跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 08:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林家吉
研究生(外文):Chia-Chi Lin
論文名稱:波來體安定化對球狀石墨鑄鐵高溫拉伸脆性及熱衝擊損傷效應研究
論文名稱(外文):Effect of Pearlite Stabilization on Tensile Embrittlement and Thermal Shocking Failure of S.G. Cast Iron at Elevated Temperatures
指導教授:陳立輝陳立輝引用關係呂傳盛呂傳盛引用關係
指導教授(外文):Li-Hui ChenTruan-Sheng Lui
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:61
中文關鍵詞:球墨鑄鐵中溫脆性熱疲勞波來體
外文關鍵詞:S.G. Cast Ironintermediate temperature embrittlementpearlitethermal shocking failure
相關次數:
  • 被引用被引用:1
  • 點閱點閱:398
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
  本研究欲評估波來鐵組織於球墨鑄鐵中生成,對抑制沿晶脆性破壞的可行性,因此將對球墨鑄鐵之中溫脆性及熱循環誘發脆性進行探討,後者由於波來鐵高溫時的不穩定性,故以熱循環之最高加熱溫度效應,及其微觀組織變化為首要探討目標。實驗材料為經添加波來鐵促進元素(銅、錳及鉻)的球墨鑄鐵,鑄造狀態下基地為牛眼組織,並利用肥粒鐵化熱處理,得到較低波來鐵含量之球墨鑄鐵為比對材。
  實驗結果顯示,裂紋的成核位置不因波來鐵組織的存在而改變,由共晶胞界區域起始的裂紋,其傳播受波來鐵的阻礙亦不明顯,不同波來鐵含量的球墨鑄鐵,其中溫脆性破壞行為仍有一致性存在,即沿晶脆性破壞僅發生於肥粒鐵區域。藉由不同波來鐵含量的球墨鑄鐵,其RT~550℃拉伸強度與破斷面形貌,可知波來鐵與肥粒鐵之晶粒強度有差異性存在,晶界強度亦然,造成波來鐵臨界脆性破壞強度大於肥粒鐵臨界破壞強度,且波來鐵之晶粒-晶界等強溫度高於肥粒鐵晶粒-晶界等強溫度,此可由球墨鑄鐵特定溫度下沿晶脆性破壞只發生在肥粒鐵區域證實。
另一方面,熱循環溫度800℃時,有明顯的麻田散鐵相變態發生,導致拉伸性質產生明顯變化。熱循環溫度750℃時,波來鐵分解為造成室溫拉伸性質變化之主要原因。值得注意的是,低波來鐵分率之球墨鑄鐵,分解現象較不明顯。最後利用750℃熱循環後中溫拉伸,證實波來鐵臨界脆性破壞強度大於肥粒鐵臨界脆性破壞強度。
 This study is intended to evaluate how feasible it is to suppress the intergranular embrittlement fracture behavior of spheroidal graphite (SG) cast iron with the formation of pearlite in the cast iron. Intermediate-temperature embrittlement and cyclic heating induced embrittlement are investigated in this study. In the latter case, the primary objective is to examine the effect of cyclic heating at the maximum temperature and the resultant microstructural change due to the instability of pearlite at high temperatures. Two types of SG cast iron have been chosen. One is as-cast SG cast iron that has been added with pearlite promoting elements (Cu, Mn and Cr) and has a bull’s eye structure. The other is SG cast iron which has undergone a ferritization heat treatment to achieve a matrix with lower pearlite content and is used as a contrast material.
 Experimental results indicate that the location of crack nucleation remains the same despite the existence of pearlite. The hindrance of pearlite to the propagation of cracks that emerge from eutectic cell boundary regions is also unapparent. Consistence is found in the intermediate-temperature embrittlement fracture behaviors between SG cast irons with different pearlite contents, namely that in-tergranular fractures only occur in the ferritic region. The RT~550℃ tensile strength and crack cross sections of SG cast irons with different pearlite contents reveal the differences in grain strength and grain boundary strength between pearlite and ferrite. This also leads to the higher critical fracture stress of pearlite compared to ferrite and the higher equicohesive temperature(ECT) in pearlite compared to ferrite. These are verified by the result that intergranular fractures only occur in the ferritic region of SG cast iron at specific tem-peratures.
 On the other hands, when the cyclic heating temperature reaches 800℃, significant martensitic phase transformation occurs and results in anmarked change in the tensile property. When cyclic heating temperature reaches 750℃, the decomposition of pearlite is mainly responsible for the change in the tensile property at the room temperature. More notably, such decomposition is less significant in the SG cast with lower pearlite percentage. Finally, an intermediate temperature tensile test following cyclic heating confirms that pearlite has a higher critical fracture stress than ferrite.
中文摘要 I
Abstract II
致謝 IV
總目錄 V
表目錄 VII
圖目錄 VIII
第一章 前言 1
第二章 文獻回顧 2
2-1 肥粒鐵基球墨鑄鐵之中溫脆性破壞 2
2-2 動態應變時效及其對球墨鑄鐵機械性質之影響 2
2-3 球墨鑄鐵之熱循環誘發脆性破壞 3
2-4 石墨所導引之不均勻應力場 4
2-4-1 彈性變形時石墨導引之應力集中 4
2-4-2 塑性變形時石墨導引之應力集中 5
2-5 本研究之探討目標 6
第三章 實驗步驟與方法 13
3-1 實驗材料 13
3-2 微觀組織觀察 13
3-3 拉伸試驗 14
3-4熱循環試驗 14
第四章 實驗結果 18
4-1 微觀組織與元素分佈解析 18
4-1-1 OM微觀組織觀察 18
4-1-2 SEM微觀組織觀察 18
4-1-3 EPMA元素分佈解析 18
4-2 RT~550℃溫度區間之拉伸試驗 18
4-2-1 真應力-應變曲線 19
4-2-2 拉伸破斷面觀察 19
4-3 熱循環試驗 19
4-3-1 基地組織觀察 19
4-3-2 熱循環後之拉伸性質 20
4-3-2-1 各溫度熱循環後之室溫拉伸性質 20
4-3-2-2 750℃熱循環後之400℃拉伸性質 20
4-3-3 熱循環後之拉伸破斷面觀察 20
第五章 討論 47
5-1 RT~550℃溫區拉伸性質之波來鐵組織效應探討 47
5-1-1 波來鐵組織對球墨鑄鐵動態應變時效之影響 47
5-1-2 不同波來鐵含量球墨鑄鐵之中溫脆性 48
5-2 鑄態球墨鑄鐵熱循環之最高加熱溫度效應 49
5-3 共晶胞界區域波來鐵組織對拉伸性質之影響 50
第六章 結論 57
參考文獻 58
1.C. P. Cheng, T. S. Lui, L. H. Chen, “Effect of Residual Magnesium Content on Thermal Fatigue Cracking Behavior of High-Silicon Spheroidal Graphite Cast Iron”, Metallurgical and Materials Transactions A, vol.30A, no.6, pp.1549-1558, 1999.
2.C. P. Cheng, T. S. Lui and L. H. Chen, “Effect of Heating Temperature and Magnesium Content on the Thermal Cyclic Failure Behaviour of Ductile Irons”, Materials Science and Technology, vol.20, no.2, pp.243-250, 2004.
3.H. M. Lin, T. S. Lui and L. H. Chen, “Study on the Initiation of Intergranular Fracture of Ferritic SG Cast Iron Caused by Magnesium Containing Inclusions under Cyclic Heating to 750℃”, American Foundrymen’s Society Transactions, 03-014 (05), pp.653-664, 2003.
4.H. M. Lin, T. S. Lui and L. H. Chen, “Effect of Silicon Content on Intergranular Embrittlement of Ferritic Spheroidal Graphite Cast iron Suffered from Cyclic Heating”, Materials Transactions, vol.44, no.1, pp.173-180, 2003.
5.H. M. Lin, T. S. Lui and L. H. Chen, “Effect of Microstructural Refinement on Ductility Deterioration of High Silicon Ferritic Spheroidal Graphite Cast Iron Caused by Cyclic Heating”, Materials Transactions, vol.44, no.6, pp.1209-1218, 2003.
6.H. M. Lin, T. S. Lui and L. H. Chen, “Effect of Maximum Temperature on the Cyclic-Heating-Induced Embrittlement of High Silicon Ferritic Spheroidal Graphite Cast Iron”, Materials Transactions, vol.45, no.2, pp.569-576, 2004.
7.Y. F. Lin, T. S. Lui and L. H. Chen, “Study on the Relationship between Intermediate-Temperature Embrittlement and Triaxial Stress Induced by the Ellipsoidal Graphite in Hot-Rolled Ferrtic Spheroidal Graphite Cast Iron”, Metallurgical and Materials Transactions A, vol.26A, pp.1101-1106, 1995.
8.C. P. Cheng, S. M. Chen, T. S. Lui and L. H. Chen, “High Temperature Tensile Deformation and Thermal Cracking of Ferritic Spheroidal Graphite Cast Iron”, Metallurgical and Materials Transactions A, vol.28A, pp.325-333, 1997.
9.C. G. Chao, T. S. Lui and M. H. Hon, “Effect of Micrestructure on the Tensile Flow Stress of Ferritic Compacted Graphite Cast Iron in Intermediate Temperature Ranges”, Metallurgical and Materials Transactions A, vol.A111, pp.27-34, 1989.
10.林陽豐,『肥粒體球狀石墨鑄鐵脆性破壞之力學效應研究』,國立成功大學博士論文,第二章至第六章,1985。
11.S. F. Chen, T. S. Lui and L. H. Chen, “The Effect of Phosphorus Segregation on the Intermediate-Temperature Embrittlement of Ferritic Spheroidal Graphite Cast Iron”, Metallurgical and Materials Transactions A, vol.25A, pp.557-561, 1994.
12.S. F. Chen, T. S. Lui and L. H. Chen, “A Discussion on the Effect of Segregation on Intermediate Temperature Embrittlement of Ferritic Spheroidal Graphite Cast Iron”, Cast Metals, vol.6, no.4, pp.199-203, 1994.
13.T. Kobayashi, K. Nishino, Y. Kimoto, Y. Awano, Y. Hibino and H. Ueno, “673K Embrittlement of Ferritic Spheroidal Graphite Cast Iron by Magnesium”, Journal of Japan Foundry Engineering Society, vol.70, pp.273-278, 1998.
14.O. Yanagisawa, H. Ishii, K. Matsugi and T. Hatayama, “673K Embrittlement of Ferritic Spheroidal Graphite Cast Iron with Low Residual Magnesium Content”, Journal of Japan Foundry Engineering Society, vol.72, pp.604-609, 2000.
15.陳順發,『冶金因素對肥粒鐵球墨鑄鐵中溫脆性破壞影響之探討』,國立成功大學博士論文,第六章,1994。
16.H. Yoshinaga and S. Morozumi, “The Solute Atmosphere Round a Moving Dislocation and Its Dragging Stress”, Philosophical Magazine, vol.23, pp.1367-1385,1971.
17.朝春光,『肥粒體基球狀石墨鑄鐵與縮墨鑄鐵高溫變形與破壞之研究』,國立成功大學博士論文,第二章至第五章,1989。
18.謝成興,『沃斯回火球狀石墨鑄鐵300K至873K的拉伸變形特性研究』,國立成功大學博士論文,第五章,1995。
19.W. Roberts, H. Bodén and B. Ahlblom, “Dynamic Recrystallization Kinetics”, Metal Science, pp.195-205, 1979.
20.O. Yanagisawa and T. S. Lui, “Effect of Carbon Content and Ferrite Grain Size on the Tensile Flow Stress of Ferritic Spheroidal Graphite Cast Iron”, Metallurgical and Materials Transactions A, vol.16A, pp.667-673, 1985.
21.J. F. Knott, “Fundamental of Fracture Mechanics”, Butterworth & Co. Ltd., London, pp.27-29, 1973.
22.D. Kwon, R. J. Asaro, “A Study of Void Nucleation, Growth, and Coalescence in Spheroidized 1518 Steel”, Metallurgical and Mate-rials Transactions A, vol.21A, no.1, pp.117-134, 1990.
23.『鋼鐵材料』,董基良編著,三民書局,226-241頁,1985。
24.T. S. Lui and L. H. Chen, “A Mixture-Rule on the Young’s Modulus and Tensile Flow Stress of Spheroidal Graphite Cast iron”, IMONO, vol.64, pp.439-442, 1992.
25.G. C. Sih, “Stress Analysis of Notch Problems”, Noordhoff International Publishing Alphen Aan Den Rijn, Netherlands, Chapt. 2, 1978.
26.S. A. Meguid, “Engineering Fracture Mechanics”, John Wiley & Sons Ltd., New York, Chapt.1, 1979.
27.H. Igaki, K. Ikeda and T. Ozawa, “The Yield Condition for Nodular Cast Iron Subjected to Triaxial Stress”, Transactions of the Japan Society of Mechanical engineers, vol.44, pp.806-814, 1978.
28.N. N. Davidenkov and N. I. Spiridonova, Process ASTM, vol.46, pp.1147, 1946.
29.P. W. Bridgman, “Study in Large Plastic Flow and Fracture”, McGraw-Hill Book Co., London, pp.9-37, 1952.
30.R. C. Voigt and L. M. Eldoky, “Crack Initiation and Propagation in Quenched and Tempered Ductile Cast iron”, Transactions of the American Foundrymen's Society, vol.94, pp.631-636, 1986.
31.C. G. Chao, T. S. Lui and M. H. Hon, “The Effect of Micrestructure of Ferritic Spheriodal Graphite Cast Iron on Intergranular Fracture at Intermediate Temperature”, Metallurgical and Materials Transactions A, vol.20A, pp.431-436, 1989.
32.C. G. Chao, T. S. Lui and M. H. Hon, “The Effect of Triaxial Stress Field on Intermediate Temperature Embrittlement of Ferritic Spheriodal Graphite Cast Irons”, Metallurgical and Materials Transactions A, vol.19A, pp.1213-1219, 1988.
33.Y. F. Lin, T. S. Lui and L. H. Chen, “The Effect of Graphite Shape on the Tensile Deformation Behavior in Hot-Swaged and Hot-Rolled Ferrtic Spheroidal Graphite Cast Iron”, International Journal of Cast Metals Research, vol.9, pp.63-69, 1996.
34.M. Nili Ahmadabadi, E. Niyama, M. Tanino, T. Abe and T. Ohide, “Chemical Composition and Structure Identification of Eutectic Carbide in 1 Pct Mn Ductile Iron”, Metallurgical and Materials Transactions A, vol.25A, no.5, pp.911-918, 1994.
35.R. A. Mulford and U. F. Kocks, “New Observations on the Mechanisms of Dynamic Strain Aging and of Jerky Flow”, Acta Metallurgica, vol.27, no.7, pp. 1125-1134, 1979.
36.M. V. Belous and V. T. Cherepin, “Changes in the Steel Carbide Phase under Influence of Cold Plastic Deformation”, The Physics of Metals and Metallography, vol.12, no. 5, pp. 685-691, 1961.
37.B. M. Gonzalez, L. A. Marchi, E. J. Da Fonseca, P. J. Modenesi and V. T. L. Buono, “Measurement of Dynamic Strain Aging in Pearlitic Steels by Tensile Test”, ISIJ International, vol.43, no.3, pp.428-432, 2003.
38.林士晴,『球狀石墨鑄鐵之振動破壞特性研究』,國立成功大學博士論文,第四章,2001。
39.洪飛義,『矽含量及基地組織對球墨鑄鐵顆粒沖蝕磨耗行為之影響』,國立成功大學博士論文,第三章,2002。
40.Modern casting , “Stabilizing Pearlite in Gary Cast Iron”, American Foundrymen's Society, vol.90, no.11, pp.40-43, 2000.
41.J. Lacaze, A. Boudot, V. Gerval, D. Oquab and H. Santos, “The role of manganese and copper in the eutectoid transformation of spheroidal graphite cast iron”, Metallurgical and Materials Trans-actions A, vol.28A, no.10, pp.2015-2025A, 1997.
42.G. S. Cho, K. H. Choe, K. W. Lee and A. Ikenaga, “Effect of Alloying Elements on the Microstructures and Mechanical Properties of Heavy Section Ductile Iron”, Materials Science and Technology, vol.23, no.1, pp.97-101, 2007.
43.程金保,『肥粒鐵基球墨鑄鐵共析變態溫度附近以下之熱疲勞龜裂性質探討』,國立成功大學博士論文,第四至五章,1999。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊