跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 14:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱家杰
研究生(外文):Chia-Chieh Chu
論文名稱:Rad51核蛋白絲利用5′片段進行成功的DNA交換反應
論文名稱(外文):The 5′-segment of Rad51 nucleoprotein filament is preferentially used for successful strand exchange process
指導教授:李弘文李弘文引用關係
指導教授(外文):Hung-Wen Li
口試委員:謝道時冀宏源范秀芳
口試日期:2012-06-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:54
中文關鍵詞:Rad51酵素RecA酵素三股互換單分子栓球實驗同源性重組
外文關鍵詞:Rad51 recombinasesRecA recombinasesstrand exchangeTPMhomologous recombination
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
真核生物的 Rad51 和原核生物的 RecA 重組蛋白酵素,在DNA 利用同源性重組的修復過程中,扮演必要的角色。當DNA受損而產生雙股斷裂時,重組蛋白酵素會在DNA 上形成螺旋狀的核蛋白絲,並利用該核蛋白絲尋找同源染色體上的互補序列進行修復。單分子栓球實驗可以直接觀察 DNA長度在生化過程中的變化。我們利用單分子栓球實驗來直接觀察並了解重組蛋白酵素進行互換反應的機制。當修飾小球的 Rad51 核蛋白絲在雙股 DNA 上尋找互補序列時,一開始的布朗運動值可以被準確紀錄。並可利用 sum of two-segment 模型來模擬。本實驗即是在研究 DNA 三股交換反應中, Rad51 核蛋白絲及雙股 DNA的作用模式。我們觀察到成功地完成三股交換的 Rad51 核蛋白絲較容易以其5端位置進行初始的互換反應。我們推測 Rad51 核蛋白絲是以5端往3端的方向進行初始的交換作用,所以當一開始與雙股 DNA 碰撞的位置越靠近核蛋白絲的5端時,會有越高的機會成功完成互換。這個由 Rad51 酵素催化的結果和之前 RecA 的實驗中有相同的趨勢,在成功的三股交換反應中,發現 Rad51 及 RecA 核蛋白絲都是以其5端部分進行初始觸碰,並在三股交換反應中表現5端往3端的方向性。

Rad51 recombinases in eukaryotes and RecA recombinases in prokaryotes play an essential role in repairing damaged DNA by the homologous recombinational repair pathway. Once assembled on single-stranded (ss) DNA, Rad51 nucleoprotein filaments mediate the pairing and strand exchange with the homologous sequence. Single-molecule tethered particle motion (TPM) experiments monitor the DNA length and topology change during biochemical processes, and allow us to study the mechanistic details of DNA recombination processes. In the Rad51 invading strand experiments, beads were labeled on the invading ssDNA with sequence homologous to the surface-anchored duplex DNA. When bead-labeled Rad51 nucleoprotein filaments first interacted with the surface-anchored DNA, the initial Brownian motion (BM) amplitude which was resulted from the combined length contribution of the Rad51 nucleoprotein filament and surface anchored duplex DNA can be detected. The initial Brownian motion provides information on the initial contact point of the Rad51 nucleoprotein filament as well as its polarity preference for the stable synapses formation. A sum of two-segment model successfully describes the distribution of initial BM values. For transient events, the synaptic complex formation initiated at random position with no end preference. For events that drive successfully into the final strand exchange product, 5′-end segment of Rad51 nucleoprotein filament was preferentially used. Our studies suggest that Rad51 nucleoprotein filaments carry out initial strand exchange in the 5′-to-3′ direction.

CHPTER 1 : INTRODUCTION 1
1-1 Homologous recombination and Rad51 recombinases 1
1-2 Strand exchange direction mediated by Rad51 and RecA 3
1-3 Tethered particle motion in single molecule experiments 7
1-4 The invading strand experiment in tethered particle motion 11
CHPTER 2 : MATERIAL AND METHOD 13
2-1 Protein expression and purification 13
2-2 DNA substrates 13
2-3 Single molecule tethered particle motion measurement and data analysis 22
2-4 The invading strand experiment 23
2-5 Sum of two-segment model 26
CHPTER 3 : RESULT .30
3-1 The initial Brownian motion of Rad51 nucleoprotein filaments 30
3-2 The Rad51 nucleoprotein filaments with no ATP hydrolysis 34
3-3 The three-strand exchange direction of Rad51 37
CHPTER 4 : DISCUSSION AND CONCLUSION 40
4-1 The initial Brownian motion of strand exchange mediated by RecA 40
4-2 The strand exchange direction mediated by Rad51 43
4-3 The 5′-to-3′ strand exchange direction and the proposed model 46
APPENDIX 48
REFERENCE 51


1.Flores-Rozas, H., and Kolodner, R. D. (2000) Links between replication, recombination and genome instability in eukaryotes, Trends. Biochem. Sci. 25, 196-200.
2.San Filippo, J., Sung, P., and Klein, H. (2008) Mechanism of eukaryotic homologous recombination, Annu. Rev. Biochem. 77, 229-257.
3.Heyer, W. D., Ehmsen, K. T., and Liu, J. (2010) Regulation of homologous recombination in eukaryotes, Annu. Rev. Genet. 44, 113-139.
4.West, S. C. (2003) Molecular views of recombination proteins and their control, Nat. Rev. Mol. Cell Biol. 4, 435-445.
5.Mimitou, E. P., and Symington, L. S. (2009) DNA end resection: many nucleases make light work, DNA Repair (Amst) 8, 983-995.
6.Mimitou, E. P., and Symington, L. S. (2009) Nucleases and helicases take center stage in homologous recombination, Trends. Biochem. Sci. 34, 264-272.
7.Yu, X., VanLoock, M. S., Yang, S., Reese, J. T., and Egelman, E. H. (2004) What is the structure of the RecA-DNA filament?, Curr. Protein Pept. Sci. 5, 73-79.
8.Galkin, V. E., Wu, Y., Zhang, X. P., Qian, X., He, Y., Yu, X., Heyer, W. D., Luo, Y., and Egelman, E. H. (2006) The Rad51/RadA N-terminal domain activates nucleoprotein filament ATPase activity, Structure 14, 983-992.
9.VanLoock, M. S., Yu, X., Yang, S., Lai, A. L., Low, C., Campbell, M. J., and Egelman, E. H. (2003) ATP-mediated conformational changes in the RecA filament, Structure 11, 187-196.
10.Yu, X., Jacobs, S. A., West, S. C., Ogawa, T., and Egelman, E. H. (2001) Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA, Proc. Natl. Acad. Sci. U. S. A. 98, 8419-8424.
11.Ristic, D., Modesti, M., van der Heijden, T., van Noort, J., Dekker, C., Kanaar, R., and Wyman, C. (2005) Human Rad51 filaments on double- and single-stranded DNA: correlating regular and irregular forms with recombination function, Nucleic Acids Res. 33, 3292-3302.
12.Wyman, C. (2006) Monomer networking activates recombinases, Structure 14, 949-950.
13.Murayama, Y., Kurokawa, Y., Mayanagi, K., and Iwasaki, H. (2008) Formation and branch migration of Holliday junctions mediated by eukaryotic recombinases, Nature 451, 1018-1021.
14.van der Heijden, T., Seidel, R., Modesti, M., Kanaar, R., Wyman, C., and Dekker, C. (2007) Real-time assembly and disassembly of human RAD51 filaments on individual DNA molecules, Nucleic Acids Res. 35, 5646-5657.
15.Galletto, R., Amitani, I., Baskin, R. J., and Kowalczykowski, S. C. (2006) Direct observation of individual RecA filaments assembling on single DNA molecules, Nature 443, 875-878.
16.Hilario, J., Amitani, I., Baskin, R. J., and Kowalczykowski, S. C. (2009) Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules, Proc. Natl. Acad. Sci. U. S. A. 106, 361-368.
17.Modesti, M., Ristic, D., van der Heijden, T., Dekker, C., van Mameren, J., Peterman, E. J., Wuite, G. J., Kanaar, R., and Wyman, C. (2007) Fluorescent human RAD51 reveals multiple nucleation sites and filament segments tightly associated along a single DNA molecule, Structure 15, 599-609.
18.De Zutter, J. K., and Knight, K. L. (1999) The hRad51 and RecA proteins show significant differences in cooperative binding to single-stranded DNA, J. Mol. Biol. 293, 769-780.
19.Konforti, B. B., and Davis, R. W. (1990) The preference for a 3'' homologous end is intrinsic to RecA-promoted strand exchange, J. Biol. Chem. 265, 6916-6920.
20.Konforti, B. B., and Davis, R. W. (1987) 3'' homologous free ends are required for stable joint molecule formation by the RecA and single-stranded binding proteins of Escherichia coli, Proc. Natl. Acad. Sci. U. S. A. 84, 690-694.
21.Jain, S. K., Cox, M. M., and Inman, R. B. (1994) On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. III. Unidirectional branch migration and extensive hybrid DNA formation, J. Biol. Chem. 269, 20653-20661.
22.Amaratunga, M., and Benight, A. S. (1988) DNA sequence dependence of ATP hydrolysis by RecA protein, Biochem. Biophys. Res. Commun. 157, 127-133.
23.Shan, Q., Bork, J. M., Webb, B. L., Inman, R. B., and Cox, M. M. (1997) RecA protein filaments: end-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins, J. Mol. Biol. 265, 519-540.
24.Lusetti, S. L., and Cox, M. M. (2002) The bacterial RecA protein and the recombinational DNA repair of stalled replication forks, Annu Rev Biochem 71, 71-100.
25.Rossi, M. J., Mazina, O. M., Bugreev, D. V., and Mazin, A. V. (2011) The RecA/RAD51 protein drives migration of Holliday junctions via polymerization on DNA, Proc. Natl. Acad. Sci. U. S. A. 108, 6432-6437.
26.Gupta, R. C., Golub, E. I., Wold, M. S., and Radding, C. M. (1998) Polarity of DNA strand exchange promoted by recombination proteins of the RecA family, Proc. Natl. Acad. Sci. U. S. A. 95, 9843-9848.
27.Namsaraev, E. A., and Berg, P. (1998) Branch migration during Rad51-promoted strand exchange proceeds in either direction, Proc. Natl. Acad. Sci. U. S. A. 95, 10477-10481.
28.Murayama, Y., Tsutsui, Y., and Iwasaki, H. (2011) The fission yeast meiosis-specific Dmc1 recombinase mediates formation and branch migration of Holliday junctions by preferentially promoting strand exchange in a direction opposite to that of Rad51, Genes Dev. 25, 516-527.
29.Sung, P., and Robberson, D. L. (1995) DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA, Cell 82, 453-461.
30.Baumann, P., and West, S. C. (1999) Heteroduplex formation by human Rad51 protein: effects of DNA end-structure, hRP-A and hRad52, J. Mol. Biol. 291, 363-374.
31.Schafer, D. A., Gelles, J., Sheetz, M. P., and Landick, R. (1991) Transcription by Single Molecules of Rna-Polymerase Observed by Light-Microscopy, Nature 352, 444-448.
32.Dohoney, K. M., and Gelles, J. (2001) Chi-sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules, Nature 409, 370-374.
33.Fan, H. F., Cox, M. M., and Li, H. W. (2011) Developing single-molecule TPM experiments for direct observation of successful RecA-mediated strand exchange reaction, PLoS One 6, e21359.
34.Tsai, S. P., Su, G. C., Lin, S. W., Chung, C. I., Xue, X., Dunlop, M. H., Akamatsu, Y., Jasin, M., Sung, P., and Chi, P. (2012) Rad51 presynaptic filament stabilization function of the mouse Swi5-Sfr1 heterodimeric complex, Nucleic Acids Res.
35.Anderson, D. G., Churchill, J. J., and Kowalczykowski, S. C. (1999) A single mutation, RecB(D1080A,) eliminates RecA protein loading but not Chi recognition by RecBCD enzyme, J Biol Chem 274, 27139-27144.
36.Berliner, E., Young, E. C., Anderson, K., Mahtani, H. K., and Gelles, J. (1995) Failure of a single-headed kinesin to track parallel to microtubule protofilaments, Nature 373, 718-721.
37.Bugreev, D. V., and Mazin, A. V. (2004) Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity, Proc. Natl. Acad. Sci. U. S. A. 101, 9988-9993.
38.Bugreev, D. V., Golub, E. I., Stasiak, A. Z., Stasiak, A., and Mazin, A. V. (2005) Activation of human meiosis-specific recombinase Dmc1 by Ca2+, J. Biol. Chem. 280, 26886-26895.
39.Jain, S. K., Cox, M. M., and Inman, R. B. (1994) On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. III. Unidirectional branch migration and extensive hybrid DNA formation, J Biol Chem 269, 20653-20661.
40.Chi, P., Van Komen, S., Sehorn, M. G., Sigurdsson, S., and Sung, P. (2006) Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function, DNA Repair (Amst) 5, 381-391.
41.Cox, M. M. (2007) Motoring along with the bacterial RecA protein, Nat. Rev. Mol. Cell Biol. 8, 127-138.
42.Bugreev, D. V., and Mazin, A. V. (2004) Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity, Proc Natl Acad Sci U S A 101, 9988-9993.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top