|
References [1] B. K. Ridley, Quantum Processes in Semiconductors. Oxford, U.K.: Clarendon, 1988. [2] A. A. Bergh and P. J. Dean, Light-Emitting Diodes. Oxford: Clarendon, 1976. [3] M. Shur, Physics of Semiconductor Devices. New Jersey: Prentice-Hall, 1990. [4] A. R. Beattie and P. T. Landsberg, “Auger effect in semiconductors,” Proc. R. Soc. Lond., A Math. Phys. Sci., vol. 249, no. 1256, pp. 16-29, 1959. [5] L. Huldt, “Band to band Auger recombination in indirect gap semiconductors,” Phys. Status Solidi, vol. 8, pp. 173-187, 1971. [6] D. Hill and P. T. Landsberg, “A formalism for the indirect Auger effect. I.,” Proc. R. Soc. Lond., A Math. Phys. Sci., vol. 347, no. 1651, pp. 547-564, 1976. [7] D. B. Laks, G. F. Neumark, A. Hangleiter, and S. T. Pantelides, “Theory of interband Auger recombination in n-type silicon,” Phys. Rev. Lett., vol. 61, pp. 1229-1232, 1988. [8] D. B. Laks, G. F. Neumark, and S. T. Pantelides, “Accurate interband Auger recombination rates in silicon,” Phys. Rev. B, vol. 42, pp. 5176-5185. [9] M. Govoni, I. Marri, and S. Ossicini, “Auger recombination in Si and GaAs semiconductors: Ab initio results,” Phys. Rev. B, vol. 84, pp. 075215, 2011. [10] J. D. Beck and R. Conradt, “Auger recombination in Si,” Solid State Commun., vol. 13, pp. 93-95, 1973. [11] J. Dziewior and W. Schmid, “Auger coefficients for highly doped and highly excited silicon,” Appl. Phys. Lett., vol. 31, pp. 346-348, 1977. [12] A. W. Wieder, “Emitter effects in shallow bipolar devices: measurements and consequences,” IEEE Trans. Electron Devices, vol. 27, no. 5, pp. 949-955, 1980. [13] Y. VaĬtkus and V. Grivitskas, “Dependence of the rate of interband Auger recombination on the carrier density in silicon,” Sov. Phys. Semicond., vol. 15, no. 10, pp. 1102, 1981. [14] L. Passari and E. Susi, “Recombination mechanisms and doping density in silicon,” J. Appl. Phys., vol. 54, no. 7, pp. 3935-3937, 1983. [15] D. E. Burk and V. De La Torre, “An empirical fit to minority hole mobilities” IEEE Electron Device Lett., vol. EDL-5, pp. 231-233, 1984. [16] J. del Alamo, S. Swirhun, and R. M. Swanson, “Simultaneous measurement of hole lifetime, hole mobility, and bandgap narrowing in heavily doped n-type silicon,” in Proc. Int. Electron Device Meet., 1985, pp. 290-293. [17] R. Häcker and A. Hangleiter, “Intrinsic upper limits of the carrier lifetime in silicon,” J. Appl. Phys., vol. 75, no. 11, pp. 7570-7572, 1994. [18] D. Pines and D. Bohm, “A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions,” Phys. Rev., vol. 85, pp. 338-353, 1952. [19] M. V. Fischetti and S. E. Laux, “Long-range Coulomb interactions in small Si devices. Part I: Performance and reliability,” J. Appl. Phys., vol. 89, no. 2, pp. 1205-1231, Jan. 2001. [20] K. Nakanishi, T. Uechi, and N. Sano, “Self-consistent Monte Carlo device simulations under nano-scale device structures: Role of Coulomb interaction, degeneracy, and boundary condition,” in IEDM Tech. Dig., 2009, pp. 79-82. [21] M. J. Chen, C. L. Chen, S. H. Hsieh, and L. M. Chang, “Plasmons-Enhanced Minority-Carrier Injection as a Measure of Potential Fluctuations in Heavily Doped Silicon,” IEEE Electron Device Lett., vol. 35, no. 7, pp. 708-710, 2014. [22] M. J. Chen, S. H. Hsieh, and C. L. Chen, “Plasmon-enhanced phonon and ionized impurity scattering in doped silicon,” J. Appl. Phys., vol. 118, no. 4, p. 045703, Jul. 2015. [23] S. E. Swirhun, D. E. Kane, and R. M. Swanson, “Temperature dependence of minority electron mobility and bandgap narrowing in p+ Si,” in IEDM Tech. Dig., 1988, pp. 298-301. [24] (2013). International Technology Roadmap for Semiconductors (ITRS) (ITRS 2013 Edition) [Online]. Available: http://www.itrs.net [25] Y. K. Choi, K. Asano, N. Lindert, V. Subramanian, T. J. King, J. Bokor, and C. Hu, “Ultra-thin body SOI MOSFET for deep-sub-tenth micron era,” in IEDM Tech. Dig., 1999, pp. 919-921. [26] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett., vol. 3, no. 2, pp.149 -152, Jan. 2003. [27] J. P. Colinge, et al., “Nanowire transistors without junctions,” Nature Nanotechnology, vol. 5, no. 3, pp.225 -229, Feb. 2010. [28] M.V. Fischetti, “Long-range Coulomb interactions in small Si devices. Part II: Effective electron mobility in thin-oxide structures,” J. Appl. Phys., vol. 89, no. 2, pp. 1232-1250, Jan. 2001. [29] M. J. Chen, L. M. Chang, S. J. Kuang, C. W. Lee, S. H. Hsieh, C. A. Wang, S. C. Chang, and C. C. Lee, “Temperature-oriented mobility measurement and simulation to assess surface roughness in ultrathin-gate-oxide (~1 nm) nMOSFETs and its TEM evidence,” IEEE Trans. Electron Devices, vol. 59, no. 4, pp. 949-955, Apr. 2012. [30] J. W. Slotboom and H. C. De Graaff, “Measurements of bandgap narrowing in Si bipolar transistors,” Solid-State Electronics, vol. 19, pp. 857-862, 1976. [31] R. F. Pierret, Advanced Semiconductor Fundamentals, Massachusetts: Addison-Wesley Publishing Company, 1987. [32] R. Shankar, Principles of Quantum Mechanics. New York: Plenum, 1994. [33] E. O. Kane, “Electron scattering by pair production in silicon,” Phys. Rev., vol. 159, no. 3, pp. 624-631, 1967. [34] C. Kittel, Introduction to Solid State Physics. New Jersey: John Wiley, 2005. [35] H. Nara and A. Morita, “Shallow donor potential in silicon,” J. Phys. Soc. Jpn., vol. 21, pp. 1852-1853, 1966. [36] H. S. Bennett and C. L. Wilson, “Statistical comparisons of data on band-gap narrowing in heavily doped silicon: Electrical and optical measurements,” J. Appl. Phys., vol. 55, pp. 3582-3587, 1984.
|