[1] Yang, D. C. H., and Lee, T. W., 1984, “Feasibility study of a platform type of robotic manipulator form a kinematic view point,” ASME J. of mechanisms, Transmissions and Automation in Design, Vol. 106, pp. 191-198.
[2] Heisel, U., and Gringel, M., 1996, “Machine tool design requirements for high-speed machining,” Annals of th CIRP, Vol. 45/1, pp. 389-392.
[3] Warnecke, H. J., Neugebauer, R., and wieland, F., 1998, “Development of Hexapod based machine tool,” Annals of th CIRP, Vol. 47/1, pp. 337-340.
[4] Allcock, A., 1995, “A Machine for the 21st century,” Machinery and production Engineering, Vol. 108, No. 15, pp. 371-386.
[5] Stewart, D., 1993, “Stewart platform of general geometry has 40 configurations,” Trans. ASME, J. Mechanical Design, Vol. 115, No. 2, pp. 277-280.
[6] C. Gosselin and J. Angeles, 1988, “The optumum kinematic design of a planar three-degree-of —freedom parallel manipulator,” ASME J. of mechanisms, Transmissions and Automation in Design, Vol. 110, pp. 35-41.
[7] C. Gosselin and J. Angeles, 1989, “The optumum kinematic design of a spherical three-degree-of —freedom parallel manipulator,” ASME J. of mechanisms, Transmissions and Automation in Design, Vol. 111, pp. 202-207.
[8] K. H. Pittens and R. P. Podhorodeski, 1993, “A family of Stewart platforms with optimal dexterity,” Journal of robotic systems, Vol. 10, No. 2, pp. 463-479.
[9] K. E. Zanganeh and J. Angeles, 1997, “Kinematic isotropy and the optimum design of parallel manipulators,” Int. J. Robotics Res., Vol. 16, No. 2, pp. 185-197.
[10] J. Lee, J. Duffy, and K. H. Hunt, 1998, “A practical quality index based on the octahedral manipulator,” Int. J. Robotics Res., Vol. 17, No. 10, pp. 1081-1090.
[11] W. Khalil and D. Murareci, 1996, “Kinematic analysis and singular configurations of a class of parallel robots,” Mathematics and computers, Vol. 41, pp. 377-390.
[12] T. Huang, D. J. Whitehouse, and J. Wang, 1998, “The local dexterity, optimal architecture and design criteria of parallel machine tools,” Annals of the CIRP, Vol. 47, No. 1, pp. 347-351.
[13] D. Kim and W. Chung, 1999, “Analytic singularity equation and analysis of six-DOF parallel manipulators using local structurization method,” IEEE transactions on robotics and automation, Vol. 15, No. 4, pp. 612-622.
[14] B. M. St-Onge and C. M. Gosselin, 2000, “Singularity analysis and representation of the general Gough-Stewart platform,” Int. J. Robotics Res., Vol. 19, No. 3, pp. 271-288.
[15] R. S. Stoughton and T. Arai, 1993, “A modified Stewart platform manipulator with improved dexterity,” IEEE transactions and automation, Vol. 9, No. 2, pp. 166-173.
[16] S. Bhattacharya, H. Hatwal and A. Ghosh, 1995, “On the optimum design of Stewart platform type parallel manipulators,” Robotica, Vol. 13, pp. 133-140.
[17] 蔡永生,2000,”史都華平台五軸機械性能分析與設計程序”,國立清華大學動力機械工程學系碩士論文。[18] R. E. Moore, 1966, Interval analysis, Prentice-Hall, Englewood Cliffs, New Jersey.
[19] H. Ratschek, 1980, “Centered forms,” SIAM J. Numer. Anal., Vol. 17, No. 5, pp. 656-662.
[20] J. G. Rokne, 1986, “Low complexity k-dimensional centered forms,” Computing, Vol. 37, pp. 247-253.
[21] E. R. Hansen, 1968, “On solving systems of equations using interval arithmetic,” Math. Comput., Vol. 22, pp. 374-384.
[22] J. G. Rokne and P. Bao, 1987, ”Interval taylor forms,” Computing, Vol. 39, pp. 247-259.
[23] C. Cargo and O. Shiska, 1966, “The Berstein form of a polynomial,” J. Res. Nat. Bureau Standards, Vol. 70B, pp. 79-81.
[24] J. Rokne, 1977, “Bounds for an interval polynomial,” Computing, Vol. 18, pp. 225-240.
[25] T. W. Sederberg and R. T. Farouki, 1992, “Approximation by interval Bezier curves,” IEEE Comput. Graph. Appl. Vol. 12, pp. 87-95.
[26] Q. Lin and J. G. Rokne, 1995, “Methods for bounding the range of a polynomial,” J. Comp. Appl. Math., Vol. 58, pp. 193-199.
[27] Q. Lin and J. G. Rokne, 1995, “Interval approximation of higher order to the ranges of functions,” Computers Math. Applic., Vol. 31, No. 7, pp. 101-109.
[28] F. L. Bauer and C. T. Fike, 1960, “Norms and exclusion theorems,” Numerische Mathematik, Vol. 2, pp. 137-141.
[29] A. S. Deif, 1995, “Rigorous perturbation bounds for eigenvalues and eigenvectors of a matrix,” J. Comp. Appl. Math., Vol. 57, pp. 403-412.
[30] E. Jiang, 1998, “Challenge eigenvalue perturbation problems,” Linear Algebra and its Applications, Vol. 278, pp. 303-307.
[31] J. Demmel and W. Kahan, 1990, “Accurate singular values of bidiagonal matrices,” SIAM J. Sci. Statist. Comput., Vol. 11, pp. 873-912.
[32] J. Barlow and J. Demmel, 1990, “Computing accurate eigensystems of scaled diagonally dominant matrices,” SIAM J. Numer. Anal., Vol. 27, No. 3, pp. 762-791.
[33] F. M. Dopico, J. Moro and J. M. Molera, 2000, “weyl-type relative perturbation bounds for eigensystems of hermitian matrices,” Linear Algebra and its Applications, Vol. 309, pp. 3-18.
[34] 黃耀德,2001,”廣義史都華平台五軸改良型工具機性能分析與設計程序” ,國立清華大學動力機械工程學系碩士論文。[35] M. H. Perng and L. Hsiao, 1999, “Inverse kinematic solutions for a fully parallel robot with singularity avoidance,” Int. J. Robotics Res., Vol. 18, No. 6, pp. 575-583.
[36] P. Lancaster and M. Tismenetsky, 1985, The Theory of Matrices, New York: Academic Press.
[37] B. S. El-Khasawneh and P. M. Ferreira, 1999, “Computation of stiffness and stiffness bounds for parallel link manipulators,” Int. J. Machine Tools & Manufacture, v39, n2, pp. 321-342.
[38] O. Didrit, M. Petitot and E. Walter, 1998, “Guaranted solution of direct kinematic problems for general configurations of parallel manipulators,” IEEE transactions on robotics and automation, Vol. 14, No. 2, pp. 259-266.
[39] J. P. Merlet, 1999, “Determination of 6D workspaces of Gough-type parallel manipulator and comparison between different geometries,” Int. J. Robotics Res., Vol. 18, No. 9, pp. 902-916.
[40] E. Hanson, 1992, Global optimization using interval analysis, Marcel Dekker, New york.
[41] E. R. Moore, 1979, Methods and applications of interval analysis, SIAM Publ., Philadelphia, Pennsylvania.
[42] H. Ratschek and J. Rokne, 1984, Computer methods for the range of functions, Chichester, Ellis Horwood.
[43] G. W. Stewart and J. G. Sun, 1990, Matrix perturbation theory, Academic Press, San Diego.