跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 06:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張桂萍
研究生(外文):Chang, Kuei-Ping
論文名稱:不同氧分壓與溫度退火對赤銅鐵礦相CuCrO2薄膜生成之影響
論文名稱(外文):Influences of the oxygen partial pressure and temperature in post-annealing conditions on the formation of delafossite-CuCrO2 thin films
指導教授:陳弘穎陳弘穎引用關係
指導教授(外文):Chen, Hong-Ying
口試委員:呂福興何詠碩陳弘穎
口試委員(外文):Lu, Fu-HsingHo, Yung-ShouChen, Hong-Ying
口試日期:2013-06-14
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:59
中文關鍵詞:氧分壓溫度CuCrO2赤銅鐵礦
外文關鍵詞:oxygen partial pressuretemperatureCuCrO2delafossite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:549
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討在不同氧分壓與溫度環境中進行退火處理對溶膠-凝膠法製備之銅鉻氧化物薄膜的相變化。先以溶膠-凝膠法配製的前驅液旋轉塗佈於石英基材上、並在空氣氣氛500℃退火1小時製備銅鉻氧化物薄膜,之後將該前驅物薄膜分別在氧分壓為0.21~10-3 atm與溫度600~850℃下施以2小時退火處理。X光繞射儀結果顯示,在0.21~10-2 atm下生成CuO+CuCr2O4的混合相,而在10-3 atm時,可生成純相的CuCrO2薄膜。XPS分析結果顯示薄膜在氧分壓10-3 atm且溫度600℃以上,其Cu-2p1/2及Cu-2p3/2分別為952.0 eV及932.2 eV,Cr-2p1/2及Cr-2p3/2分別是586.0 eV及576.0 eV,而O-1s則位於529.9 eV,此結果證實了Cu為+1價,Cr為+3價。以場發射式電子顯微鏡觀察薄膜的形貌變化,剛鍍著的銅鉻氧化物薄膜由奈米顆粒經退火處理後,晶粒因相變化而逐漸變大且緻密,粒徑約30~130 nm,膜厚約150~180 nm。以紫外光/可見光光譜儀測量結果顯示CuCrO2薄膜於可見光區之平均穿透率約為55~62%、光學能隙值為3.02~3.07 eV。以霍爾量測CuCrO2薄膜在氧分壓10-3 atm、溫度600~700℃退火處理之結果,其導電率為3.82×10-2 S/cm (600℃)、2.05×10-2 S/cm (650℃)、2.28×10-2 S/cm (700℃),其對應之載子濃度1.74×1017 cm-3 (600℃)、1.30×1017 cm-3 (650℃)、1.88×1017 cm-3 (700℃)。在霍爾係數及Seebeck係數上皆證實此為p型載子類型。
In this study, the phase change of Cu-Cr-O thin films prepared by sol-gel process were post-annealed at oxygen partial pressures and temperatures. Firstly, Cu-Cr-O thin films were deposited onto quartz substrates using sol-gel processing and spin-coating technique. Thereafter, these specimens were annealed at 500℃ in air for 1 h and were post-annealed under various partial oxygen pressure levels ranging from 0.21 to 10-3 atm between 600℃ and 850℃. X-ray diffraction patterns showed that the CuO and CuCr2O4 phase were appeared between pO2=0.21 atm and 10-2 atm, however, a pure delafossite-CuCrO2 phase was detected when these specimens were post-annealed in pO2=10-3 atm. X-ray photoelectron spectra indicated that the binding energies of Cu-2p1/2, Cu-2p3/2, Cr-2p1/2, Cr-2p3/2, and O-1s were 952.0 eV, 932.2 eV, 586.0 eV, 576.0 eV, and 529.9 eV, respectively as the specimens had CuCrO2. According to the result of XPS, the Cu and Cr cations were +1 and +3. FE-SEM results revealed that the surface morphology of CuCrO2 thin films had a significant change with large and compact due to the phase change. The grain size of Cu-Cr-O particle was 30~130 nm, and thickness of the films was about 150~180 nm. The average transmittance of CuCrO2 thin films was 55~62% in visible region, and the optical bandgap of the films was 3.02~3.07 eV. The electrical conductivities of CuCrO2 thin films were 3.82×10-2 S/cm (600℃), 2.05×10-2 S/cm (650℃), 2.28×10-2 S/cm (700℃), respectively. The corresponding carrier concentrations were 1.74×1017 cm-3 (600℃), 1.30×1017 cm-3 (650℃), 1.88×1017 cm-3 (700℃). P-type was confirmed by positive Hall coefficients and Seebeck coefficients.
摘要 I
Abstract II
誌謝 IV
目錄 VI
表目錄 VI
圖目錄 VI
第一章 緒論 1
1.1 透明導電氧化物薄膜 1
1.2 赤銅鐵礦結構簡介 2
1.3 赤銅鐵礦p-TCOs 3
1.4 CuCrO2之特性 4
1.5 研究動機與目的 5
第二章 理論背景與文獻回顧 6
2.1 製備三元銅基赤銅鐵礦相氧化物薄膜 6
2.2 溶膠凝膠原理 6
2.2.1 基本概念 6
2.2.2 製備程序 7
2.2.3 製備薄膜之技術 9
2.3 CuCrO2之熱力學分析 10
2.4 以物理沉積法製備CuCrO2之文獻回顧 11
2.4.1 脈衝雷射沉積法 (Pulsed Laser Deposition,PLD) 11
2.4.2濺鍍法 (sputtering) 13
2.5 以化學沉積法製備CuCrO2之文獻回顧 14
2.5.1 溶膠-凝膠法 (Sol-Gel method) 14
2.5.2 金屬-有機化學氣相沉積法 (Metal-Organic Chemical Vapor Deposition,MOCVD) 16
2.5.3 噴霧裂解技術 (Spray pyrolysis) 17
2.5.4 固態反應法 (Solid state reaction) 17
第三章 實驗方法 21
3.1 CuCrO2薄膜製備及二階段退火 21
3.2低掠角X光繞射儀 (Grazing Incident X-Ray Diffractomer,GIXRD) 23
3.3 場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope,FE-SEM) 24
3.4 紫外光/可見光吸收光譜儀 (Ultraviolet-visible,UV-Vis) 24
3.5 X光光電能譜儀(X-ray Photoelectron Spectroscope,XPS) 26
3.6 霍爾效應 (Hall effect) 26
3.7 Seebeck效應 (Seebeck effect) 26
第四章 結果與討論 28
4.1 X光繞射分析 28
4.2 X光光電能譜分析 34
4.3 顯微結構分析 37
4.4 熱力學分析 47
4.5 光學特性分析 49
4.6 電性分析 52
第五章 結論 54
參考文獻 55
著作 58
簡歷 59

[1]K. Bädeker, Ann. Phys. (Leipzig) 22 (1907) 749.
[2]H. Kawazoe, H. Yanagi, K. Ueda, and H. Hosono, MRS Bull., 25 (2000) 28.
[3]H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, and H. Hosono, Nature, 389 (1997) 939.
[4]D. Ginley, B. Roy, A. Ode, C. Warmsingh, Y. Yoshida, P. Parilla, C. Teplin, T. Kaydanova, A. Miedaner, C.Curtis,A. Martinson, T. Coutts, D. Readey and H. Hosono, J. Perkin, Thin Solid Film, 445 (2003) 193.
[5]A.N. Banerjee, and K.K. Chattopadhyay, Prog. Cryst. Growth Charact. Mater., 50 (2005) 52.
[6]B. G. Lewis and D. C. Paine, MRS Bull., 22 (2000) 27.
[7]A.F. Rogers, Am. J. Sci., 35 (1913) 290.
[8]A.F. Rogers, Am. Mineral., 7 (1922) 102.
[9]O. Crottaz, F. Kubel, and H. Schmid, J. Solid State Chem., 122 (1996) 247.
[10]M. A. Marquardt, N. A. Ashmore, and D. P. Cann, Thin Solid Films, 496 (2006) 146.
[11]S. Fraga, J. Karwowski, K.M.S. Saxena, Handbook of atomic data, Elsevier, Amsterdam, 1976.
[12]K. Koumoto, H. Koduka, W.S. Seo, J. Mater. Chem. 11 (2001) 251.
[13]K. T. Jacob, G. M. Kale and G. N. K. Iyengar, J. Mater. Sci., 21 (1986) 2753.
[14]H. Y. Chen, K. P. Chang, C. C. Yang, Appl. Surf. Sci., 273 (2013) 324.
[15]D. Li, X. Fang, Z. Deng, S. Zhou, R. Tao, W. Dong, T. Wang, Y. Zhao, G. Meng, and X. Zhu, J. Phys. D: Appl. Phys., 40 (2007) 4910.
[16]Z. Deng, X. Fang, D. Li, S. Zhou, R. Tao, W. Dong, J. Wang, T. Wang, G. Meng, X. Zhu, J. Alloys Compd., 486 (2009) 619.
[17]D. Li, Xi. Fang, A. Zhao, Za. Deng, Wei. Dong, Ru. Tao, Vacuum, 84 (2010) 851.
[18]M. O’Sullivan, P. Stamenov, J. Alaria, M. Venkatesan and J. M. D. Coey, J. Phys.: Conf. Ser., 200 (2010) 052021.
[19]R. Nagarajan, A. D. Draeseke, A. W. Sleight, J. Tate, J. Appl. Phys., 89 (2001) 8022.
[20]G. Dong, M. Zhang, Xu. Zhao, H. Yan, Ch. Tian, Y. Ren, Appl. Surf. Sci., 256 (2010) 4121.
[21]蔡裕榮,周禮君,「以溶膠凝膠法製備透明導電氧化物薄膜的探討」,CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) SEP. 60 (2002) 307.
[22]S. Götzendörfer, Ch. Polenzky, S. Ulrich, P. Löbmann, Thin Solid Films, 518 (2009) 1153.
[23]S. Götzendörfer, R. Bywalez, P. Löbmann, J. Sol-Gel Sci. Technol., 52 (2009) 113.
[24]S. Götzendörfer and P. Löbmann, J. Sol-Gel Sci. Technol., 57 (2011) 157.
[25]Y. Wang, Y. Gu, T. Wang, W. Shi, J. Alloys Compd., 509 (2011) 5897.
[26]J. Wang, P. Zheng, D. Li, Z. Deng, W. Dong, R. Tao, X. Fang, J. Alloys Compd., 509 (2011) 5715.
[27]S. Mahapatra, Sri. A. Shivashankar, Chem. Vap. Deposition, 9 (2003) No.5, 238.
[28]P.W. Sadik, M. Ivill, V. Craciun, D.P. Norton, Thin Solid Films, 517 (2009) 3211.
[29]D. Li, X. Fang, Z. Deng, W. Dong, R. Tao, S. Zhou, J. Wang, T. Wang, Y. Zhao, and X. Zhu, J. Alloys Compd., 486 (2009) 462.
[30]H.-Y. Chen, W.- J. Yang, K.-P. Chang, Appl. Surf. Sci., 258 (2012) 8775.
[31]R. Bywalez, S. Götzendörfer, and P. L öbmann, J. Mater. Chem., 20 (2010) 6562.
[32]T. Okuda, N. Jufuku, S. Hidaka, and N. Terada, Phys. Rev. B, 72 (2005) 144403.
[33]K. Tonooka, and N. Kikuchi, Thin Solid Films, 515 (2006) 2415.
[34]T. Chiu, K. Tonooka, and N. Kikuchi, Thin Solid Films, 516 (2008) 5941.
[35]T. Chiu, K. Tonooka, and N. Kikuchi, Vacuum, 83 (2009) 614.
[36]T. Minami, H. Tanaka, T. Shimakawa, and T. Miyata, Proc. of SPIE, 5274 (2004) 399.
[37]S.H. Lim, S. Desu, and A.C. Rastogi, J. Phys. Chem. Solids, 69 (2008) 2047.
[38]T.W. Chiu, S.W. Tsai, Y.P. Wang, K.H. Hsu, Ceram. Int., 38S (2012) S673.
[39]A. C. Rastogi, S. H. Lim, and S. B. Desu, J. Appl. Phys., 104 (2008) 023712.
[40]T. K. Le, D. Flahaut, H. Martinez, N. Andreu, D. Gonbeau, E. Pachoud, D. Pelloquin, and A. Maignan, J. Solid State Chem., 184 (2011) 2387.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top