跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 23:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉孟翰
研究生(外文):Meng-HanLiu
論文名稱:表面電漿子與量子點的Fano共振以及Leggett-Garg不等式的探討
論文名稱(外文):Fano Resonance of Nanowire Surface Plasmons coupled to Quantum Dots and the Leggett-Garg inequality in Cavity QED with atomic mirrors
指導教授:陳岳男陳岳男引用關係
指導教授(外文):Yueh-Nan Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:36
中文關鍵詞:量子光學
外文關鍵詞:Quantum Optics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們首先研究金屬奈米線上表面電漿子在線性與非線性的色散關係下與量子點偶合時的傳輸性質。透過解開系統的本徵方程式,我們發現在穿透係數出現的Fano-like譜線跟兩個量子點能階的糾纏是有所關聯的。論文第二個部份,我們探討了一種由原子系綜系統所形成的腔量子電動力學(Cavity QED),把這些原子放在特定的位置時,可以達到強耦合的組態,同時腔中的原子處在激發態的機率會出現類似Rabi振盪的行為。我們進一步使用Leggett-Garg不等式來測試這個系統的量子效應。
In this thesis, we first study the double quantum dots coupled to the surface plasmons with linear and parabolic dispersion relations. Analytical expressions are obtained for the transmission and reflection spectra by solving the corresponding eigenvalue equations. We find that the Fano line shape appears in the transmission spectrum, and there exists correlation between the two-dot entanglement and the Fano resonance. In the second part, a method to enhance the cavity QED coupling by using an ensemble of atoms has been discussed. By placing these atoms in specified locations, one can obtain a strong cavity QED configuration. With an impurity atom in the cavity, the strong coupling may be reached and the excitation dynamics reveals the Rabi-like oscillations. We further examine the quantum coherence of this system by using the Leggett-Garg inequality.

1 Introduction 1
2 Transport properties of nanowire surface plasmons 3
2.1 Model and formulas in different dispersion relations 3
2.2 Transport properties of two quantum dots coupled to surface plasmons 8
2.3 Fano resonance of the scattering spectrum 9
2.4 Entanglement and Fano resonance 11
2.5 Conclusion 18
3 Atomic Cavity QED 19
3.1 The Model 19
3.2 Spin model to the cavity QED configuration 22
3.3 The Leggett-Garg inequality 25
3.4 Conclusion 27
4 Summary and outlooks 28
A Transformation of Hamiltonian from wave-vector-space to real space 31
B Maxwell-Bloch equations 33
Reference 35
[1] H J Kimble. The quantum internet. Nature,453(7198):1023–30, June 2008.
[2] C Monroe. Quantum information processing with atoms and photons. Nature, 416(6877):238–46, March 2002.
[3] Dmitri K. Gramotnev and Sergey I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nature Photonics, 4(2):83–91, January 2010.
[4] M S Tame, K R Mcenery, Ş K Özdemir, J Lee, S A Maier, and M S Kim. Quantum plasmonics. Nature Physics, 9(6):329–340, 2013.
[5] A V Akimov, A Mukherjee, C L Yu, D E Chang, A S Zibrov, P R Hemmer, H Park, and M D Lukin. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 450(7168):402–6, November 2007.
[6] Guang-Yin Chen, Neill Lambert, Chung-Hsien Chou, Yueh-Nan Chen, and Franco Nori. Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement. Physical Review B, 84(4):045310, July 2011.
[7] D E Chang, L Jiang, a V Gorshkov, and H J Kimble. Cavity QED with atomic mirrors. New Journal of Physics, 14(6):063003, June 2012.
[8] D. Chang, A. Sø rensen, P. Hemmer, and M. Lukin. Quantum Optics with Surface Plasmons. Physical Review Letters, 97(5):053002, August 2006.
[9] GY Chen, YN Chen, and DS Chuu. Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire. Optics letters, 33(19):2212–2214, 2008.
[10] JT Shen and Shanhui Fan. Coherent photon transport from spontaneous emission in one-dimensional waveguides. Optics letters, 30(15):2001–2003,2005.
[11] IH Deutsch, RJC Spreeuw, SL Rolston, and WD Phillips. Photonic band gaps in optical lattices. Physical Review A, 52(2), 1995.
[12] Wei Chen, Guang-yin Chen, and Yueh-nan Chen. Coherent transport of nanowire surface plasmons coupled to quantum dots Abstract :. Optics Express, 18(10):10360–10368, 2010.
[13] U Fano. Effects of configuration interaction on intensities and phase shifts.Physical Review, 124(6), 1961.
[14] Fam Le Kien, S. Gupta, K. Nayak, and K. Hakuta.
Nanofiber-mediated radiative transfer between two distant atoms. Physical Review A, 72(6):063815, December 2005.
[15] A Garg. Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Physical Review Letters, 54(9):857–860, 1985.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top