跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/08 07:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許鴻隆
研究生(外文):Hung-Lung Hsu
論文名稱:近場光學讀取頭中奈米孔與固態浸沒透鏡整合製程之研究
論文名稱(外文):Study of the integration process between the nano-aperture and solid immersion lens for near-field recording pick-up head
指導教授:徐文祥徐文祥引用關係
指導教授(外文):Wensyang Hsu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:65
中文關鍵詞:近場光學奈米孔固態浸沒透鏡自我對準微機電系統C形孔聚焦離子束熱回流
外文關鍵詞:near-field poticsnano-aperturesolid immersion lensself-alignmentMEMSC-shaped aperturefocused ion beamthermal reflow
相關次數:
  • 被引用被引用:4
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
在近場光學紀錄系統中,微孔與固態浸沒透鏡(SIL)為常被用來克服光學繞射極以及限縮小光點的兩項技術。其中在微孔系統中,光點大小直接由微孔尺寸所決定,因此我們可藉由縮小微孔尺寸至奈米等級來得到極高解析度,然而由於奈米級微孔之光輸出效率極低,因此在記錄速度上一直無法有效提升。至於利用SIL,雖然所獲得的光點可較傳統光學記錄系統小,同時仍然可保持高光輸出效率,但其所得到之解析度卻不及微孔所能獲得的。根據以往研究指出,若將微孔與SIL結合,則由於入射於微孔的光功率密度增加,因此光出射效率相對得以提升。然而在組裝或黏合奈米孔與SIL/SSIL時,必然會產生對準誤差,但如何將奈米孔與SIL/SSIL準確結合則至今尚未有文獻討論。本論文之研究重點即是在利用奈/微米機電技術製作SIL/SSIL與奈米級微孔之整合結構,其中奈米孔是利用聚焦離子束蝕刻進行製作,而SIL/SSIL則是利用熱回流製程進行製作。為了克服對準誤差,本研究提出一種自我對準技術,其方法是利用在熱回流製程中表面張力所自行產生的自我調整機制。在微孔設計方面,論文中也將研究不同形狀之微孔對光輸出效率的影響。在此介紹圓形孔及C形孔。
在製作方面,SIL以及SSIL已製作成功,而其最大尺寸誤差皆在3%以內。在奈米孔方面,已製作出直徑103nm、148nm、329nm的圓孔以及尺寸303nm×205nm、223nm×105nm的C形孔。本研究並藉由掃瞄電子顯微鏡(SEM)證實所提出整合SIL/SSIL與奈米孔之自我對準技術的可行性。
在遠場量測結果中,與直徑329nm的圓孔比較,SIL與直徑329nm圓孔之整合元件在光輸出率上可增強約1.68倍,顯示SIL確實有增強奈米孔的光輸出效率,並進一步證實其整合SIL與奈米孔結構之自我對準技術的可行性。在C形孔量測方面,在保持相同光點大小之情形下,303nm×205nm的C形孔在光輸出效率上比直徑148nm圓孔提高14.325倍。與直徑148nm圓孔比較,直徑15μm的SIL與303nm×205nmC形孔之整合元件在光輸出率方面甚至可增強約24.438倍,顯示整合SIL與C形奈米孔可大幅提昇光學讀取性能。
For near-field recording systems, Aperture and Solid Immersion Lens(SIL) are two popular techniques to overcome light diffraction limit and reduce spot size. In aperture systems, seeing that light spot size is directly determined by aperture size, aperture systems can provide an ultra-high resolution by reducing the aperture size to nano-scale. However, nano-aperture suffers from low power throughput which results in the recording speed unable to be promoted. SIL systems, while can providing a smaller spot size than obtained in conventional optical recording systems with still maintaining high optical throughput, do not have the resolution observed from aperture probe systems. According to previous researches, nano-aperture combined with SIL/SSIL can improve the throughput owing to greater power densities at the aperture. However, the misalignment between the SIL/SSIL and nano-aperture always occurred in assembling or bonding step. How to align the nano-aperture and SIL/SSIL together precisely has not proposed yet. In this research, the purpose is concentrated on combination of SIL/SSIL and nano-aperture by Nano/Micro Electro-Mechanical Systems(N/MEMS) technology, where nano-aperture is fabricated with Focused Ion Beam(FIB)system and SIL /SSIL are formed by thermal reflowing process. In order to overcome the misalignment between SIL/SSIL and nano-aperture, a self-alignment technique based on self-modulation by surface tension during thermal reflowing process is proposed. About aperture designs, the influence of varied shapes of apertures at optical throughput is also studied. Here, circular apertures and C-shaped apertures are introduced.
In fabrication results, SIL and SSIL are fabricated and the maximum error is less than 3% in comparison with the designed values. About nano-aperture, the diameter 103nm, 148nm, and 329nm of circular aperture and the dimensions 303nm×205nm and 223nm×105nm of C-shaped apertures are fabricated. The feasibility of self-alignment technique between SIL/SSIL and nano-aperture proposed in this research is also verified by Scanning Electron microscope(SEM).
From the measurement results of far-field system, the 15μm-diameter SIL/329nm-diameter circular aperture component has 1.68 times enhancement of throughput compared with 329nm-diameter aperture alone. This result shows that SIL can really enhance the light throughput of nano-aperture and the feasibility of self-alignment technique between SIL and nano-aperture is further verified. About measurement results of C-shaped apertures, the throughput of 303nm×205nm C-shaped aperture alone is 14.325 times larger than that of 148nm-diameter circular aperture alone, while maintaining a comparable near-field spot size. Even the throughput of 303nm×205nm C-shaped aperture/15μm-diameter SIL component can be enhanced by 24.438 times as compared with 148nm-diameter circular aperture alone. This result indicates that combination of SIL and C-shaped aperture can really greatly enhance the performance of near-field pick-up head.
摘要 i
Abstract ii
誌謝 iv
Contents v
List of Figures vii
List of Tables ix

Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Conventional recording 2
1.3 Principle of Near-Field optics 3
1.3.1 Near-Field recording with solid immersion lens 3
1.3.2 Near-Field recording with sub-micro aperture 5
1.4 Related Research 6
1.4.1 Fabrication of SIL/SSIL 6
1.4.2 Fabrication of sub-micro aperture 8
1.4.3 Combination with SIL and aperture 11
1.4.4 Integrated Pick-Up Head 13
1.5 Current approach 15
Chapter 2 Design 17
2.1 Concept design 17
2.2 Self-alignment design 18
2.2.1 Surface Tension Modulation Method 19
2.2.2 Backside exposure method 20
2.3 Design of individual parts 21
2.3.1 The nano-aperture 21
2.3.1.1 Introduction of Focused Ion Beam system(FIB) 21
2.3.1.2 Design of the nano-aperture 22
2.3.2 SIL/SSIL Design 25
2.3.2.1 Basic Theory of Thermal Reflowing 25
2.3.2.2 The SSIL design 26
2.3.2.3 The SIL design 29
Chapter 3 Fabrication 31
3.1 Fabrication process combined with SIL/SSIL and nano-aperture. 31
3.2 Process of the nano-aperture 33
3.3 SIL formation and self-alignment process 34
3.4 SSIL formation and self-alignment process 35
Chapter 4 Results and measurements 37
4.1 Aperture 37
4.2 SIL 39
4.3 SSIL 42
4.4 Far-Field measurement 46
4.4.1 Principle 47
4.4.2 Experiment setup 49
4.4.3 Measurement results 51
4.4.4 SIL/SSIL reliability 59
4.5 Properties of AZ-4620 with different reflowing time 59
Chapter 5 Summary 61
5.1 Conclusion 61
5.2 Discussion 62
References 63
1. C. Mihalcea, W. Scholz, S. Werner, S. Wunster, E. Oesterschulze, and R. Kassing “Multipurpose sensor tips for scanning near-field microscopy” Appl. Phys. Lett., Vol. 68, 1996.

2. Chung-Hao Tien, Yin-Chieh Lai, Tom D. Milster, and Han-Ping Shieh “Design and Fabrication of Fiberlenses for Optical Recording Application”, ISOM, pp.230-231, 2001.

3. Daniel A. Fletcher, Dmitrii Simanovskii, Daniel Palanker, Kenneth B. Crozier, Calvin F. Quate, S Kino. Gorden, and Kenneth. E Goodson “Microfabricated Solid Immersion Lens with Metal Aperture.”IEEE , pp.133-134, 2000.

4. Gordon R. Knight, TeraStor Corporation, and San Jose, “Near-Field Recording” http://www.nswc.navy.mil/cosip/nov98/sugg1198-2.shtml.

5. Jong Uk Bu, Youngjoo Yee, See-Hyung Lee, and Jinhong Kim “MEMS Technology for Optical Data Storage” Transducer, pp. 1762-1767, 2003.

6. Jen-Yu Fang, Wan-Ting Lin, Chung-Hao Tien1, Yi Chiu2 and Han-Ping D. Shieh “C-shaped aperture for near-field recording” ISOM, 2004

7. J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures” Appl. Phys. Lett., 2004.

8. Kenneth B. Crozier, Daniel A. Fletcher, Gordon S. Kino, and Calvin F. Quate, “Micromachined Silicon Nitride Solid Immersion Lens” JOURNAL OF MEMS, Vol. 11, NO. 5, OCTOBER 2002

9. Kenji Kato, Usumu Ichihara, Nobuyuki Kasama, Manabu Oumi, Takashi Niwa, Yasuyuki Mitsuoka, and Kunio Nakajima “Small-sized Near-Field Optical Head Structure With high throughput”

10. Meng-Yu Wu, Yi Chiu, Han-Ping Shieh, Wensyang Hsu, and Hsueh-Liang Chou “Fabrication of planar integrated optical pick-up heads” 2003.

11. PHAN Ngoc Minh, Takahito ONO, and Masayoshi ESASHI, “A novel fabrication method of the tiny aperture tip on silicon cantilever for near field scanning optical microscopy,” Micro Electro Mechanical Systems, 1999. Twelfth IEEE International Conference on 1999, pp. 360-365.

12. Saeed Pilevar, Klaus Edinger, Walid Atia, Igor Smolynianov, and Christopher Davis “Focused ion-beam fabrication of fiber probes with well-defined apertures for use in near-field scanning optical microscopy” Appl. Phys. Lett., Vol. 72, 1998.

13. Trans Lane, and Wensyang Hsu, “Fabrication of Sub-micron Optical Apertures by An Over-electroplating Method”, ISOM, pp. 252-253, 2001.

14. Tom D. Milster, Farhad Akhavan, Melissa Bailey, J. Kelvin Erwin, David M. Fellx, Kusato Hirota, Steven Koester, Kei Shimura and Yan Zhang “Super-Resolution by Combination of a Solid Immersion Lens and an aperture” Jpn. J. Appl. Phy. Vol. 40, pp. 1778-1782, 2001.

15. Xiaolei Shi and Lambertus Hesselink “Mechanisms for Enhancing Power Throughput from Planar Nano-Apertures for Near-Field Optical Data Storage” Jpn. J. Appl. Phys., 2002.

16. Xiaolei Shi, Lambertus Hesselink and Robert L. Thornton “Ultrahigh light transmission through a C-shaped nanoaperture” OPTICS LETTERS, 2003.

17. Yoshimasa Suzuki, Hiroshi Fuji, Junji Tominaga, Takashi Nakano, and Nobufumi Atoda “Near-field aperture fabricated by solid–solid diffusion” Vol. 77, No 234, December 2000.

18. Youngjoo Yee, Jong Uk Bu, Il-Joo Cho, Euisik Yoon, Su-Dong Moon, and Shinill King “ Micro Solid Immersion Lens Fabricated By Micro-molding For Near-Field Optical Data Storage” IEEE, 2000.

19. Yuh-Sheng Lin, Cheng-Tang Pan, Kun-Lung Lin, Shih-Chou Chen, Jauh-Jung Yang, and Jei-Pin Yang “Polyimide as the pedestal of batch fabricated micro-ball lens and micro-mushroom array” IEEE, 2000.

20. Yu-Ru Chang, Yi Chiu, and Wensyang Hsu “Development of self-alignment process between SIL/SSIL and aperture for Near-Field Recording Pick-up Head” APDSC, pp. 208-209, 2004

21. 周學良,徐文祥 “結合光纖插孔、固態浸沒式透鏡與精密電鍍微孔之光學讀取頭” 國立交通大學機械工程研究所 91 年7 月

22. 周協利, 魏培坤 “近場光學光譜儀於次微米狹縫之研究” 國立海洋大學/光電科學研究所89年7月

23. 吳孟諭, 謝漢萍 “應用在近場光學記錄的光纖讀寫頭模組” 國立交通大學光電工程所91年7月

24. 林盈熙, “奈米級之資料儲存技術,” 第二屆奈米工程既系統技術研討會, pp.2-31~2-39, 1999

25. 蔡定平, “近場光碟機最近的發展,” 科儀新知, Vol. 19, No. 4, pp.28-37, February 1998
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top