跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.185) 您好!臺灣時間:2024/03/29 04:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃子容
研究生(外文):Tzu-Jung Huang
論文名稱:電子元件溫度循環測試之力學分析與替代性機械測試之改進研究
論文名稱(外文):Mechanical Test Mechanics Analysis of Electronic Components in Thermal Cycling Test and Improvement of Its Alternative Mechanical Test
指導教授:陳永樹陳永樹引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:136
中文關鍵詞:有限元素分析覆晶球柵陣列四點彎曲測試熱循環測試可靠度
外文關鍵詞:finite element analysisflip chip ball grid array packagefour-point bend teststhermal cycle testreliability
相關次數:
  • 被引用被引用:4
  • 點閱點閱:438
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
在電子構裝元件之可靠度測試中,加速熱循環測試為最廣泛使用之測試方法。但是此方式過於耗時而易造成測試之瓶頸。因此,耗時較短的機械式四點彎曲測試常被運用並替代加速熱循環測試。但要以此機械式施力替代加速熱循環時,必須探究在此機械施力下電子元件的受力狀況是否近似於加速熱循環測試?否則,測試結果之適切性將受到質疑。因此,本研究將依實驗與有限元素分析兩種方法,以覆晶球柵陣列元件為試片,進行加速熱循環與四點彎曲測試的分析比較;並探討四點彎曲測試是否可為貼近加速熱循環測試之替代方案。
研究首先對於實驗之覆晶球柵陣列構裝元件,建構出有限元素分析模型,分別進行四點彎曲測試與加速熱循環測試之模擬分析。比對此兩者在元件上所產生應力與應變分佈狀態之異同,並討論彎曲測試用於替代熱循環測試之適切性。
實驗結果發現,加上停滯時間的四點彎曲測試負載歷程,其錫球的應變曲線相似於熱循環負載之應變曲線。此外,以有限元素分析探討覆晶球柵陣列元件於加速熱循環之應力分佈狀況,得到最大應力點之受力形態是以σ_x與σ_y的正向應力為主,σ_z與τ_yz為次之,τ_xy與τ_xz近似零,而四點彎曲測試之應力分佈狀況是以σ_y與σ_z的正向應力為主,σ_x與τ_xy為次之,τ_yz與τ_xz近似零。據此可判定四點彎曲測試取代加速熱循環測試之合適性,研究結果對於提升電子元件之可靠度及準確性將具實質性的貢獻。


Thermal cycling test, though time-consuming, is currently the most widely used reliability test for electronic components. However, a faster mechanical bend test is often adopted as an alternative for accelerated thermal cycle (ATC) test. But the stress states between ATC test and mechanical test have to be either the same or identical so that the test results won’t be questioned. This study took Flip Chip Ball Grid Array (FCBGA) component as the test vehicle and conducted both experiment as well as finite element analysis (FEA) for thermal cycling and bend tests. The results are checked for examining whether the mechanical four-point bend test (FPBT) and can be used as an alternative method for ATC test.
A finite element analysis model of FCBGA component was constructed for analyses on four point bend test (FPBT test) and ATC test. Differences in the distributions and magnitudes of both stress and strain for these two tests are compared so that the appropriateness of the FPBT test as the substitute of ATC can be discussed.
It was found in the experiment that the FPBT loading with dwell time revealed the similar strain curve on solder balls when comparing with that of ATC test. In addition, with the finite element analysis to investigate the stress distribution of FCBGA under the same temperature profile in the ATC test, magnitudes of stress patterns show that the normal stresses σ_x & σ_y are the largest, followed by σ_z & τ_yz , and τ_xy & τ_xz are quite small by closing to zero in its value. The same trend was also observed in the improved FPBT of this study. Accordingly, it is concluded that the mechanical bend test with dwell time can be used as a suitable alternative for ATC test in improving the reliability of electronic components.


摘 要 II
ABSTRACT IV
誌 謝 VI
目錄 VII
表目錄 X
圖目錄 XIII
符號說明 XX
第1章 緒論 22
1.1 前言 23
1.2 文獻回顧 24
1.3 研究目的及方法 26
1.4 論文架構 27
第2章 理論架構 29
2.1 可靠度理論 29
2.2 疲勞理論 31
2.3 球柵陣列式構裝之熱變形與熱應力數學模型 32
2.3.1 球柵陣列式構裝之熱變形 32
2.3.2 球柵陣列封裝之熱應力分析模型 34
第3章 熱循環測試與結果 38
3.1 熱循環測試試片簡介 38
3.2 測試規範 41
3.3 熱循環測試之設備與架構 43
3.4 熱循環測試 45
第4章 彎曲測試與結果 56
4.1 彎曲測試之試片簡介 56
4.2 測試規範 56
4.3 彎曲循環測試之設備與架構 59
4.4 彎曲循環測試 62
4.5 熱循環測試之應變與彎曲測試之應變比較 85
第5章 有限元素分析 88
5.1 基本假設與分析流程 88
5.2 覆晶球柵陣列有限元素模型 91
5.3 覆晶構裝之彎曲循環負載分析 94
5.4 覆晶構裝之熱循環負載分析 98
5.5 角落錫球與基板於熱循環和彎曲測試之力學行為探究 104
5.6 有限元素之持溫時間與應力曲線變化 111
5.7 有限元素之低溫循環應力探究 114
第6章 結果與討論 119
6.1 實驗之熱循環與彎曲測試結果相關討論 119
6.2 有限元素分析之熱循環與彎曲測試結果相關討論 121
6.3 熱循環實驗與熱循環分析之比較 125
6.4 彎曲測試實驗與彎曲測試分析之比較 129
6.5 結論與未來展望 130
參考文獻 132


[1]JEDEC, "Power and Temperature Cycling," JEDEC Standard JESD22-A105C, Solid State Technology Association, 2004
[2]B. L. Chen, X. Q. Shi, G. Y. Li, K. H. Ang, and J. P Pickering, "Rapid Temperature Cycling Methodology for Reliability Assessment of Solder Interconnection in Tape Ball Grid Array Assembly," Trans. ASME, J. Electron. Packag., 127, pp. 466-473, 2005.
[3]John H. Lau, Solder Joint Reliability, Van Nostrand Reinhold, New York, 1991.
[4]Q. Yu, M. Shiratori, and Y. Ohshima, "A Study of the Effects of BGA Solder Geometry on Fatigue Life and Reliability Assessment," Proceeding of Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 229-235, 1998.
[5]Y. Guo, and J. S. Corbin, "Reliability of Ceramic Ball Grid Array Assembly," Ball Grid Array Technology, J. H. Lau Editor, McGraw-Hill, 1995.
[6]P. M. Hall, "Forces, Moments, and Displacements during Thermal Chamber Cycling of Leadless Ceramic Chip Carriers Soldered to Printed Boards," IEEE Trans. On CHMT, 7, 4, pp. 314-327, 1984.
[7]B. Vandevelde, F. Christiaens, E. Beyne, J. Roggen, J. Peeters, K. Allaert, D. Vandepitte, and J. Bergmans, "Thermomechanical Models for Leadless Solder Interconnections in Flip Chip Assemblies," IEEE Trans. Comp., Packag., Manufact. Technol. A, 21, 1, pp. 177-185, 1998.
[8]P. L. Hacke, A. F. Sprecher, and H. Conrad, "Thermomechanical Fatigue of 63Sn-37Pb Solder Joints," Thermal Stress and Strain in Microelectronics Packaging, J. H. Lau Editor, Van Nostrand Reinhold, New York, 1993.
[9]Pang L., John H., Tan K. H., Shi X., and Wang Z. P., "Thermal Cycling Aging Effects on Microstructural and Mechanical Properties of a Single PBGA Solder Joint Specimen," IEEE Comp. Pack. Technol., 24, 1, pp. 10-15,2001.
[10] H. Nayeb-Hashemi, and P. Yang, “Mixed Mode I/II Fracture and Fatigue Crack Growth along 63Sn/37Pb Solder/Brass Interface,” International Journal of Fatigue, Vol. 23, pp. S325-S335, 2001.
[11] S.C. Hung, and et al., “Board Level Reliability of PBGA Using Flex Substrate,” Microelectronics Reliability, 41(2001), pp. 677-687, 2000.
[12] P.Lall, and Banerji K.,"Assembly-Level Reliability of Flex-Substrate BGA,Elastomer-on-Flex Packages and 0.5mm Pitch Partial Array Packages",Microelectron. Reliab.,pp. 1081-1095,2000.
[13] George Hsieh, and Alan Mcallister,"Flip Chip Ball Grid Array Component Testing under Board Flexure",Lake Buena Vista,F.L.,U.S.A.,Electronic Components and Technology Conference,2005.
[14] P. L. Tu, Y. C. Chan, K. C. Hung, and J. K. L. Lai, “Comparative Study of Micro-BGA Reliability under Bending Stress,” IEEE Transactions on Advanced Packaging, Vol. 23, No. 4, pp. 750-756, 2000.
[15] L. Leicht, and A. Skipor, “Mechanical Cycling Fatigue of PBGA Package Interconnects,” Microelectronics Reliability, Vol. 40, pp. 1129-1133, 2000.
[16] T. Y. Lee, "An Investigation of Thermal Enhancement on Flip Chip Plastic BGA Packages Using CFD Tool," IEEE Trans. on Components and Packaging Technologies, 23, 3, pp. 481-489, 2000.
[17] S. Timoshenko, "Analysis of Bi-Material Thermostats," J. Optic. Soc. Am. Rev. Sci. Inst., 11, 3, pp. 233-256, 1925
[18] E. Suhir, "Predicted Bow of Plastic Packages of Integrated Circuit(IC) Devices," Thermal Stress and Strain in Microelectronics Packaging, J. H. Lau Editor, Van Nostrand Reinhold, New York, 1993.
[19] W. L. Yin, "Thermal Stresses and Free-edge Effects in Laminated Beams: A Variational Approach using Stress Functions," ASME J. Electron. Packag., 113, pp. 68-75, 1991.
[20] Z. Q. Jiang, Y. Huang, and A. Chandra, "Thermal Stresses in Layered Electronic Assemblies," ASME J. Electron. Packag., 119, pp. 127-132, 1997.
[21] B. A. Mirman, and S. Knecht, "Creep Strains in an Elongated Bond Layer," IEEE Comp., Packag., Manufact. Technol., 13, pp. 914-928, 1990.
[22] E. Suhir, "Stresses in Bi-Metal Thermostats," J. Appl. Mech., 53, pp. 657-660, 1986.
[23] E. Egan, G. Kelly, and L. Herard, "PBGA Warpage and Stress Prediction for Efficient Creation of the Termaomechanical Design Space for Package-Level Reliability," IEEE Electronic Component and Technology Conference, pp. 1217-1223, 1999.
[24] K. C. Norris, and A. H. Landzberg, "Reliability of Controlled Collapse Interconnections," IBM J. Res. Develop., pp. 266-271, May 1969.
[25] J. B. Nysæther, P. Lundström, and J. Liu, "Measurements of Solder Bump Lifetime as a Function of Underfill Material Properties," IEEE Trans. Comp., Packag., Manufact. Technol. A, 21, 2, pp. 281-287, 1998.
[26] M. J. Pfeifer, "Solder Bump Size and Shape Modeling and Experimental Validation," IEEE Trans. Comp., Packag., Manufact. Technol. B, 20, 4, pp. 452-457, 1997.
[27] "Wafer-Level Packaging(WLP) and Its Applications," MAXIM APPLICATION NOTE 1891 ,May 01, 2008.
[28] IPC/JEDEC, "Monotonic Bend Characterization of Board-Level Interconnects," JEDEC Standard IPC/JEDEC-9702, Solid State Technology Association, 2004.
[29] ANSYS Release 10.0 Documentation.
[30] B. A. Zhan, "Solder Joint Fatigue Life Model Methodology for 63Sn37Pb and 95.5Sn4Ag0.5Cu Materials," Proc. Electron. Compon. Technol. Conf., New Orleans, LA, pp. 89-94, 2003.
[31] 邱建嘉,「覆晶構裝疲勞壽命與無鉛銲料可靠度評估」,碩士論文,中原大學機械工程學系,2004
[32] A. Yeo, C. Lee, and J. H. L. Pang, "Flip Chip Solder Joint Fatigue Analysis using 2D and 3D FE Models," Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, pp. 549-555, 2004.
[33] 鄭武輝,「無鉛銲錫成分與綠漆通孔尺寸對FCBGA元件可靠度影響之研究」,碩士論文,元智大學機械工程研究所,2006
[34] IPC, "Performance Test Methods and Qualification Requirements for Surface Mount Solder Attachments," IPC Standard IPC-9701, Solid State Technology Association, 2002
[35] John H. Lau, Reliability Testing and Data Analysis, Workshop at the NEPCON West, Anaheim, CA, February 1990.
[36] M. R. Mitchell, "Fundamentals of Modern Fatigue Analysis for Design," American Society for Meatals, 1979.
[37] T. Y. Lee, and Z. Zhong, "Board Level Solder Joint Reliability Analysis and Optimization of Pyramidal Stacked Die BGA Packages," Microelectron. Reliab., 44, 12, pp. 1957-1965, 2004.
[38] D. Wang, X. Ma, and D. Guo, "Reliability Analysis of Lead-Free Flip Chip Solder Joint," ICEPT, pp. 1-5, 2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊