跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.42) 您好!臺灣時間:2025/10/01 11:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊正昌
研究生(外文):Cheng-ChangYang
論文名稱:咖啡因抑制脊髓損傷後的自發性肢體運動功能回復
論文名稱(外文):Caffeine inhibits spontaneous motor function recovery after contusion spinal cord injury
指導教授:周一鳴
指導教授(外文):I-Ming Jou
學位類別:博士
校院名稱:國立成功大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:82
中文關鍵詞:脊髓損傷咖啡因細胞存活訊息細胞凋亡自噬作用自發性運動功能回複
外文關鍵詞:spinal cord injurycaffeinecell survival signalapoptosisautophagyspontaneous motor function recovery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:858
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
脊髓損傷是導致肢體癱瘓及器官功能缺損的重大傷害。外力直接撞擊脊髓造成出血以及 組織破壞等稱之為初級傷害。接續的發炎反應、氧化性壓力以及細胞凋亡持續地破壞脊 髓,這個現象稱為次級傷害。近年來,脊髓損傷的治療大多著重在降低次級傷害的發生, 期望可以增進肢體運動功能的回復。過去的研究發現,腺苷接收器在脊髓損傷所誘發的 發炎反應中,扮演著重要的調控角色。咖啡因不只是一種被廣為使用的精神刺激物,同 時也是一種非選擇性的腺苷接收器抑制劑。在腦部損傷的動物實驗中發現,咖啡因可透 過抗氧化等作用保護神經,但是咖啡因對於脊髓損傷後自發性肢體運動功能回復的影響, 則尚未清楚。本研究採用脊髓損傷撞擊器(NYU MASCIC impactor)撞擊大鼠脊髓第九胸 椎處來建立損傷之動物模式。手術後連續七天在腹腔注射咖啡因(30 mg/Kg)。實驗對 照組則注射磷酸緩衝生理食鹽水。本實驗以肢體功能計量表(BBB rating scale)每週一次 連續四週評估後肢運動功能。結果發現,此一劑量咖啡因不會影響生理參數,但卻抑制 自發性的肢體運動功能回復。在最後一次功能評估後,立刻取出脊髓進行組織型態分析。 結果發現,咖啡因(1)降低脊髓組織剩餘量,(2)增加去髓鞘化面積,(3)促進星狀細胞及 微膠細胞的活化,(4)增加脊髓內神經細胞的死亡,以及(5)減少神經纖維的含量。在另 一組實驗中,我們在大鼠脊髓損傷後,連續腹腔給予咖啡因(30 mg/Kg)七天,接著將 其脊髓取出運用西方墨漬法分析數種蛋白質的表現量。結果顯示,咖啡因(1)抑制腺苷接 收器A2a以及A3的表現、(2)抑制細胞生長存活的訊息傳導因子(P-Akt、p-ST A T3及p-Erk) 的活化,(3)增加氧化壓力,以及(4)提升自噬現象及細胞凋亡的產生。總結本研究,脊 髓損傷後咖啡因會抑制自發性肢體功能的回復;此一現象可能是透過腺苷接受器抑制細 胞生長存活因子的表現,增加細胞氧化壓力,自噬現象,以及細胞凋亡等現象,進而導 致神經性發炎與脊髓的去髓鞘化,最終使得次級傷害更加嚴重。有鑒於此劑量咖啡因在 脊髓損傷所帶來的負面影響,此類患者應避免投予含有咖啡因的藥物以及咖啡因的過量攝取。
Spinal cord injury (SCI) results in paralysis and organ impairment. The pathology of SCI includes primary and secondary injury that is involved in neurological dysfunction. Primary injury of SCI refers to an injury that is directly caused by a physical or chemical insults; whereas, secondary injury refers to injuries that are caused by primary injury-induced subsequent events, such as inflammation, oxidative stress and apoptosis. SCI therapy has been focused on preventing secondary injury to reduce lesion area so that functional outcome after a SCI may be improved. Adenosine receptors (ARs) are a major regulator of inflammation after SCI. Caffeine, one of the most widely used psychoactive substances, acts as a non-selective AR blocker and has neuroprotective effects in brain injury. Nevertheless, the effect of caffeine on spontaneous motor function recovery after a SCI remains unknown. The contusion SCI animal model was generated by hitting the thoracic 9th spinal cord level using an impactor (NYU MASCIC impactor). Caffeine (30 mg/Kg) was injected intraperitoneally (i.p.) for 7 days after SCI immediately, while the control group was injected with PBS. Hindlimb motor function was evaluated by the Basso, Beattie, Bresnahan (BBB) locomotor rating scale weekly after SCI for 4 weeks. Initial test showed that 30 mg/Kg of caffeine treatment did not affect body weight or hindlimb motor function in normal rats. However, caffeine (30 mg/Kg) treatment reduced the BBB scores compared to the PBS treatment group after SCI. Spinal cord was collected after the final behavior test for morphological analyze. The results showed that caffeine (1) decreased spinal cord tissue sparing area, (2) decreased the myelinated area, (3) promoted astrocyte and microglia activation, (4) triggered neuron necrosis, and (5) decreased the quantity of neurofilaments. In another experiment, rats were daily injected with caffeine 30mg/Kg, i.p. for 7 days, and the spinal cords were collected to analyze protein expression level by Western blot analysis. The results showed that caffeine decreased levels of adenosine receptor, A2a and A3, and survival signaling molecules including p-Akt, p-Erk and p-STAT3. Meanwhile, caffeine increased levels of Nrf2, LC3II and the cleavage form of caspase-3. These results suggested that caffeine treatment inhibits spontaneous motor function recovery through ARs by increasing oxidative stress, decreasing survival signal pathways, and triggering autophagic related cell death. The caffeine-induced inhibition of neural repair and promotion of neuroinflammation may aggravate the secondary injury. Accordingly, these findings suggest that the SCI patients should avoid high dose of caffeine ingestion.
CONTENTS
FIGURE LIST
中文摘要 1
ABSTRACT 2
ABBREVIATIONS 3

1 INTRODUCTION 4
1.1 SPINAL CORD INJURY 5
1.2 OXIDATIVE STRESS 5
1.3 AUTOPHAGY 6
1.4 ADENOSINE RECEPTOR 7
1.5 CAFFEINE 9
1.6 THE AIM OF THIS STUDY 10

2 EXPERIMENTAL DESIGN 11
2.1 THE EFFECT OF CAFFEINE ON MOTOR FUNCTION RECOVERY AFTER SCI 12
2.2 THE EFFECT OF CAFFEINE ON MORPHOLOGICAL CHANGES AFTER SCI 13
2.3 THE EFFECT OF CAFFEINE ON PROTEIN EXPRESSION 14

3 MATERIALS AND METHODS 15
3.1 ANIMALS 16
3.2 CONTUSION SPINAL CORD INJURY (SCI) MODEL 16
3.3 DRUG ADMINISTRATION 16
3.4 BASSO, BEATTIE, BRESNAHAN LOCOMOTOR RATING SCALE 17
3.5 PERFUSION, FIXACTION AND SECTION 17
3.6 MEASUREMENT OF SPARED MYELIN IN WHITE MATTER AFTER SCI 18
3.7 MEASUREMENT OF CELL NECROSIS IN SPINAL CORD AFTER SCI 18
3.8 MEASUREMENT OF TISSUE SPARING AFTER SCI 19
3.9 MEASUREMENT OF THE MICROGLIA NUMBER AFTER SCI 19
3.10 MEASUREMENT OF GLIOSIS AFTER SCI 20
3.11 MEASUREMENT OF NEUROFILAMENT AFTER SCI 20
3.12 WESTERN BLOT 21
3.13 STATISTICS 22

4 RESULTS 23
5 DISCUSSION 29
6 CONCLUSION 36
7 REFERENCES 38
8 FIGURES 53
9 ACKNOWLEDGEMENT 74
10 PUBLICATION LIST 76
11 PUBLICATIONS 79

1.Maegele M., Riess P., Sauerland S., Bouillon B., Hess S., McIntosh T.K., Mautes A., Brockmann M., Koebke J., Knifka J., Neugebauer E.A., Characterization of a new rat model of experimental combined neurotrauma, Shock, 23 (2005) 476-481.
2.Fine P.R., DeVivo M.J., McEachran A.B., Incidence of acute traumatic hospitalized spinal cord injury in the United States, 1970-1977, Am J Epidemiol, 115 (1982) 475-479.
3.Gerndt S.J., Rodriguez J.L., Pawlik J.W., Taheri P.A., Wahl W.L., Micheals A.J., Papadopoulos S.M., Consequences of high-dose steroid therapy for acute spinal cord injury, J Trauma, 42 (1997) 279-284.
4.Walters B.C., Hadley M.N., Hurlbert R.J., Aarabi B., Dhall S.S., Gelb D.E., Harrigan M.R., Rozelle C.J., Ryken T.C., Theodore N., American Association of Neurological S., Congress of Neurological S., Guidelines for the management of acute cervical spine and spinal cord injuries: 2013 update, Neurosurgery, 60 Suppl 1 (2013) 82-91.
5.Onifer S.M., Smith G.M., Fouad K., Plasticity after spinal cord injury: relevance to recovery and approaches to facilitate it, Neurotherapeutics, 8 (2011) 283-293.
6.Gilgun-Sherki Y., Rosenbaum Z., Melamed E., Offen D., Antioxidant therapy in acute central nervous system injury: current state, Pharmacol Rev, 54 (2002) 271-284.
7.Bains M., Hall E.D., Antioxidant therapies in traumatic brain and spinal cord injury, Biochim Biophys Acta, 1822 (2012) 675-684.
8.Liu D., Ling X., Wen J., Liu J., The role of reactive nitrogen species in secondary spinal cord injury: formation of nitric oxide, peroxynitrite, and nitrated protein, J Neurochem, 75 (2000) 2144-2154.
9.Liu D., Bao F., Prough D.S., Dewitt D.S., Peroxynitrite generated at the level produced by spinal cord injury induces peroxidation of membrane phospholipids in normal rat cord: reduction by a metalloporphyrin, J Neurotrauma, 22 (2005) 1123-1133.
10.Xu J., Kim G.M., Chen S., Yan P., Ahmed S.H., Ku G., Beckman J.S., Xu X.M., Hsu C.Y., iNOS and nitrotyrosine expression after spinal cord injury, J Neurotrauma, 18 (2001) 523-532.
11.Seligman M.L., Flamm E.S., Goldstein B.D., Poser R.G., Demopoulos H.B., Ransohoff J., Spectrofluorescent detection of malonaldehyde as a measure of lipid free radical damage in response to ethanol potentiation of spinal cord trauma, Lipids, 12 (1977) 945-950.
12.Liu D., Sybert T.E., Qian H., Liu J., Superoxide production after spinal injury detected by microperfusion of cytochrome c, Free Radic Biol Med, 25 (1998) 298-304.
13.Dhakshinamoorthy S., Jaiswal A.K., Functional characterization and role of INrf2 in antioxidant response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene, Oncogene, 20 (2001) 3906-3917.
14.Itoh K., Wakabayashi N., Katoh Y., Ishii T., Igarashi K., Engel J.D., Yamamoto M., Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain, Genes Dev, 13 (1999) 76-86.
15.Hong F., Sekhar K.R., Freeman M.L., Liebler D.C., Specific patterns of electrophile adduction trigger Keap1 ubiquitination and Nrf2 activation, J Biol Chem, 280 (2005) 31768-31775.
16.Kobayashi M., Yamamoto M., Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species, Adv Enzyme Regul, 46 (2006) 113-140.
17.Kobayashi A., Kang M.I., Watai Y., Tong K.I., Shibata T., Uchida K., Yamamoto M., Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1, Mol Cell Biol, 26 (2006) 221-229.
18.Zhou K.L., Chen D.H., Jin H.M., Wu K., Wang X.Y., Xu H.Z., Zhang X.L., Effects of calcitriol on experimental spinal cord injury in rats, Spinal Cord, DOI 10.1038/sc.2015.217(2016).
19.Liao B., Zhang Y., Sun H., Ma B., Qian J., Ryanodine Receptor 2 Plays a Critical Role in Spinal Cord Injury via Induction of Oxidative Stress, Cell Physiol Biochem, 38 (2016) 1129-1137.
20.Lv R., Mao N., Wu J., Lu C., Ding M., Gu X., Wu Y., Shi Z., Neuroprotective effect of allicin in a rat model of acute spinal cord injury, Life Sci, 143 (2015) 114-123.
21.Karatas Y., Cengiz S.L., Esen H., Toker A., Savas C., Effect of Carvedilol on Secondary Damage in Experimental Spinal Cord Injury in Rats, Turk Neurosurg, 25 (2015) 930-935.
22.Khayrullina G., Bermudez S., Byrnes K.R., Inhibition of NOX2 reduces locomotor impairment, inflammation, and oxidative stress after spinal cord injury, J Neuroinflammation, 12 (2015) 172.
23.Haider T., Hoftberger R., Ruger B., Mildner M., Blumer R., Mitterbauer A., Buchacher T., Sherif C., Altmann P., Redl H., Gabriel C., Gyongyosi M., Fischer M.B., Lubec G., Ankersmit H.J., The secretome of apoptotic human peripheral blood mononuclear cells attenuates secondary damage following spinal cord injury in rats, Exp Neurol, 267 (2015) 230-242.
24.Juarez Becerril O., Salgado Ceballos H., Anguiano Solis C., Alvarado Sanchez B., Lopez Hernandez M.E., Diaz Ruiz A., Torres Castillo S., Electro-Acupuncture at GV.4 Improves Functional Recovery in paralyzed rats after a Traumatic Spinal Cord Injury, Acupunct Electrother Res, 40 (2015) 355-369.
25.Guo J., Li Y., Chen Z., He Z., Zhang B., Li Y., Hu J., Han M., Xu Y., Li Y., N-acetylcysteine treatment following spinal cord trauma reduces neural tissue damage and improves locomotor function in mice, Mol Med Rep, 12 (2015) 37-44.
26.Noguchi T., Ohta S., Kakinoki R., Ikeguchi R., Kaizawa Y., Oda H., Matsuda S., The neuroprotective effect of erythropoietin on spinal motor neurons after nerve root avulsion injury in rats, Restor Neurol Neurosci, 33 (2015) 461-470.
27.Nacar O.A., Eroglu H., Cetinalp N.E., Menekse G., Yildirim A.E., Uckun O.M., Daglioglu E., Turkoglu O.F., Belen A.D., Systemic administration of atorvastatin improves locomotor functions and hyperacute-acute response after experimental spinal cord injury: an ultrastructural and biochemical analysis, Turk Neurosurg, 24 (2014) 337-343.
28.Semple B.D., Early preservation of mitochondrial bioenergetics supports both structural and functional recovery after neurotrauma, Exp Neurol, 261 (2014) 291-297.
29.Liu D., Huang Y., Li B., Jia C., Liang F., Fu Q., Carvedilol promotes neurological function, reduces bone loss and attenuates cell damage after acute spinal cord injury in rats, Clin Exp Pharmacol Physiol, 42 (2015) 202-212.
30.Ouyang L., Shi Z., Zhao S., Wang F.T., Zhou T.T., Liu B., Bao J.K., Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis, Cell Prolif, 45 (2012) 487-498.
31.Lin C.W., Chen B., Huang K.L., Dai Y.S., Teng H.L., Inhibition of Autophagy by Estradiol Promotes Locomotor Recovery after Spinal Cord Injury in Rats, Neurosci Bull, 32 (2016) 137-144.
32.Goldshmit Y., Kanner S., Zacs M., Frisca F., Pinto A.R., Currie P.D., Pinkas-Kramarski R., Rapamycin increases neuronal survival, reduces inflammation and astrocyte proliferation after spinal cord injury, Mol Cell Neurosci, 68 (2015) 82-91.
33.Chen H.C., Fong T.H., Lee A.W., Chiu W.T., Autophagy is activated in injured neurons and inhibited by methylprednisolone after experimental spinal cord injury, Spine (Phila Pa 1976), 37 (2012) 470-475.
34.Klionsky D.J., Emr S.D., Autophagy as a regulated pathway of cellular degradation, Science, 290 (2000) 1717-1721.
35.Zhang Y.B., Li S.X., Chen X.P., Yang L., Zhang Y.G., Liu R., Tao L.Y., Autophagy is activated and might protect neurons from degeneration after traumatic brain injury, Neurosci Bull, 24 (2008) 143-149.
36.Zhou K.L., Zhou Y.F., Wu K., Tian N.F., Wu Y.S., Wang Y.L., Chen D.H., Zhou B., Wang X.Y., Xu H.Z., Zhang X.L., Stimulation of autophagy promotes functional recovery in diabetic rats with spinal cord injury, Sci Rep, 5 (2015) 17130.
37.Wang Z.Y., Liu W.G., Muharram A., Wu Z.Y., Lin J.H., Neuroprotective effects of autophagy induced by rapamycin in rat acute spinal cord injury model, Neuroimmunomodulation, 21 (2014) 257-267.
38.Kanno H., Ozawa H., Sekiguchi A., Yamaya S., Itoi E., Induction of autophagy and autophagic cell death in damaged neural tissue after acute spinal cord injury in mice, Spine (Phila Pa 1976), 36 (2011) E1427-1434.
39.Kanno H., Ozawa H., Sekiguchi A., Itoi E., Spinal cord injury induces upregulation of Beclin 1 and promotes autophagic cell death, Neurobiol Dis, 33 (2009) 143-148.
40.Adams J.M., Ways of dying: multiple pathways to apoptosis, Genes Dev, 17 (2003) 2481-2495.
41.Lockshin R.A., Zakeri Z., Apoptosis, autophagy, and more, Int J Biochem Cell Biol, 36 (2004) 2405-2419.
42.Bao F., DeWitt D.S., Prough D.S., Liu D., Peroxynitrite generated in the rat spinal cord induces oxidation and nitration of proteins: reduction by Mn (III) tetrakis (4-benzoic acid) porphyrin, J Neurosci Res, 71 (2003) 220-227.
43.Cuzzocrea S., Genovese T., Mazzon E., Crisafulli C., Min W., Di Paola R., Muia C., Li J.H., Esposito E., Bramanti P., Xu W., Massuda E., Zhang J., Wang Z.Q., Poly(ADP-ribose) glycohydrolase activity mediates post-traumatic inflammatory reaction after experimental spinal cord trauma, J Pharmacol Exp Ther, 319 (2006) 127-138.
44.Genovese T., Mazzon E., Mariotto S., Menegazzi M., Cardali S., Conti A., Suzuki H., Bramanti P., Cuzzocrea S., Modulation of nitric oxide homeostasis in a mouse model of spinal cord injury, J Neurosurg Spine, 4 (2006) 145-153.
45.Glaser J., Gonzalez R., Sadr E., Keirstead H.S., Neutralization of the chemokine CXCL10 reduces apoptosis and increases axon sprouting after spinal cord injury, J Neurosci Res, 84 (2006) 724-734.
46.Song L., Kong M., Ma Y., Ba M., Liu Z., Inhibitory effect of 8-(3-chlorostryryl) caffeine on levodopa-induced motor fluctuation is associated with intracellular signaling pathway in 6-OHDA-lesioned rats, Brain Res, 1276 (2009) 171-179.
47.Lee C.F., Chern Y., Adenosine receptors and Huntington's disease, Int Rev Neurobiol, 119 (2014) 195-232.
48.Sawynok J., Adenosine receptor targets for pain, Neuroscience, DOI 10.1016/j.neuroscience.2015.10.031(2015).
49.Palacios N., Gao X., McCullough M.L., Schwarzschild M.A., Shah R., Gapstur S., Ascherio A., Caffeine and risk of Parkinson's disease in a large cohort of men and women, Mov Disord, 27 (2012) 1276-1282.
50.Salvemini D., Kim S.F., Mollace V., Reciprocal regulation of the nitric oxide and cyclooxygenase pathway in pathophysiology: relevance and clinical implications, Am J Physiol Regul Integr Comp Physiol, 304 (2013) R473-487.
51.Stone T.W., Ceruti S., Abbracchio M.P., Adenosine receptors and neurological disease: neuroprotection and neurodegeneration, Handb Exp Pharmacol, DOI 10.1007/978-3-540-89615-9_17(2009) 535-587.
52.Xu K., Di Luca D.G., Orru M., Xu Y., Chen J.F., Schwarzschild M.A., Neuroprotection by caffeine in the MPTP model of parkinson's disease and its dependence on adenosine A2A receptors, Neuroscience, 322 (2016) 129-137.
53.Ning Y.L., Yang N., Chen X., Zhao Z.A., Zhang X.Z., Chen X.Y., Li P., Zhao Y., Zhou Y.G., Chronic caffeine exposure attenuates blast-induced memory deficit in mice, Chin J Traumatol, 18 (2015) 204-211.
54.Reyhani-Rad S., Mahmoudi J., Effect of adenosine A2A receptor antagonists on motor disorders induced by 6-hydroxydopamine in rat, Acta Cir Bras, 31 (2016) 133-137.
55.Maniglia M., Pavan A., Cuturi L.F., Campana G., Sato G., Casco C., Reducing crowding by weakening inhibitory lateral interactions in the periphery with perceptual learning, PLoS One, 6 (2011) e25568.
56.Vinten-Johansen J., Zhao Z.Q., Corvera J.S., Morris C.D., Budde J.M., Thourani V.H., Guyton R.A., Adenosine in myocardial protection in on-pump and off-pump cardiac surgery, Ann Thorac Surg, 75 (2003) S691-699.
57.Horiuchi H., Ogata T., Morino T., Yamamoto H., Adenosine A1 receptor agonists reduce hyperalgesia after spinal cord injury in rats, Spinal Cord, 48 (2010) 685-690.
58.Reece T.B., Davis J.D., Okonkwo D.O., Maxey T.S., Ellman P.I., Li X., Linden J., Tribble C.G., Kron I.L., Kern J.A., Adenosine A2A analogue reduces long-term neurologic injury after blunt spinal trauma, J Surg Res, 121 (2004) 130-134.
59.Okonkwo D.O., Reece T.B., Laurent J.J., Hawkins A.S., Ellman P.I., Linden J., Kron I.L., Tribble C.G., Stone J.R., Kern J.A., A comparison of adenosine A2A agonism and methylprednisolone in attenuating neuronal damage and improving functional outcome after experimental traumatic spinal cord injury in rabbits, J Neurosurg Spine, 4 (2006) 64-70.
60.Carini R., Grazia De Cesaris M., Splendore R., Baldanzi G., Nitti M.P., Alchera E., Filigheddu N., Domenicotti C., Pronzato M.A., Graziani A., Albano E., Role of phosphatidylinositol 3-kinase in the development of hepatocyte preconditioning, Gastroenterology, 127 (2004) 914-923.
61.Cohen S., Barer F., Bar-Yehuda S., AP I.J., Jacobson K.A., Fishman P., A(3) adenosine receptor allosteric modulator induces an anti-inflammatory effect: in vivo studies and molecular mechanism of action, Mediators Inflamm, 2014 (2014) 708746.
62.Defer N., Best-Belpomme M., Hanoune J., Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase, Am J Physiol Renal Physiol, 279 (2000) F400-416.
63.Don J., Stelzer G., The expanding family of CREB/CREM transcription factors that are involved with spermatogenesis, Mol Cell Endocrinol, 187 (2002) 115-124.
64.Feoktistov I., Goldstein A.E., Biaggioni I., Cyclic AMP and protein kinase A stimulate Cdc42: role of A(2) adenosine receptors in human mast cells, Mol Pharmacol, 58 (2000) 903-910.
65.Igarashi J., Michel T., Sphingosine 1-phosphate and isoform-specific activation of phosphoinositide 3-kinase beta. Evidence for divergence and convergence of receptor-regulated endothelial nitric-oxide synthase signaling pathways, J Biol Chem, 276 (2001) 36281-36288.
66.Bareyre F.M., Garzorz N., Lang C., Misgeld T., Buning H., Kerschensteiner M., In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration, Proc Natl Acad Sci U S A, 108 (2011) 6282-6287.
67.Renfu Q., Rongliang C., Mengxuan D., Liang Z., Jinwei X., Zongbao Y., Disheng Y., Anti-apoptotic signal transduction mechanism of electroacupuncture in acute spinal cord injury, Acupunct Med, 32 (2014) 463-471.
68.Zhu Y., Culmsee C., Klumpp S., Krieglstein J., Neuroprotection by transforming growth factor-beta1 involves activation of nuclear factor-kappaB through phosphatidylinositol-3-OH kinase/Akt and mitogen-activated protein kinase-extracellular-signal regulated kinase1,2 signaling pathways, Neuroscience, 123 (2004) 897-906.
69.Edling C.E., Selvaggi F., Ghonaim R., Maffucci T., Falasca M., Caffeine and the analog CGS 15943 inhibit cancer cell growth by targeting the phosphoinositide 3-kinase/Akt pathway, Cancer Biol Ther, 15 (2014) 524-532.
70.Miwa S., Sugimoto N., Yamamoto N., Shirai T., Nishida H., Hayashi K., Kimura H., Takeuchi A., Igarashi K., Yachie A., Tsuchiya H., Caffeine induces apoptosis of osteosarcoma cells by inhibiting AKT/mTOR/S6K, NF-kappaB and MAPK pathways, Anticancer Res, 32 (2012) 3643-3649.
71.Saiki S., Sasazawa Y., Imamichi Y., Kawajiri S., Fujimaki T., Tanida I., Kobayashi H., Sato F., Sato S., Ishikawa K., Imoto M., Hattori N., Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition, Autophagy, 7 (2011) 176-187.
72.Lee I.A., Low D., Kamba A., Llado V., Mizoguchi E., Oral caffeine administration ameliorates acute colitis by suppressing chitinase 3-like 1 expression in intestinal epithelial cells, J Gastroenterol, 49 (2014) 1206-1216.
73.Xue G., Hemmings B.A., PKB/Akt-dependent regulation of cell motility, J Natl Cancer Inst, 105 (2013) 393-404.
74.Germack R., Griffin M., Dickenson J.M., Activation of protein kinase B by adenosine A1 and A3 receptors in newborn rat cardiomyocytes, J Mol Cell Cardiol, 37 (2004) 989-999.
75.Wang C., Wang P., Zeng W., Li W., Tetramethylpyrazine improves the recovery of spinal cord injury via Akt/Nrf2/HO-1 pathway, Bioorg Med Chem Lett, 26 (2016) 1287-1291.
76.Zheng B., Ye L., Zhou Y., Zhu S., Wang Q., Shi H., Chen D., Wei X., Wang Z., Li X., Xiao J., Xu H., Zhang H., Epidermal growth factor attenuates blood-spinal cord barrier disruption via PI3K/Akt/Rac1 pathway after acute spinal cord injury, J Cell Mol Med, DOI 10.1111/jcmm.12761(2016).
77.Liu Z.H., Yip P.K., Adams L., Davies M., Lee J.W., Michael G.J., Priestley J.V., Michael-Titus A.T., A Single Bolus of Docosahexaenoic Acid Promotes Neuroplastic Changes in the Innervation of Spinal Cord Interneurons and Motor Neurons and Improves Functional Recovery after Spinal Cord Injury, J Neurosci, 35 (2015) 12733-12752.
78.Zhu S.P., Wang Z.G., Zhao Y.Z., Wu J., Shi H.X., Ye L.B., Wu F.Z., Cheng Y., Zhang H.Y., He S., Wei X., Fu X.B., Li X.K., Xu H.Z., Xiao J., Gelatin Nanostructured Lipid Carriers Incorporating Nerve Growth Factor Inhibit Endoplasmic Reticulum Stress-Induced Apoptosis and Improve Recovery in Spinal Cord Injury, Mol Neurobiol, DOI 10.1007/s12035-015-9372-2(2015).
79.Ohtake Y., Hayat U., Li S., PTEN inhibition and axon regeneration and neural repair, Neural Regen Res, 10 (2015) 1363-1368.
80.Xia B., Liu H., Xie J., Wu R., Li Y., Akt enhances nerve growth factor-induced axon growth via activating the Nrf2/ARE pathway, Int J Mol Med, 36 (2015) 1426-1432.
81.Walker C.L., Walker M.J., Liu N.K., Risberg E.C., Gao X., Chen J., Xu X.M., Systemic bisperoxovanadium activates Akt/mTOR, reduces autophagy, and enhances recovery following cervical spinal cord injury, PLoS One, 7 (2012) e30012.
82.Paterniti I., Esposito E., Mazzon E., Bramanti P., Cuzzocrea S., Evidence for the role of PI(3) -kinase-AKT-eNOS signalling pathway in secondary inflammatory process after spinal cord compression injury in mice, Eur J Neurosci, 33 (2011) 1411-1420.
83.Antonioli L., Blandizzi C., Pacher P., Hasko G., Immunity, inflammation and cancer: a leading role for adenosine, Nat Rev Cancer, 13 (2013) 842-857.
84.Chen J.F., Eltzschig H.K., Fredholm B.B., Adenosine receptors as drug targets--what are the challenges?, Nat Rev Drug Discov, 12 (2013) 265-286.
85.Miura T., Tanaka S., Seichi A., Arai M., Goto T., Katagiri H., Asano T., Oda H., Nakamura K., Partial functional recovery of paraplegic rat by adenovirus-mediated gene delivery of constitutively active MEK1, Exp Neurol, 166 (2000) 115-126.
86.Safhi M.M., Rutherford C., Ledent C., Sands W.A., Palmer T.M., Priming of signal transducer and activator of transcription proteins for cytokine-triggered polyubiquitylation and degradation by the A 2A adenosine receptor, Mol Pharmacol, 77 (2010) 968-978.
87.Sorrentino C., Miele L., Porta A., Pinto A., Morello S., Myeloid-derived suppressor cells contribute to A2B adenosine receptor-induced VEGF production and angiogenesis in a mouse melanoma model, Oncotarget, 6 (2015) 27478-27489.
88.Lang C., Bradley P.M., Jacobi A., Kerschensteiner M., Bareyre F.M., STAT3 promotes corticospinal remodelling and functional recovery after spinal cord injury, EMBO Rep, 14 (2013) 931-937.
89.Graham T.E., Caffeine and exercise: metabolism, endurance and performance, Sports Med, 31 (2001) 785-807.
90.Solinas M., Ferre S., You Z.B., Karcz-Kubicha M., Popoli P., Goldberg S.R., Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens, J Neurosci, 22 (2002) 6321-6324.
91.Glade M.J., Caffeine-Not just a stimulant, Nutrition, 26 (2010) 932-938.
92.Ross G.W., Petrovitch H., Current evidence for neuroprotective effects of nicotine and caffeine against Parkinson's disease, Drugs Aging, 18 (2001) 797-806.
93.Moura-Nunes N., Perrone D., Farah A., Donangelo C.M., The increase in human plasma antioxidant capacity after acute coffee intake is not associated with endogenous non-enzymatic antioxidant components, Int J Food Sci Nutr, 60 Suppl 6 (2009) 173-181.
94.Yukawa G.S., Mune M., Otani H., Tone Y., Liang X.M., Iwahashi H., Sakamoto W., Effects of coffee consumption on oxidative susceptibility of low-density lipoproteins and serum lipid levels in humans, Biochemistry (Mosc), 69 (2004) 70-74.
95.Agudelo-Ochoa G.M., Pulgarin-Zapata I.C., Velasquez-Rodriguez C.M., Duque-Ramirez M., Naranjo-Cano M., Quintero-Ortiz M.M., Lara-Guzman O.J., Munoz-Durango K., Coffee Consumption Increases the Antioxidant Capacity of Plasma and Has No Effect on the Lipid Profile or Vascular Function in Healthy Adults in a Randomized Controlled Trial, J Nutr, 146 (2016) 524-531.
96.Abreu R.V., Silva-Oliveira E.M., Moraes M.F., Pereira G.S., Moraes-Santos T., Chronic coffee and caffeine ingestion effects on the cognitive function and antioxidant system of rat brains, Pharmacol Biochem Behav, 99 (2011) 659-664.
97.Azam S., Hadi N., Khan N.U., Hadi S.M., Antioxidant and prooxidant properties of caffeine, theobromine and xanthine, Med Sci Monit, 9 (2003) BR325-330.
98.Gorska A.M., Noworyta-Sokolowska K., Golembiowska K., The effect of caffeine on MDMA-induced hydroxyl radical production in the mouse striatum, Pharmacol Rep, 66 (2014) 718-721.
99.Endesfelder S., Zaak I., Weichelt U., Buhrer C., Schmitz T., Caffeine protects neuronal cells against injury caused by hyperoxia in the immature brain, Free Radic Biol Med, 67 (2014) 221-234.
100.Bravo J., Arbillaga L., de Pena M.P., Cid C., Antioxidant and genoprotective effects of spent coffee extracts in human cells, Food Chem Toxicol, 60 (2013) 397-403.
101.Zeraatpishe A., Malekirad A.A., Nik-Kherad J., Jafari A., Yousefi Babadi S., Tanwir F., Espanani H.R., The Effects of Caffeine Supplements on Exercise-Induced Oxidative Damages, Asian J Sports Med, 6 (2015) e23023.
102.Hsu S.J., Lee F.Y., Wang S.S., Hsin I.F., Lin T.Y., Huang H.C., Chang C.C., Chuang C.L., Ho H.L., Lin H.C., Lee S.D., Caffeine ameliorates hemodynamic derangements and portosystemic collaterals in cirrhotic rats, Hepatology, 61 (2015) 1672-1684.
103.Tsuda S., Egawa T., Kitani K., Oshima R., Ma X., Hayashi T., Caffeine and contraction synergistically stimulate 5'-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle, Physiol Rep, 3 (2015).
104.Pitaksalee R., Sanvarinda Y., Sinchai T., Sanvarinda P., Thampithak A., Jantaratnotai N., Jariyawat S., Tuchinda P., Govitrapong P., Sanvarinda P., Autophagy inhibition by caffeine increases toxicity of methamphetamine in SH-SY5Y neuroblastoma cell line, Neurotox Res, 27 (2015) 421-429.
105.Mathew T.S., Ferris R.K., Downs R.M., Kinsey S.T., Baumgarner B.L., Caffeine promotes autophagy in skeletal muscle cells by increasing the calcium-dependent activation of AMP-activated protein kinase, Biochem Biophys Res Commun, 453 (2014) 411-418.
106.Ullah F., Ali T., Ullah N., Kim M.O., Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain, Neurochem Int, 90 (2015) 114-124.
107.Laurent C., Eddarkaoui S., Derisbourg M., Leboucher A., Demeyer D., Carrier S., Schneider M., Hamdane M., Muller C.E., Buee L., Blum D., Beneficial effects of caffeine in a transgenic model of Alzheimer's disease-like tau pathology, Neurobiol Aging, 35 (2014) 2079-2090.
108.Chen B., Yue R., Yang Y., Zeng H., Chang W., Gao N., Yuan X., Zhang W., Shan L., Protective effects of (E)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeine against hydrogen peroxide-induced injury in PC12 cells, Neurochem Res, 40 (2015) 531-541.
109.Barcelos R.P., Souza M.A., Amaral G.P., Stefanello S.T., Bresciani G., Fighera M.R., Soares F.A., de Vargas Barbosa N., Caffeine intake may modulate inflammation markers in trained rats, Nutrients, 6 (2014) 1678-1690.
110.Cechella J.L., Leite M.R., Dobrachinski F., da Rocha J.T., Carvalho N.R., Duarte M.M., Soares F.A., Bresciani G., Royes L.F., Zeni G., Moderate swimming exercise and caffeine supplementation reduce the levels of inflammatory cytokines without causing oxidative stress in tissues of middle-aged rats, Amino Acids, 46 (2014) 1187-1195.
111.Genovese T., Esposito E., Mazzon E., Muia C., Di Paola R., Meli R., Bramanti P., Cuzzocrea S., Evidence for the role of mitogen-activated protein kinase signaling pathways in the development of spinal cord injury, J Pharmacol Exp Ther, 325 (2008) 100-114.
112.Butler T.R., Smith K.J., Berry J.N., Sharrett-Field L.J., Prendergast M.A., Sex differences in caffeine neurotoxicity following chronic ethanol exposure and withdrawal, Alcohol Alcohol, 44 (2009) 567-574.
113.Antonioli L., Blandizzi C., Csoka B., Pacher P., Hasko G., Adenosine signalling in diabetes mellitus--pathophysiology and therapeutic considerations, Nat Rev Endocrinol, 11 (2015) 228-241.
114.Acevedo J., Santana-Almansa A., Matos-Vergara N., Marrero-Cordero L.R., Cabezas-Bou E., Diaz-Rios M., Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms, Neuropharmacology, 101 (2016) 490-505.
115.Boia R., Ambrosio A.F., Santiago A.R., Therapeutic Opportunities for Caffeine and A2A Receptor Antagonists in Retinal Diseases, Ophthalmic Res, 55 (2016) 212-218.
116.Chattopadhyay D., Somaiah A., Raghunathan D., Thirumurugan K., Dichotomous effect of caffeine, curcumin, and naringenin on genomic DNA of normal and diabetic subjects, Scientifica (Cairo), 2014 (2014) 649261.
117.O'Reilly M.A., DNA damage and cell cycle checkpoints in hyperoxic lung injury: braking to facilitate repair, Am J Physiol Lung Cell Mol Physiol, 281 (2001) L291-305.
118.Bode A.M., Dong Z., The enigmatic effects of caffeine in cell cycle and cancer, Cancer Lett, 247 (2007) 26-39.
119.Tiwari K.K., Chu C., Couroucli X., Moorthy B., Lingappan K., Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro, Biochem Biophys Res Commun, 450 (2014) 1345-1350.
120.Bavari M., Tabandeh M.R., Najafzadeh Varzi H., Bahramzadeh S., Neuroprotective, antiapoptotic and antioxidant effects of l-carnitine against caffeine-induced neurotoxicity in SH-SY5Y neuroblastoma cell line, Drug Chem Toxicol, 39 (2016) 157-166.
121.Ma Z.L., Wang G., Lu W.H., Cheng X., Chuai M., Lee K.K., Yang X., Investigating the effect of excess caffeine exposure on placental angiogenesis using chicken 'functional' placental blood vessel network, J Appl Toxicol, 36 (2016) 285-295.
122.Kim A.R., Yoon B.K., Park H., Seok J.W., Choi H., Yu J.H., Choi Y., Song S.J., Kim A., Kim J.W., Caffeine inhibits adipogenesis through modulation of mitotic clonal expansion and the AKT/GSK3 pathway in 3T3-L1 adipocytes, BMB Rep, 49 (2016) 111-115.
123.Dong S., Kong J., Kong J., Shen Q., Kong F., Sun W., Zheng L., Low Concentration of Caffeine Inhibits the Progression of the Hepatocellular Carcinoma via Akt Signaling Pathway, Anticancer Agents Med Chem, 15 (2015) 484-492.
124.Zhang L.F., Zhou Z.W., Wang Z.H., Du Y.H., He Z.X., Cao C., Zhou S.F., Coffee and caffeine potentiate the antiamyloidogenic activity of melatonin via inhibition of Abeta oligomerization and modulation of the Tau-mediated pathway in N2a/APP cells, Drug Des Devel Ther, 9 (2015) 241-272.
125.Currais A., Kato K., Canuet L., Ishii R., Tanaka T., Takeda M., Soriano S., Caffeine modulates tau phosphorylation and affects Akt signaling in postmitotic neurons, J Mol Neurosci, 43 (2011) 326-332.
126.Lu P.Z., Lai C.Y., Chan W.H., Caffeine induces cell death via activation of apoptotic signal and inactivation of survival signal in human osteoblasts, Int J Mol Sci, 9 (2008) 698-718.
127.Al-Ansari M.M., Aboussekhra A., Caffeine mediates sustained inactivation of breast cancer-associated myofibroblasts via up-regulation of tumor suppressor genes, PLoS One, 9 (2014) e90907.
128.Miwa S., Sugimoto N., Shirai T., Hayashi K., Nishida H., Ohnari I., Takeuchi A., Yachie A., Tsuchiya H., Caffeine activates tumor suppressor PTEN in sarcoma cells, Int J Oncol, 39 (2011) 465-472.
129.Kang C.H., Jayasooriya R.G., Dilshara M.G., Choi Y.H., Jeong Y.K., Kim N.D., Kim G.Y., Caffeine suppresses lipopolysaccharide-stimulated BV2 microglial cells by suppressing Akt-mediated NF-kappaB activation and ERK phosphorylation, Food Chem Toxicol, 50 (2012) 4270-4276.
130.Liu W.H., Chang L.S., Caffeine induces matrix metalloproteinase-2 (MMP-2) and MMP-9 down-regulation in human leukemia U937 cells via Ca2+/ROS-mediated suppression of ERK/c-fos pathway and activation of p38 MAPK/c-jun pathway, J Cell Physiol, 224 (2010) 775-785.
131.Sugimoto N., Miwa S., Hitomi Y., Nakamura H., Tsuchiya H., Yachie A., Theobromine, the primary methylxanthine found in Theobroma cacao, prevents malignant glioblastoma proliferation by negatively regulating phosphodiesterase-4, extracellular signal-regulated kinase, Akt/mammalian target of rapamycin kinase, and nuclear factor-kappa B, Nutr Cancer, 66 (2014) 419-423.
132.Lu G., Liao J., Yang G., Reuhl K.R., Hao X., Yang C.S., Inhibition of adenoma progression to adenocarcinoma in a 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis model in A/J mice by tea polyphenols and caffeine, Cancer Res, 66 (2006) 11494-11501.
133.Huang S., Tang C., Sun S., Cao W., Qi W., Xu J., Huang J., Lu W., Liu Q., Gong B., Zhang Y., Jiang J., Protective Effect of Electroacupuncture on Neural Myelin Sheaths is Mediated via Promotion of Oligodendrocyte Proliferation and Inhibition of Oligodendrocyte Death After Compressed Spinal Cord Injury, Mol Neurobiol, 52 (2015) 1870-1881.
134.Tsujimoto Y., Shimizu S., Another way to die: autophagic programmed cell death, Cell Death Differ, 12 Suppl 2 (2005) 1528-1534.
135.Carloni S., Buonocore G., Balduini W., Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury, Neurobiol Dis, 32 (2008) 329-339.
136.Hagg T., Oudega M., Degenerative and spontaneous regenerative processes after spinal cord injury, J Neurotrauma, 23 (2006) 264-280.
137.Grimpe B., Silver J., A novel DNA enzyme reduces glycosaminoglycan chains in the glial scar and allows microtransplanted dorsal root ganglia axons to regenerate beyond lesions in the spinal cord, J Neurosci, 24 (2004) 1393-1397.
138.Minor K., Tang X., Kahrilas G., Archibald S.J., Davies J.E., Davies S.J., Decorin promotes robust axon growth on inhibitory CSPGs and myelin via a direct effect on neurons, Neurobiol Dis, 32 (2008) 88-95.
139.Evans M.C., Couch Y., Sibson N., Turner M.R., Inflammation and neurovascular changes in amyotrophic lateral sclerosis, Mol Cell Neurosci, 53 (2013) 34-41.
140.Cua R.C., Lau L.W., Keough M.B., Midha R., Apte S.S., Yong V.W., Overcoming neurite-inhibitory chondroitin sulfate proteoglycans in the astrocyte matrix, Glia, 61 (2013) 972-984.
141.Tuttolomondo A., Di Raimondo D., di Sciacca R., Pinto A., Licata G., Inflammatory cytokines in acute ischemic stroke, Curr Pharm Des, 14 (2008) 3574-3589.
142.Barreto G., White R.E., Ouyang Y., Xu L., Giffard R.G., Astrocytes: targets for neuroprotection in stroke, Cent Nerv Syst Agents Med Chem, 11 (2011) 164-173.
143.Wang Q., Tang X.N., Yenari M.A., The inflammatory response in stroke, J Neuroimmunol, 184 (2007) 53-68.
144.Marino G., Niso-Santano M., Baehrecke E.H., Kroemer G., Self-consumption: the interplay of autophagy and apoptosis, Nat Rev Mol Cell Biol, 15 (2014) 81-94.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊