost by zinc chloride activation. Bioresource Technology 98, 353-360.

Reddy, K.S.K., Shoaibi, A.A., Srinivasakannan, C. (2013), A comparison of microstructure and adsorption characteristics of activated carbons by CO2 and H3PO4 activation from date palm pits. New Carbon Materials 27, 344-351.

Salman, J.M., Hameed, B.H. (2010), Effect of preparation conditions of oil palm fronds activated carbon on adsorption of bentazon from aqueous solutions. Journal of Hazardous Materials 175, 133–137.

Salman, J.M., Njokua, V.O., Hameeda, B.H. (2011), Batch and fixed-bed adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm frond activated carbon. Chemical Engineering Journal 174, 33- 40.

Saritha, P., Aparna, C., Himabindu, V., Anjaneyulu, Y. (2007), Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol. Journal of Hazardous Materials. 149, 609-614.

Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., (1985), Reporting physisorption deta for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry 57, 603.

Sing, K.S.W., Gregg, S.J. (1982), Adsorption, Surface Area and Porosity. Academic Press, New York

Sousa-Aguilar, E.F., Liebsch, A., Chaves, B.C., Costa, A.F., (1998), Influence of external surface area of small cryatallite zeolites on the micropore volume determination. Microporous and Mesoporous Materials 25, 185.

Tang, Y.B., Liu, Q., Chen, F.Y. (2012), Preparation and characterization of activated carbon from waste ramulus mori. Chemical Engineering Journal 203, 19-24.

Tongpoothorn, W., Sriuttha, M., Homchan, P., Chanthai, S., Ruangviriyachai C. (2011), Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties. chemical engineering research and design 89, 335-340.

Tseng , R.L., Wu , F.C., Juang, R.S. (2003), Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons. Carbon 41, 487–495.

Tseng, R.L. (2006), Mesopore control of high surface area NaOH-activated carbon. Journal of Colloid and Interface Science 303, 494-502.

Tseng, R.L., Tseng, S.K. (2005), Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob. Journal of Colloid and Interface Science 287, 428-437.

Tseng, R.L., Tseng, S.K. (2005), Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob. Journal of Colloid and Interface Science 287, 428-437.

Weber, W.J., Morris, J.C. (1962), Advances in water pollution research: removal of biologically resistant pollutant from waste water by adsorption, In Proceedings of 1st International Conference on Water Pollution Symposium. Pergamon Press, Oxford 2, 231-266.

Wu, F.C., Tseng R.L., Huang, S.C., Juang, R.S. (2009), Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: A Mini-review. Chemical Engineering Journal 151, 1-9.

Wu, F.C., Tseng, R.L. (2006), Preparation of highly porous carbon from fir wood by KOH etching and CO2 gasification for adsorption of dyes and phenols from water. Journal of Colloid and Interface Science 294, 21-30.

Wu, F.C., Tseng, R.L. (2008), High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution. Journal of Hazardous Materials 152, 1256-1267.

Wu, F.C., Tseng, R.L., Hu, C.C., Wang, C.C. (2004), Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors. Journal of Power Sources 138, 351-359.

Wu, F.C., Wu P.H., Tseng, R.L., Juang, R.S. (2010), Preparation of activated carbons from unburnt coal in bottom ash with KOH activation for liquid-phase adsorption. Environmental Management 91, 1097-1102.

Yang, T., Lua, A.C. (2003), Characteristics of activated carbons prepared from pistachio-nut shells by potassium hydroxide activation. Microporous and Mesoporous Materials 63, 113-124.

Zeng, C., Lina, Q., Fang, C., Xua, D., Ma, Z. (2013), Preparation and characterization of high surface area activatedcarbons from co-pyrolysis product of coal-tar pitch and rosin. Journal of Analytical and Applied Pyrolysis

Zhao, X., Lai, ., Lio, H., Gao, L. (2009), Preparation and characterization of activated carbon foam from phenolic resin. Journal of Environmental Sciences Supplement 21, 121-123.

Zhao, Z., Cui, Xi., Ma, J., Li, R. (2007), Adsorption of carbon dioxide on alkali-modified zeolite 13X adsorbents. International journal of greenhouse gas control 1, 355-359.

曾浩雄(2011),土木技師公會技師報,第760期

黃聖傑(2008),RDF固態衍生廢料以化學活化法製備活性碳及其應用,聯合大學環境與安全衛生研究所碩士論文

經濟部工業局(2013),工業局推動區域蒸氣供應中心,創造製造業能源供應服務新契機

劉毅弘、張文昇、楊昌中、鄭名山、曹芳海、黃昭銘、張慶源(2009),二氧化碳新型吸附劑探討,工業污染防治,第111期

歐陽嶠暉(2007),下水道工程學,長松文化

顏加政(2005),超高電容器之活性碳電極改質研究,雲林科技大學化學工程系研究所碩士論文

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊