跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/10 23:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:溫宗錡
研究生(外文):Wen, Chung-Chi
論文名稱:電漿子強化n型矽半導體之歐傑復合效應
論文名稱(外文):Plasmon-Enhanced Auger Recombination in n-Type Silicon
指導教授:陳明哲陳明哲引用關係
指導教授(外文):Chen, Ming-Jer
口試委員:游國豐蔡慶威林大文
口試委員(外文):You, Kuo-FengTsai, Ching-WeiLin, Da-Wen
口試日期:2016-10-21
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:42
中文關鍵詞:電漿子歐傑復合生命週期能隙窄化電子加熱
外文關鍵詞:plasmonsAuger recombinationlifetimebandgap narrowingelectron heating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在過去五十年之中,關於多體效應所引起的電漿子對歐傑復合的影響之相關研究並不多。近期有學者透過第一原理來計算n型矽半導體的歐傑生命週期,其計算結果仍然較實驗數據大,並且在此計算中未將電漿子的影響納入考慮。在這篇論文之中,我們應用微觀的歐傑復合公式來重現第一原理的計算結果。由於電漿引致電位擾動遠比歐傑復合效應慢,因此在歐傑復合效應中,電漿子的效應必須在在長波長近似下考慮,其會造成間接的效應:電性能隙窄化以及熱電子。我們發現電性能隙窄化對於歐傑生命週期的影響不明顯。在另一方面,加入熱電子效應的模擬結果與實驗相吻合,因此熱電子效應為電漿子影響歐傑復合效應的主要機制。
The effects of many-body plasmons on the Auger recombination in doped semiconductors were less studied over the past five decades. Recent first-principles calculations on n-type silicon, without participation of plasmons, yielded Auger lifetimes that are higher than experimental values. In this thesis, we make use of an existing microscopic Auger recombination formalism with which to reproduce first-principles results. Plasmons-enhanced potential fluctuations are not faster than the Auger event; therefore, the effect of plasmons can have only the indirect effect in the long wavelength limit: the experimental electrical bandgap narrowing and the experimental electron temperature. The electrical bandgap narrowing is found to be weak in determining the Auger lifetime. On the contrary, the plasmons-induced conduction electron heating is determined to be the dominant mechanism. The calculated results with electron heating included are consistent with the experimental observations.
摘要 I
ABSTRACT II
ACKNOWLEDGEMENT III
CONTENTS IV
FIGURE CAPTIONS VI

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 POTENTIAL FLUCTUATIONS IN LONG WAVELENGTH LIMIT EFFECTS 3
2.1 Introduction 3
2.2 Potential Fluctuations 4
2.2.1 Theory and Theoretical Frameworks 4
2.2.2 Extraction of Potential Fluctuation 5
2.3 Long Wavelength Limit 5
2.3.1 Experimental Electrical Bandgap Narrowing 6
2.3.2 Experimental Electron Temperature 7
2.4 Conclusion 7

CHAPTER 3 FORMALISM OF AUGER LIFETIME – NO PLASMONS 9
3.1 Introduction 9
3.2 Formula of Auger Lifetime 9
3.2.1 Random-k Approximation 11
3.2.2 Dielectric Function 14
3.3 Extracted Overlap Integrals 15

CHAPTER 4 EFFECTS OF MANY-BODY PLASMONS 16
4.1 Introduction 16
4.2 Effect of Band Gap Narrowing 16
4.3 Effect of Electron Heating 17

CHAPTER 5 CONCLUSION 19

REFERENCES 20
VITA 42

References
[1] B. K. Ridley, Quantum Processes in Semiconductors. Oxford, U.K.: Clarendon, 1988.
[2] A. A. Bergh and P. J. Dean, Light-Emitting Diodes. Oxford: Clarendon, 1976.
[3] M. Shur, Physics of Semiconductor Devices. New Jersey: Prentice-Hall, 1990.
[4] A. R. Beattie and P. T. Landsberg, “Auger effect in semiconductors,” Proc. R. Soc. Lond., A Math. Phys. Sci., vol. 249, no. 1256, pp. 16-29, 1959.
[5] L. Huldt, “Band to band Auger recombination in indirect gap semiconductors,” Phys. Status Solidi, vol. 8, pp. 173-187, 1971.
[6] D. Hill and P. T. Landsberg, “A formalism for the indirect Auger effect. I.,” Proc. R. Soc. Lond., A Math. Phys. Sci., vol. 347, no. 1651, pp. 547-564, 1976.
[7] D. B. Laks, G. F. Neumark, A. Hangleiter, and S. T. Pantelides, “Theory of interband Auger recombination in n-type silicon,” Phys. Rev. Lett., vol. 61, pp. 1229-1232, 1988.
[8] D. B. Laks, G. F. Neumark, and S. T. Pantelides, “Accurate interband Auger recombination rates in silicon,” Phys. Rev. B, vol. 42, pp. 5176-5185.
[9] M. Govoni, I. Marri, and S. Ossicini, “Auger recombination in Si and GaAs semiconductors: Ab initio results,” Phys. Rev. B, vol. 84, pp. 075215, 2011.
[10] J. D. Beck and R. Conradt, “Auger recombination in Si,” Solid State Commun., vol. 13, pp. 93-95, 1973.
[11] J. Dziewior and W. Schmid, “Auger coefficients for highly doped and highly excited silicon,” Appl. Phys. Lett., vol. 31, pp. 346-348, 1977.
[12] A. W. Wieder, “Emitter effects in shallow bipolar devices: measurements and consequences,” IEEE Trans. Electron Devices, vol. 27, no. 5, pp. 949-955, 1980.
[13] Y. VaĬtkus and V. Grivitskas, “Dependence of the rate of interband Auger recombination on the carrier density in silicon,” Sov. Phys. Semicond., vol. 15, no. 10, pp. 1102, 1981.
[14] L. Passari and E. Susi, “Recombination mechanisms and doping density in silicon,” J. Appl. Phys., vol. 54, no. 7, pp. 3935-3937, 1983.
[15] D. E. Burk and V. De La Torre, “An empirical fit to minority hole mobilities” IEEE Electron Device Lett., vol. EDL-5, pp. 231-233, 1984.
[16] J. del Alamo, S. Swirhun, and R. M. Swanson, “Simultaneous measurement of hole lifetime, hole mobility, and bandgap narrowing in heavily doped n-type silicon,” in Proc. Int. Electron Device Meet., 1985, pp. 290-293.
[17] R. Häcker and A. Hangleiter, “Intrinsic upper limits of the carrier lifetime in silicon,” J. Appl. Phys., vol. 75, no. 11, pp. 7570-7572, 1994.
[18] D. Pines and D. Bohm, “A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions,” Phys. Rev., vol. 85, pp. 338-353, 1952.
[19] M. V. Fischetti and S. E. Laux, “Long-range Coulomb interactions in small Si devices. Part I: Performance and reliability,” J. Appl. Phys., vol. 89, no. 2, pp. 1205-1231, Jan. 2001.
[20] K. Nakanishi, T. Uechi, and N. Sano, “Self-consistent Monte Carlo device simulations under nano-scale device structures: Role of Coulomb interaction, degeneracy, and boundary condition,” in IEDM Tech. Dig., 2009, pp. 79-82.
[21] M. J. Chen, C. L. Chen, S. H. Hsieh, and L. M. Chang, “Plasmons-Enhanced Minority-Carrier Injection as a Measure of Potential Fluctuations in Heavily Doped Silicon,” IEEE Electron Device Lett., vol. 35, no. 7, pp. 708-710, 2014.
[22] M. J. Chen, S. H. Hsieh, and C. L. Chen, “Plasmon-enhanced phonon and ionized impurity scattering in doped silicon,” J. Appl. Phys., vol. 118, no. 4, p. 045703, Jul. 2015.
[23] S. E. Swirhun, D. E. Kane, and R. M. Swanson, “Temperature dependence of minority electron mobility and bandgap narrowing in p+ Si,” in IEDM Tech. Dig., 1988, pp. 298-301.
[24] (2013). International Technology Roadmap for Semiconductors (ITRS) (ITRS 2013 Edition) [Online]. Available: http://www.itrs.net
[25] Y. K. Choi, K. Asano, N. Lindert, V. Subramanian, T. J. King, J. Bokor, and C. Hu, “Ultra-thin body SOI MOSFET for deep-sub-tenth micron era,” in IEDM Tech. Dig., 1999, pp. 919-921.
[26] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett., vol. 3, no. 2, pp.149 -152, Jan. 2003.
[27] J. P. Colinge, et al., “Nanowire transistors without junctions,” Nature Nanotechnology, vol. 5, no. 3, pp.225 -229, Feb. 2010.
[28] M.V. Fischetti, “Long-range Coulomb interactions in small Si devices. Part II: Effective electron mobility in thin-oxide structures,” J. Appl. Phys., vol. 89, no. 2, pp. 1232-1250, Jan. 2001.
[29] M. J. Chen, L. M. Chang, S. J. Kuang, C. W. Lee, S. H. Hsieh, C. A. Wang, S. C. Chang, and C. C. Lee, “Temperature-oriented mobility measurement and simulation to assess surface roughness in ultrathin-gate-oxide (~1 nm) nMOSFETs and its TEM evidence,” IEEE Trans. Electron Devices, vol. 59, no. 4, pp. 949-955, Apr. 2012.
[30] J. W. Slotboom and H. C. De Graaff, “Measurements of bandgap narrowing in Si bipolar transistors,” Solid-State Electronics, vol. 19, pp. 857-862, 1976.
[31] R. F. Pierret, Advanced Semiconductor Fundamentals, Massachusetts: Addison-Wesley Publishing Company, 1987.
[32] R. Shankar, Principles of Quantum Mechanics. New York: Plenum, 1994.
[33] E. O. Kane, “Electron scattering by pair production in silicon,” Phys. Rev., vol. 159, no. 3, pp. 624-631, 1967.
[34] C. Kittel, Introduction to Solid State Physics. New Jersey: John Wiley, 2005.
[35] H. Nara and A. Morita, “Shallow donor potential in silicon,” J. Phys. Soc. Jpn., vol. 21, pp. 1852-1853, 1966.
[36] H. S. Bennett and C. L. Wilson, “Statistical comparisons of data on band-gap narrowing in heavily doped silicon: Electrical and optical measurements,” J. Appl. Phys., vol. 55, pp. 3582-3587, 1984.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top