|
1.Flores-Rozas, H., and Kolodner, R. D. (2000) Links between replication, recombination and genome instability in eukaryotes, Trends. Biochem. Sci. 25, 196-200. 2.San Filippo, J., Sung, P., and Klein, H. (2008) Mechanism of eukaryotic homologous recombination, Annu. Rev. Biochem. 77, 229-257. 3.Heyer, W. D., Ehmsen, K. T., and Liu, J. (2010) Regulation of homologous recombination in eukaryotes, Annu. Rev. Genet. 44, 113-139. 4.West, S. C. (2003) Molecular views of recombination proteins and their control, Nat. Rev. Mol. Cell Biol. 4, 435-445. 5.Mimitou, E. P., and Symington, L. S. (2009) DNA end resection: many nucleases make light work, DNA Repair (Amst) 8, 983-995. 6.Mimitou, E. P., and Symington, L. S. (2009) Nucleases and helicases take center stage in homologous recombination, Trends. Biochem. Sci. 34, 264-272. 7.Yu, X., VanLoock, M. S., Yang, S., Reese, J. T., and Egelman, E. H. (2004) What is the structure of the RecA-DNA filament?, Curr. Protein Pept. Sci. 5, 73-79. 8.Galkin, V. E., Wu, Y., Zhang, X. P., Qian, X., He, Y., Yu, X., Heyer, W. D., Luo, Y., and Egelman, E. H. (2006) The Rad51/RadA N-terminal domain activates nucleoprotein filament ATPase activity, Structure 14, 983-992. 9.VanLoock, M. S., Yu, X., Yang, S., Lai, A. L., Low, C., Campbell, M. J., and Egelman, E. H. (2003) ATP-mediated conformational changes in the RecA filament, Structure 11, 187-196. 10.Yu, X., Jacobs, S. A., West, S. C., Ogawa, T., and Egelman, E. H. (2001) Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA, Proc. Natl. Acad. Sci. U. S. A. 98, 8419-8424. 11.Ristic, D., Modesti, M., van der Heijden, T., van Noort, J., Dekker, C., Kanaar, R., and Wyman, C. (2005) Human Rad51 filaments on double- and single-stranded DNA: correlating regular and irregular forms with recombination function, Nucleic Acids Res. 33, 3292-3302. 12.Wyman, C. (2006) Monomer networking activates recombinases, Structure 14, 949-950. 13.Murayama, Y., Kurokawa, Y., Mayanagi, K., and Iwasaki, H. (2008) Formation and branch migration of Holliday junctions mediated by eukaryotic recombinases, Nature 451, 1018-1021. 14.van der Heijden, T., Seidel, R., Modesti, M., Kanaar, R., Wyman, C., and Dekker, C. (2007) Real-time assembly and disassembly of human RAD51 filaments on individual DNA molecules, Nucleic Acids Res. 35, 5646-5657. 15.Galletto, R., Amitani, I., Baskin, R. J., and Kowalczykowski, S. C. (2006) Direct observation of individual RecA filaments assembling on single DNA molecules, Nature 443, 875-878. 16.Hilario, J., Amitani, I., Baskin, R. J., and Kowalczykowski, S. C. (2009) Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules, Proc. Natl. Acad. Sci. U. S. A. 106, 361-368. 17.Modesti, M., Ristic, D., van der Heijden, T., Dekker, C., van Mameren, J., Peterman, E. J., Wuite, G. J., Kanaar, R., and Wyman, C. (2007) Fluorescent human RAD51 reveals multiple nucleation sites and filament segments tightly associated along a single DNA molecule, Structure 15, 599-609. 18.De Zutter, J. K., and Knight, K. L. (1999) The hRad51 and RecA proteins show significant differences in cooperative binding to single-stranded DNA, J. Mol. Biol. 293, 769-780. 19.Konforti, B. B., and Davis, R. W. (1990) The preference for a 3'' homologous end is intrinsic to RecA-promoted strand exchange, J. Biol. Chem. 265, 6916-6920. 20.Konforti, B. B., and Davis, R. W. (1987) 3'' homologous free ends are required for stable joint molecule formation by the RecA and single-stranded binding proteins of Escherichia coli, Proc. Natl. Acad. Sci. U. S. A. 84, 690-694. 21.Jain, S. K., Cox, M. M., and Inman, R. B. (1994) On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. III. Unidirectional branch migration and extensive hybrid DNA formation, J. Biol. Chem. 269, 20653-20661. 22.Amaratunga, M., and Benight, A. S. (1988) DNA sequence dependence of ATP hydrolysis by RecA protein, Biochem. Biophys. Res. Commun. 157, 127-133. 23.Shan, Q., Bork, J. M., Webb, B. L., Inman, R. B., and Cox, M. M. (1997) RecA protein filaments: end-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins, J. Mol. Biol. 265, 519-540. 24.Lusetti, S. L., and Cox, M. M. (2002) The bacterial RecA protein and the recombinational DNA repair of stalled replication forks, Annu Rev Biochem 71, 71-100. 25.Rossi, M. J., Mazina, O. M., Bugreev, D. V., and Mazin, A. V. (2011) The RecA/RAD51 protein drives migration of Holliday junctions via polymerization on DNA, Proc. Natl. Acad. Sci. U. S. A. 108, 6432-6437. 26.Gupta, R. C., Golub, E. I., Wold, M. S., and Radding, C. M. (1998) Polarity of DNA strand exchange promoted by recombination proteins of the RecA family, Proc. Natl. Acad. Sci. U. S. A. 95, 9843-9848. 27.Namsaraev, E. A., and Berg, P. (1998) Branch migration during Rad51-promoted strand exchange proceeds in either direction, Proc. Natl. Acad. Sci. U. S. A. 95, 10477-10481. 28.Murayama, Y., Tsutsui, Y., and Iwasaki, H. (2011) The fission yeast meiosis-specific Dmc1 recombinase mediates formation and branch migration of Holliday junctions by preferentially promoting strand exchange in a direction opposite to that of Rad51, Genes Dev. 25, 516-527. 29.Sung, P., and Robberson, D. L. (1995) DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA, Cell 82, 453-461. 30.Baumann, P., and West, S. C. (1999) Heteroduplex formation by human Rad51 protein: effects of DNA end-structure, hRP-A and hRad52, J. Mol. Biol. 291, 363-374. 31.Schafer, D. A., Gelles, J., Sheetz, M. P., and Landick, R. (1991) Transcription by Single Molecules of Rna-Polymerase Observed by Light-Microscopy, Nature 352, 444-448. 32.Dohoney, K. M., and Gelles, J. (2001) Chi-sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules, Nature 409, 370-374. 33.Fan, H. F., Cox, M. M., and Li, H. W. (2011) Developing single-molecule TPM experiments for direct observation of successful RecA-mediated strand exchange reaction, PLoS One 6, e21359. 34.Tsai, S. P., Su, G. C., Lin, S. W., Chung, C. I., Xue, X., Dunlop, M. H., Akamatsu, Y., Jasin, M., Sung, P., and Chi, P. (2012) Rad51 presynaptic filament stabilization function of the mouse Swi5-Sfr1 heterodimeric complex, Nucleic Acids Res. 35.Anderson, D. G., Churchill, J. J., and Kowalczykowski, S. C. (1999) A single mutation, RecB(D1080A,) eliminates RecA protein loading but not Chi recognition by RecBCD enzyme, J Biol Chem 274, 27139-27144. 36.Berliner, E., Young, E. C., Anderson, K., Mahtani, H. K., and Gelles, J. (1995) Failure of a single-headed kinesin to track parallel to microtubule protofilaments, Nature 373, 718-721. 37.Bugreev, D. V., and Mazin, A. V. (2004) Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity, Proc. Natl. Acad. Sci. U. S. A. 101, 9988-9993. 38.Bugreev, D. V., Golub, E. I., Stasiak, A. Z., Stasiak, A., and Mazin, A. V. (2005) Activation of human meiosis-specific recombinase Dmc1 by Ca2+, J. Biol. Chem. 280, 26886-26895. 39.Jain, S. K., Cox, M. M., and Inman, R. B. (1994) On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. III. Unidirectional branch migration and extensive hybrid DNA formation, J Biol Chem 269, 20653-20661. 40.Chi, P., Van Komen, S., Sehorn, M. G., Sigurdsson, S., and Sung, P. (2006) Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function, DNA Repair (Amst) 5, 381-391. 41.Cox, M. M. (2007) Motoring along with the bacterial RecA protein, Nat. Rev. Mol. Cell Biol. 8, 127-138. 42.Bugreev, D. V., and Mazin, A. V. (2004) Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity, Proc Natl Acad Sci U S A 101, 9988-9993.
|