跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 02:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫忠男
研究生(外文):Chung Nan Sun
論文名稱:TRAX訊息複合體在腺苷酸受體第二亞型恢復神經生長功能之訊息探討
論文名稱(外文):Functional Characterization of the A2AR Rescue Effect on Neuritogenesis through a TRAX-Signalosome dependent Signaling Pathway
指導教授:陳儀莊陳儀莊引用關係
指導教授(外文):Yijuang Chern
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:111
中文關鍵詞:腺苷酸受體第二亞型神經生長TRAX 訊息複合體
外文關鍵詞:Adenosine 2A receptorTRAXKIF2Ap53Differentiation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:488
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
腺苷酸2A亞型受體(A2A adenosine receptor,簡稱為A2AR)屬於G蛋白聯結型受體,已被發現分布在大腦中的主要區域,並且參與調控神經細胞的生理功能。我們的研究證明A2AR 的C端會藉著結合一個參與DNA修復及訊息RNA運送的蛋白Translin associated protein X (TRAX),來調控細胞中由神經生長因子所引發的神經軸突生長現象。我們的實驗發現海馬迴神經細胞的神經軸突發生(neuritogenesis)需要p53蛋白的存在,因為抑制了p53蛋白的功能就會抑制神經軸突發生。我們更進一步證實,活化A2AR後可透過TRAX來抑制細胞增生,並修復因p53被抑制而停止的神經軸突發生現象(簡稱為A2A恢復作用)。在目前的研究結果中,會與TRAX發生交互作用的KIF2A蛋白質亦被發現在A2A恢復作用中扮演關鍵的角色。實驗結果發現若降低KIF2A的表現量會抑制A2A恢復作用,若大量表現KIF2A,可以恢復因p53被抑制而停止的神經軸突生長現象。在神經分化細胞模型PC12中,我們發現給予神經生長因子的刺激會讓TRAX及KIF2A在細胞核中共存。因此我們利用KIF2A514片段來破壞TRAX和KIF2A的相互作用,並且發現A2A恢復作用會因此受到抑制。這些實驗結果都證實了TRAX和KIF2A之間的功能性交互作用在A2A恢復作用中扮演具關鍵性的作用。此外,我們的結果也證實了當p53被抑制時,KIF2A無法因為神經生長因子的刺激而從細胞核轉移到細胞質。我們進一步證實會滯留在細胞核的KIF2A-NLS 變異蛋白無法像正常的KIF2A一樣,進行A2A恢復作用。因此,讓KIF2A重新轉移到細胞質是造成神經軸突生長的必要條件。總結我們的實驗結果,我們發現KIF2A參與了海馬迴神經細胞及PC12 細胞的神經軸突發生現象。我們並推論活化A2AR 可以復原由於p53被抑制而受損的神經軸突生長(即A2A恢復作用)可能經由TRAX及KIF2A的功能性交互作用及重新轉移因p53被抑制而滯留細胞核的KIF2A到細胞質去調控神經軸突生長功能。
The A2A adenosine receptor (A2AR) is a G protein-coupled receptor. We previously reported that the C-terminus of the A2AR binds to translin-associated protein X (TRAX) and modulates nerve growth factor (NGF)-evoked neurite outgrowth in PC12 cells. Herein, I show that neuritogenesis of primary hippocampal neurons requires p53 because blockage of p53 suppressed neurite outgrowth. The impaired neuritogenesis caused by p53 blockage was rescued by activation of the A2AR (designated the A2A rescue effect) in a TRAX-dependent manner. Importantly, suppression of a TRAX-interacting protein (kinesin heavy chain member 2A, KIF2A) inhibited the A2A rescue effect, while overexpression of KIF2A caused a rescue effect. Expression of a KIF2A fragment (KIF2A514), which disturbed the interaction between KIF2A and TRAX, blocked the rescue effect. Transient colocalization of TRAX and KIF2A was detected in the nucleus of PC12 cells upon NGF treatment. These data suggest that functional interaction between KIF2A and TRAX is critical for the A2A rescue effect. Moreover, p53 blockage during NGF treatment prevented the redistribution of KIF2A from the nucleus to the cytoplasmic region. Expression of a nuclear-retained KIF2A variant (NLS-KIF2A) did not rescue the impaired neurite outgrowth as did the wildtype KIF2A. Redistribution of KIF2A to the cytoplasmic fraction therefore is a prerequisite for neurite outgrowth. Collectively, we demonstrate that KIF2A functions downstream of p53 to mediate neuritogenesis of primary hippocampal neurons and PC12 cells. Stimulation of the A2AR rescued neuritogenesis impaired by p53 blockage via an interaction between TRAX and KIF2A.
Contents

Contents ………………………………………………………………………….....I
List of Tables …………………………………………………………………...….IV
List of Figures …………………………………………………………… ……… IV
List of Appendix ………………………………………………………………….VII
Abbreviation ……………………………………………………………………..VIII
Abstract (Chinese) ……………………………………………………………….....X
Abstract (English) ………………………………………………………………..XII

Introduction
Tumor suppression gene TP53 ………………………………………………….1
Adenosine 2A receptor (A2AR) ………………………………………………….2
Translin associated protein X (TRAX) ………………………………………….4
Kinesin heavy chain family 2A (KIF2A) ……………………………………….5

Materials and Methods
Reagents ………………………………………………………………………...7
Animals and Cell Culture ……………………………………………………….7
RNA purification and quantitative polymerase chain reaction (QPCR) ………..8
Transfection and neuronal differentiation ………………………………………9
Lentivirus preparation …………………………………………………………11
Western blot analysis …………………………………………………………..11
Immunocytochemistry …………………………………………………………12
BrdU incorporation assay ……………………………………………………...13
[3H]-thymidine incorporation assay …………………………………………...13
Flow Cytometry and Cell Sorting ……………………………………………..14
cAMP Assay …………………………………………………………………...15
Statistical analysis ……………………………………………………………..15

Results
1. Activation of adenosine 2A receptor (A2AR) rescues the impaired neurite outgrowth caused by p53 blockage ………………………………………… ..16
2. A2A rescue effect signals through its C-terminus and the G-ptotein independent pathway ………………………………………………………….17
2.1 PKA and PKC was not involved in the A2A rescue effect …………………...17
2.2 The A2A rescue effect functions via its C-terminus domain …………………18
3. The novel interacting protein, Translin associated protein X(TRAX), mediated the A2A rescue effect in PC12 cell and primary hippocampal neurons …………………………………………………………………………19
3.1 Characterization of the interaction between A2AR and TRAX ………………19
3.2 Overexpression of TRAX rescued the impaired neurite outgrowth and suppression of TRAX diminished the rescue effect ……………………………...21
3.3 TRAX suppressed the proliferation of PC12 cell and promotes the neurite outgrowth impaired by p53 blockage …………………………………………...22
4. The molecular mechanism of the TRAX signalosome in the A2A rescue effect
4.1 The TRAX interacting protein, KIF2A, is involved in the A2A rescue effect….23
4.2 Functional interaction of TRAX and KIF2A in the nucleus is critical for A2A rescue effect …………………………………………………………………24
4.3Cytosolic accumulation of KIF2A and nuclear enrichment of TRAX are prerequisites for the A2A rescue effect ………………………………………26
Discussion ………………………………………………………………………...28
Conclusion and Perspectives ………………………………………………...38
References ………………………………………………………………………..40
Tables ……………………………………………………………………………..56
Figures …………………………………………………………………………….62
Appediex ………………………………………………………………………….95




List of Tables

Table 1. PKA was not required for the rescue effect of A2AR ……………………..57
Table 2. PKC was not required for the rescue effect of A2AR ……………………..58
Table 3. Stimulation of A2AR Blocked BrdU incorporation through its interacting protein, TRAX ……………………………………………………………59
Table 4. Sequences of primers used in the construction of KIF2A and TRAX variant …………………………………………………………………….60
Table 5. Small hairpin (sh)RNA sequences used in the present study …………….61

List of Figures

Fig.1 Primary hippocampal neurons harvested from p53-null mice had shorter neuronal process. …………………………………………………………63
Fig.2 Stimulation of the A2A adenosine receptor (A2AR) rescues impaired
neurite development caused by p53 blockage in primary hippocampal neurons. …………………………………………………………………..64
Fig.3 Protein kinase A (PKA) was not involved in the A2A adenosine receptor (A2AR) rescue effect on primary hippocampal neurons. …………………66
Fig.4 The C-terminus of the A2A adenosine receptor (A2AR) mediated the A2A rescue effect in primary hippocampal neurons. …………………………..67
Fig.5 The A2AR interacted with TRAX at its C terminal domain. ……………...69
Fig.6 Colocalization of the A2AR and TRAX in vivo. ………………………….70
Fig.7 An A2A adenosine receptor (A2AR)-binding protein, TRAX, is required for the A2A rescue effect in primary neurons. ………………………………..71
Fig.8 A2AR stimulation restored NGF’s ability to suppress proliferation in the presence of R273H-p53 ([3H]thymidine incorporation assay). ……………72
Fig.9 KIF2A rescued the nerve growth factor (NGF)-induced neurite outgrowth impaired by p53 blockage without affecting the proliferation of PC12
cells. ………………………………………………………………………73
Fig.10 An interacting protein of TRAX, KIF2A, mediated the adenosine 2A (A2A) rescue effect. ……………………………………………………………...75
Fig.11 The PC12 cell line permanently expressing a p53 dominant negative mutant (R273H-PC12) lost its ability to produce neurite outgrowth upon nerve growth factor (NGF) treatment. ………………………………………….78
Fig.12 Downregulation of p53 by small hairpin (sh)RNAs. …………………….79
Fig.13 A TRAX interacting protein kinesin heave chain family 2, KIF2A, is required for the A2A rescue effect in primary neurons. …………………..80
Fig.14 Functional interaction between TRAX and KIF2A was required for the rescue effect. ……………………………………………………………..81
Fig.15 Redistribution of KIF2A into the cytoplasmic region of PC12 cells was a prerequisite for nerve growth factor (NGF)-induced neurite outgrowth.…84
Fig.16 Cellular localizations of NLS-KIF2A and DNLS-TRAX in PC12 cells.….88
Fig.17 KIF2A was retained in nuclei of a PC12 cell line permanently expressing p53-R273H (designated PC12-R273H). …………………………………90
Fig.18 Functional interaction between TRAX and KIF2A is required for the A2A adenosine receptor (A2AR)-regulated cellular distribution of KIF2A.……91
Fig.19 Activation of the A2A adenosine receptor (A2AR) normalized the abnormal distribution of TRAX caused by p53 blockage during nerve growth factor (NGF) treatment in PC12 cells. ………………………………………….93





List of Appendix
Fig.20 An inhibitor of p53 (PFT-a) prevented the localization of KIF2A at the tips of growing neuronal processes in primary hippocampal neurons. ……….96
Fig.21 TRAXK279R mutant attenuated the rescue effect. …………………………97
Fig.22 The working model of TRAX- and KIF2A-mediated A2AR rescue effect. ……………………………………………………………………..98
Agbor TA, Taylor CT. 2008. SUMO, hypoxia and the regulation of metabolism. Biochem Soc Trans 36:445-448.
Amson R, Lassalle JM, Halley H, Prieur S, Lethrosne F, Roperch JP, Israeli D, Gendron MC, Duyckaerts C, Checler F, Dausset J, Cohen D, Oren M, Telerman A. 2000. Behavioral alterations associated with apoptosis and down-regulation of presenilin 1 in the brains of p53-deficient mice. Proc Natl Acad Sci U S A 97:5346-5350.
Aoki K, Ishida R, Kasai M. 1997. Isolation and characterization of a cDNA encoding a Translin-like protein, TRAX. FEBS Lett 401:109-112.
Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR. 1995. High-frequency developmental abnormalities in p53-deficient mice. Curr Biol 5:931-936.
Bos JL. 2003. Epac: a new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol 4:733-738.
Brady AE, Limbird LE. 2002. G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell Signal 14:297-309.
Bray JD, Chennathukuzhi VM, Hecht NB. 2002. Identification and characterization of cDNAs encoding four novel proteins that interact with translin associated factor-X. Genomics 79:799-808.
Bray JD, Chennathukuzhi VM, Hecht NB. 2004. KIF2Abeta: A kinesin family member enriched in mouse male germ cells, interacts with translin associated factor-X (TRAX). Mol Reprod Dev 69:387-396.
Brynczka C, Labhart P, Merrick BA. 2007. NGF-mediated transcriptional targets of p53 in PC12 neuronal differentiation. BMC Genomics 8:139.
Brynczka C, Merrick BA. 2008. The p53 transcriptional target gene wnt7b contributes to NGF-inducible neurite outgrowth in neuronal PC12 cells. Differentiation 76:795-808.
Burgueno J, Blake DJ, Benson MA, Tinsley CL, Esapa CT, Canela EI, Penela P, Mallol J, Mayor F, Jr., Lluis C, Franco R, Ciruela F. 2003. The adenosine A2A receptor interacts with the actin-binding protein alpha-actinin. J Biol Chem 278:37545-37552.
Canela L, Lujan R, Lluis C, Burgueno J, Mallol J, Canela EI, Franco R, Ciruela F. 2007. The neuronal Ca(2+) -binding protein 2 (NECAB2) interacts with the adenosine A(2A) receptor and modulates the cell surface expression and function of the receptor. Mol Cell Neurosci 36:1-12.
Cannon TD, Hennah W, van Erp TG, Thompson PM, Lonnqvist J, Huttunen M, Gasperoni T, Tuulio-Henriksson A, Pirkola T, Toga AW, Kaprio J, Mazziotta J, Peltonen L. 2005. Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiatry 62:1205-1213.
Castro A, Peter M, Magnaghi-Jaulin L, Vigneron S, Loyaux D, Lorca T, Labbe JC. 2000. Part of Xenopus translin is localized in the centrosomes during mitosis. Biochem Biophys Res Commun 276:515-523.
Chang YH, Conti M, Lee YC, Lai HL, Ching YH, Chern Y. 1997. Activation of phosphodiesterase IV during desensitization of the A2A adenosine receptor-mediated cyclic AMP response in rat pheochromocytoma (PC12) cells. J Neurochem 69:1300-1309.
Charles MP, Adamski D, Kholler B, Pelletier L, Berger F, Wion D. 2003. Induction of neurite outgrowth in PC12 cells by the bacterial nucleoside N6-methyldeoxyadenosine is mediated through adenosine A2a receptors and via cAMP and MAPK signaling pathways. Biochem Biophys Res Commun 304:795-800.
Chen JF, Pedata F. 2008. Modulation of ischemic brain injury and neuroinflammation by adenosine A2A receptors. Curr Pharm Des 14:1490-1499.
Cheng HC, Shih HM, Chern Y. 2002. Essential role of cAMP-response element-binding protein activation by A2A adenosine receptors in rescuing the nerve growth factor-induced neurite outgrowth impaired by blockage of the MAPK cascade. J Biol Chem 277:33930-33942.
Chern Y, Chiou JY, Lai HL, Tsai MH. 1995. Regulation of adenylyl cyclase type VI activity during desensitization of the A2a adenosine receptor-mediated cyclic AMP response: role for protein phosphatase 2A. Mol Pharmacol 48:1-8.
Chern Y, King K, Lai HL, Lai HT. 1992. Molecular cloning of a novel adenosine receptor gene from rat brain. Biochem Biophys Res Commun 185:304-309.
Chou SY, Lee YC, Chen HM, Chiang MC, Lai HL, Chang HH, Wu YC, Sun CN, Chien CL, Lin YS, Wang SC, Tung YY, Chang C, Chern Y. 2005. CGS21680 attenuates symptoms of Huntington's disease in a transgenic mouse model. J Neurochem 93:310-320.
Chou SY, Weng JY, Lai HL, Liao F, Sun SH, Tu PH, Dickson DW, Chern Y. 2008. Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes. J Neurosci 28:3277-3290.
Chung CY, Koprich JB, Siddiqi H, Isacson O. 2009. Dynamic changes in presynaptic and axonal transport proteins combined with striatal neuroinflammation precede dopaminergic neuronal loss in a rat model of AAV alpha-synucleinopathy. J Neurosci 29:3365-3373.
Desterro JM, Rodriguez MS, Hay RT. 1998. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2:233-239.
Di Giovanni S, Knights CD, Rao M, Yakovlev A, Beers J, Catania J, Avantaggiati ML, Faden AI. 2006. The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. EMBO J 25:4084-4096.
Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, Jr., Butel JS, Bradley A. 1992. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215-221.
Eizenberg O, Faber-Elman A, Gottlieb E, Oren M, Rotter V, Schwartz M. 1996. p53 plays a regulatory role in differentiation and apoptosis of central nervous system-associated cells. Mol Cell Biol 16:5178-5185.
Erdemir T, Bilican B, Oncel D, Goding CR, Yavuzer U. 2002. DNA damage-dependent interaction of the nuclear matrix protein C1D with Translin-associated factor X (TRAX). J Cell Sci 115:207-216.
Fabian Z, Vecsernyes M, Pap M, Szeberenyi J. 2006. The effects of a mutant p53 protein on the proliferation and differentiation of PC12 rat phaeochromocytoma cells. J Cell Biochem 99:1431-1441.
Finkenstadt PM, Kang WS, Jeon M, Taira E, Tang W, Baraban JM. 2000. Somatodendritic localization of Translin, a component of the Translin/Trax RNA binding complex. J Neurochem 75:1754-1762.
Flajolet M, Wang Z, Futter M, Shen W, Nuangchamnong N, Bendor J, Wallach I, Nairn AC, Surmeier DJ, Greengard P. 2008. FGF acts as a co-transmitter through adenosine A(2A) receptor to regulate synaptic plasticity. Nat Neurosci 11:1402-1409.
Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Wasserman W. 2000. Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch Pharmacol 362:364-374.
Ganem NJ, Compton DA. 2004. The KinI kinesin Kif2a is required for bipolar spindle assembly through a functional relationship with MCAK. J Cell Biol 166:473-478.
Geoffroy MC, Hay RT. 2009. An additional role for SUMO in ubiquitin-mediated proteolysis. Nat Rev Mol Cell Biol 10:564-568.
Gilman CP, Chan SL, Guo Z, Zhu X, Greig N, Mattson MP. 2003. p53 is present in synapses where it mediates mitochondrial dysfunction and synaptic degeneration in response to DNA damage, and oxidative and excitotoxic insults. Neuromolecular Med 3:159-172.
Gocke CB, Yu H, Kang J. 2005. Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J Biol Chem 280:5004-5012.
Green DR, Kroemer G. 2009. Cytoplasmic functions of the tumour suppressor p53. Nature 458:1127-1130.
Gsandtner I, Charalambous C, Stefan E, Ogris E, Freissmuth M, Zezula J. 2005. Heterotrimeric G protein-independent signaling of a G protein-coupled receptor. Direct binding of ARNO/cytohesin-2 to the carboxyl terminus of the A2A adenosine receptor is necessary for sustained activation of the ERK/MAP kinase pathway. J Biol Chem 280:31898-31905.
Han JR, Yiu GK, Hecht NB. 1995. Testis/brain RNA-binding protein attaches translationally repressed and transported mRNAs to microtubules. Proc Natl Acad Sci U S A 92:9550-9554.
Harms K, Nozell S, Chen X. 2004. The common and distinct target genes of the p53 family transcription factors. Cell Mol Life Sci 61:822-842.
Hayashi N, Shirakura H, Uehara T, Nomura Y. 2006. Relationship between SUMO-1 modification of caspase-7 and its nuclear localization in human neuronal cells. Neurosci Lett 397:5-9.
Hernandez-Deviez DJ, Roth MG, Casanova JE, Wilson JM. 2004. ARNO and ARF6 regulate axonal elongation and branching through downstream activation of phosphatidylinositol 4-phosphate 5-kinase alpha. Mol Biol Cell 15:111-120.
Herzog KH, Chong MJ, Kapsetaki M, Morgan JI, McKinnon PJ. 1998. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science 280:1089-1091.
Heuss C, Gerber U. 2000. G-protein-independent signaling by G-protein-coupled receptors. Trends Neurosci 23:469-475.
Homma N, Takei Y, Tanaka Y, Nakata T, Terada S, Kikkawa M, Noda Y, Hirokawa N. 2003. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114:229-239.
Hosaka T, Kanoe H, Nakayama T, Murakami H, Yamamoto H, Nakamata T, Tsuboyama T, Oka M, Kasai M, Sasaki MS, Nakamura T, Toguchida J. 2000. Translin binds to the sequences adjacent to the breakpoints of the TLS and CHOP genes in liposarcomas with translocation t(12;6). Oncogene 19:5821-5825.
Huang NK. 2003. Adenosine A2A receptors regulate oxidative stress formation in rat pheochromocytoma PC12 cells during serum deprivation. Neurosci Lett 350:127-131.
Huang NK, Lin YW, Huang CL, Messing RO, Chern Y. 2001. Activation of protein kinase A and atypical protein kinase C by A(2A) adenosine receptors antagonizes apoptosis due to serum deprivation in PC12 cells. J Biol Chem 276:13838-13846.
Hughes AL, Gollapudi L, Sladek TL, Neet KE. 2000. Mediation of nerve growth factor-driven cell cycle arrest in PC12 cells by p53. Simultaneous differentiation and proliferation subsequent to p53 functional inactivation. J Biol Chem 275:37829-37837.
Ishida R, Okado H, Sato H, Shionoiri C, Aoki K, Kasai M. 2002. A role for the octameric ring protein, Translin, in mitotic cell division. FEBS Lett 525:105-110.
Jacobs WB, Kaplan DR, Miller FD. 2006. The p53 family in nervous system development and disease. J Neurochem 97:1571-1584.
Jang CY, Coppinger JA, Seki A, Yates JR, 3rd, Fang G. 2009. Plk1 and Aurora A regulate the depolymerase activity and the cellular localization of Kif2a. J Cell Sci 122:1334-1341.
Jang CY, Wong J, Coppinger JA, Seki A, Yates JR, 3rd, Fang G. 2008. DDA3 recruits microtubule depolymerase Kif2a to spindle poles and controls spindle dynamics and mitotic chromosome movement. J Cell Biol 181:255-267.
Kadare G, Toutant M, Formstecher E, Corvol JC, Carnaud M, Boutterin MC, Girault JA. 2003. PIAS1-mediated sumoylation of focal adhesion kinase activates its autophosphorylation. J Biol Chem 278:47434-47440.
Kalil K, Szebenyi G, Dent EW. 2000. Common mechanisms underlying growth cone guidance and axon branching. J Neurobiol 44:145-158.
Katebi M, Soleimani M, Cronstein BN. 2009. Adenosine A2A receptors play an active role in mouse bone marrow-derived mesenchymal stem cell development. J Leukoc Biol 85:438-444.
Kiermayer S, Biondi RM, Imig J, Plotz G, Haupenthal J, Zeuzem S, Piiper A. 2005. Epac activation converts cAMP from a proliferative into a differentiation signal in PC12 cells. Mol Biol Cell 16:5639-5648.
Kline-Smith SL, Walczak CE. 2002. The microtubule-destabilizing kinesin XKCM1 regulates microtubule dynamic instability in cells. Mol Biol Cell 13:2718-2731.
Kobayashi S, Takashima A, Anzai K. 1998. The dendritic translocation of translin protein in the form of BC1 RNA protein particles in developing rat hippocampal neurons in primary culture. Biochem Biophys Res Commun 253:448-453.
Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, Gudkov AV. 1999. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285:1733-1737.
Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.
Lai HL, Yang TH, Messing RO, Ching YH, Lin SC, Chern Y. 1997. Protein kinase C inhibits adenylyl cyclase type VI activity during desensitization of the A2a-adenosine receptor-mediated cAMP response. J Biol Chem 272:4970-4977.
Lee YC, Chien CL, Sun CN, Huang CL, Huang NK, Chiang MC, Lai HL, Lin YS, Chou SY, Wang CK, Tai MH, Liao WL, Lin TN, Liu FC, Chern Y. 2003. Characterization of the rat A2A adenosine receptor gene: a 4.8-kb promoter-proximal DNA fragment confers selective expression in the central nervous system. Eur J Neurosci 18:1786-1796.
Li C, Zheng Y, Qin W, Tao R, Pan Y, Xu Y, Li X, Gu N, Feng G, He L. 2006. A family-based association study of kinesin heavy chain member 2 gene (KIF2) and schizophrenia. Neurosci Lett 407:151-155.
Li LA, Chiang EF, Chen JC, Hsu NC, Chen YJ, Chung BC. 1999. Function of steroidogenic factor 1 domains in nuclear localization, transactivation, and interaction with transcription factor TFIIB and c-Jun. Mol Endocrinol 13:1588-1598.
Liu Y, Ye X, Jiang F, Liang C, Chen D, Peng J, Kinch LN, Grishin NV, Liu Q. 2009. C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science 325:750-753.
Maney T, Hunter AW, Wagenbach M, Wordeman L. 1998. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J Cell Biol 142:787-801.
Milojevic T, Reiterer V, Stefan E, Korkhov VM, Dorostkar MM, Ducza E, Ogris E, Boehm S, Freissmuth M, Nanoff C. 2006. The ubiquitin-specific protease Usp4 regulates the cell surface level of the A2A receptor. Mol Pharmacol 69:1083-1094.
Morfini G, Quiroga S, Rosa A, Kosik K, Caceres A. 1997. Suppression of KIF2 in PC12 cells alters the distribution of a growth cone nonsynaptic membrane receptor and inhibits neurite extension. J Cell Biol 138:657-669.
Ni X, Trakalo J, Valente J, Azevedo MH, Pato MT, Pato CN, Kennedy JL. 2005. Human p53 tumor suppressor gene (TP53) and schizophrenia: case-control and family studies. Neurosci Lett 388:173-178.
Nickols HH, Shah VN, Chazin WJ, Limbird LE. 2004. Calmodulin interacts with the V2 vasopressin receptor: elimination of binding to the C terminus also eliminates arginine vasopressin-stimulated elevation of intracellular calcium. J Biol Chem 279:46969-46980.
Noda Y, Sato-Yoshitake R, Kondo S, Nangaku M, Hirokawa N. 1995. KIF2 is a new microtubule-based anterograde motor that transports membranous organelles distinct from those carried by kinesin heavy chain or KIF3A/B. J Cell Biol 129:157-167.
Okura T, Gong L, Kamitani T, Wada T, Okura I, Wei CF, Chang HM, Yeh ET. 1996. Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J Immunol 157:4277-4281.
Pang L, Sawada T, Decker SJ, Saltiel AR. 1995. Inhibition of MAP kinase kinase blocks the differentiation of PC-12 cells induced by nerve growth factor. J Biol Chem 270:13585-13588.
Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA, Jr., Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW. 2008. An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807-1812.
Potts PR, Yu H. 2005. Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol Cell Biol 25:7021-7032.
Riley T, Sontag E, Chen P, Levine A. 2008. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402-412.
Rothbarth K, Spiess E, Juodka B, Yavuzer U, Nehls P, Stammer H, Werner D. 1999. Induction of apoptosis by overexpression of the DNA-binding and DNA-PK-activating protein C1D. J Cell Sci 112 ( Pt 13):2223-2232.
Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T. 1995. A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 10:175-180.
Schroer U, Volk GF, Liedtke T, Thanos S. 2007. Translin-associated factor-X (Trax) is a molecular switch of growth-associated protein (GAP)-43 that controls axonal regeneration. Eur J Neurosci 26:2169-2178.
Steffan JS, Kazantsev A, Spasic-Boskovic O, Greenwald M, Zhu YZ, Gohler H, Wanker EE, Bates GP, Housman DE, Thompson LM. 2000. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci U S A 97:6763-6768.
Sun CN, Cheng HC, Chou JL, Lee SY, Lin YW, Lai HL, Chen HM, Chern Y. 2006. Rescue of p53 blockage by the A(2A) adenosine receptor via a novel interacting protein, translin-associated protein X. Mol Pharmacol 70:454-466.
Sun CN, Chuang HC, Wang JY, Chen SY, Cheng YY, Lee CF, Chern Y. 2010. The A2A adenosine receptor rescues neuritogenesis impaired by p53 blockage via KIF2A, a kinesin family member. Dev Neurobiol 70:604-621.
Tedeschi A, Di Giovanni S. 2009. The non-apoptotic role of p53 in neuronal biology: enlightening the dark side of the moon. EMBO Rep 10:576-583.
Tedeschi A, Nguyen T, Puttagunta R, Gaub P, Di Giovanni S. 2009. A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death Differ 16:543-554.
Tedeschi A, Nguyen T, Steele SU, Feil S, Naumann U, Feil R, Di Giovanni S. 2009. The tumor suppressor p53 transcriptionally regulates cGKI expression during neuronal maturation and is required for cGMP-dependent growth cone collapse. J Neurosci 29:15155-15160.
Tempe D, Piechaczyk M, Bossis G. 2008. SUMO under stress. Biochem Soc Trans 36:874-878.
Ulrich HD. 2005. Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol 15:525-532.
Wang Y, Yang J, Zheng H, Tomasek GJ, Zhang P, McKeever PE, Lee EY, Zhu Y. 2009. Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell 15:514-526.
Wardas J. 2008. Potential role of adenosine A2A receptors in the treatment of schizophrenia. Front Biosci 13:4071-4096.
Weaver DR. 1993. A2a adenosine receptor gene expression in developing rat brain. Brain Res Mol Brain Res 20:313-327.
Wu XQ, Gu W, Meng X, Hecht NB. 1997. The RNA-binding protein, TB-RBP, is the mouse homologue of translin, a recombination protein associated with chromosomal translocations. Proc Natl Acad Sci U S A 94:5640-5645.
Xia Z, Gray JA, Compton-Toth BA, Roth BL. 2003. A direct interaction of PSD-95 with 5-HT2A serotonin receptors regulates receptor trafficking and signal transduction. J Biol Chem 278:21901-21908.
Yang J, Chennathukuzhi V, Miki K, O'Brien DA, Hecht NB. 2003. Mouse testis brain RNA-binding protein/translin selectively binds to the messenger RNA of the fibrous sheath protein glyceraldehyde 3-phosphate dehydrogenase-S and suppresses its translation in vitro. Biol Reprod 68:853-859.
Yang S, Cho YS, Chennathukuzhi VM, Underkoffler LA, Loomes K, Hecht NB. 2004. Translin-associated factor X is post-transcriptionally regulated by its partner protein TB-RBP, and both are essential for normal cell proliferation. J Biol Chem 279:12605-12614.
Yang S, Hecht NB. 2004. Translin associated protein X is essential for cellular proliferation. FEBS Lett 576:221-225.
Yang Y, Xiao Z, Chen W, Sang H, Guan Y, Peng Y, Zhang D, Gu Z, Qian M, He G, Qin W, Li D, Gu N, He L. 2004. Tumor suppressor gene TP53 is genetically associated with schizophrenia in the Chinese population. Neurosci Lett 369:126-131.
Zhang J, Yan W, Chen X. 2006. p53 is required for nerve growth factor-mediated differentiation of PC12 cells via regulation of TrkA levels. Cell Death Differ 13:2118-2128.
Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen AJ, Perry SR, Tonon G, Chu GC, Ding Z, Stommel JM, Dunn KL, Wiedemeyer R, You MJ, Brennan C, Wang YA, Ligon KL, Wong WH, Chin L, DePinho RA. 2008. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455:1129-1133.
Zhu C, Zhao J, Bibikova M, Leverson JD, Bossy-Wetzel E, Fan JB, Abraham RT, Jiang W. 2005. Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell 16:3187-3199.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊