跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 02:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝宜倩
研究生(外文):Yi-Chien Hsieh
論文名稱:錳氧化物超高電容器循環穩定性之研究
論文名稱(外文):Investigation on Capacity Fading of Aqueous MnO2·nH2O Electrochemical Capacitor
指導教授:吳乃立
指導教授(外文):Nae-Lih Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:82
中文關鍵詞:電容二氧化錳循環穩定性水系氯化鈉
外文關鍵詞:capacitorMnO2cycling stabilityaqueousNaCl
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要以定電流充放電、電化學交流阻抗法和感應耦合電漿原子發射光譜法,分析錳氧化物超高電容器之循環穩定性,從實驗結果發現錳氧化物超高電容器之電量衰退隨著電流增加而增加。但當黏著劑含量增加時,此電容在高速充放電下循環一千圈,衰退範圍從原本約30 % 減少到低於5 %,此法可以有效的抑制電量衰退。此外,有兩種機制會造成電量隨著循環次數而衰退。第一種機制是當電極中黏著劑含量較少時,在高速充放電下會造成電極結構的鬆脫。在循環過程中,金屬氧化物與碳黑之間的接觸逐漸惡化,使得電極的電阻逐漸增加,而導致電量的衰退。第二種機制是電極在慢速的充放電下,其界面傳遞的阻力隨著循環次數增加而增加,因而造成電量衰退。在本研究中,有兩種方法可以有效抑制錳氧化物超高電容器在高速充放電循環下的電量衰退。其中一種是將黏著劑含量提高以鞏固電極的結構。另ㄧ種方法是利用SBR去取代PVdF,此乃由於鍵結於金屬氧化物中的SBR可以承受金屬氧化物在循環時的體積變化,使得黏著劑與粒子間的界面不會有過多的應力,因而改善電極結構鬆脫的問題,使錳氧化物超高電容器之循環穩定性大幅提升。
Cycle stability of MnO2·nH2O electrochemical capacitors has been studied by using chronopotentiometry tests, electrochemical impedance spectroscopy (EIS), and inductively coupled plasma-atomic emission spectrometer (ICP-AES). The extent of capacity fading, ranging from ~30 % to < 5 % in 1000 cycles, increases with current-rate and is markedly reduced with increasing binder content. Two fading mechanisms have been identified. With low binder content and at high current-rate, capacity fading occurs in conjunction with appreciable increase in transmission resistance, suggesting progressively deteriorating electric contacts among the pseudocapacitve oxide particles and conductive carbon. The mechanical failure of the electrode structure may arise from the cyclic volumetric variation of the pseudocapacitive oxide particles. On the other hand, increasing interfacial charge-transfer resistance upon cycling has been found to play an important role in capacity fading at low current-rate. In addition, there are two effective ways to suppress capacity fading under high specific charge/discharge current density. One is to use plenty of binder to strengthen the overall structure of the electrode. The other is to use Styrene-butadiene rubber (SBR) to replace Polyvinylidene difluoride (PVdF) as binder component. SBR binder bonded between the oxide particles is rapider to deform in response to the volume change of the oxide particles without introducing excessive stress at the binder-particle interface. Hence, the cycling stability of MnO2·nH2O electrochemical capacitors can be enhanced.
Table of Contents

摘要......................................................I
Abstract.................................................II
Table of Contents.......................................III
List of Figures..........................................VI
List of Tables...........................................IX
Chapter 1 Introduction...................................1
Chapter 2 Theory and Literature Review...................3
2.1 Introduction to Electrochemical Capacitors............3
2.1.1 Introduction to Energy Storage Systems..............3
2.1.2 Classifications of Electrochemical Capacitors.......7
2.1.3 Models of Electric Double Layers....................9
2.1.4 Characteristics Analysis of Electrochemical Capacitors...............................................14
2.2 Development of Electrochemical Capacitors............16
2.2.1 Electrode Materials................................16
2.2.2 Electrolytes.......................................18
2.3 Introduction to Manganese Oxide, MnO2................20
2.3.1 All Kinds of Preparation Methods of MnO2 Electrodes...............................................20
2.3.2 The Charge Storage Behavior of MnO2................27
2.4 Introduction to Binder...............................28
2.4.1 The Performances of Binder.........................28
2.4.2 Physical and Mechanical Properties of PVdF and SBR.29
Chapter 3 Experimental..................................30
3.1 Synthesis of Electrode Materials.....................30
3.1.1 MnO2 Powders.......................................31
3.2 Electrochemical Characterizations....................33
3.2.1 Preparation of Binder solutions....................33
3.2.2 Preparation of Electrodes..........................33
3.2.3 Cyclic Voltammetry.................................34
3.2.4 Chronopotentiometry................................35
3.2.5 Electrochemical Impedance Spectroscopy.............36
3.3 Analysis and Characterization........................39
3.3.1 Microstructure Characterizations...................39
3.3.2 Chemical Compound Analysis.........................39
Chapter 4 Characterization of MnO2˙nH2O Electrochemical Capacitor in Aqueous Electrolyte.........................41
4.1 Introduction.........................................41
4.2 Investigation on Cycling Stability of MnO2˙nH2O Electrochemical Capacitor................................43
4.3 Effect of the Content of MnO2˙nH2O on MnO2˙nH2O Electrochemical Capacitor................................50
4.4 Investigation on the Effect of Binder on MnO2˙nH2O Electrochemical Capacitor................................54
4.5 Effect of the Content of PVdF on MnO2˙nH2O Electrochemical Capacitor................................62
4.6 The Electrochemical Impedance Spectroscopy Study of MnO2˙nH2O Electrochemical Capacitor.....................65
4.7 The Inductively Coupled Plasma-Atomic Emission Spectrometer Study of MnO2˙nH2O Electrochemical Capacitor................................................71
Chapter 5 Conclusions...................................74
References...............................................75
References
1. R. Kötz and M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochim. Acta, 45, 2483-2498 (2000).
2. B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Plenum press, New York (1999). p.382, 384, 519, 544
3. B. E. Conway, “Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage”, J. Electrochem. Soc., 138, 1539-1548 (1991).
4. A. J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd ed., Wiley, New York (2001).
5. E. Frackowiak and F. Béguin, “Carbon materials for the electrochemical storage of energy in capacitors”, Carbon, 39, 937-959 (2001).
6. B. E. Conway, V. Birss, and J. Wojtowicz, “The role and utilization of pseudocapacitance for energy storage by supercapacitors”, J. Power Sources, 66, 1-14 (1997).
7. M. A. V. Devanathan and B. V. K. S. R. A. Tilak, “The structure of the electrical double layer at the metal-solution interface”, Chem. Rev., 65, 635-684 (1965).
8. D. C. Grahame, “The electrical double layer and the theory of electrocapillarity”, Chem. Rev., 41, 441-501 (1947).
9. B. J. Akle, “Characterization and modeling of the ionomer-conductor interface in ionic polymer transducers”, Ph.D Thesis, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, pp. 16-19 (2005).
10. S. Y. Wang, “Characterization and mechanism of Fe3O4/carbon supercapacitors”, Ph.D Thesis, Department of Chemical Engineering, National Taiwan University, p. 17-18 (2004).
11. H. Yang, M. Yoshio, K. Isono, and R. Kuramoto, “Improvement of commercial activated carbon and its application in electric double layer capacitors”, Electrochem. Solid-State Lett., 5, A141-A144 (2002).
12. D. Qu and H. Shi, “Studies of activated carbons used in double-layer capacitors”, J. Power Sources, 74, 99-107 (1998).
13. K. Kinishita, Carbon: Electrochemical and physicochemical properties, Wiley, New York (1988).
14. K. Jurewicz, K. Babel, A. Źiółkowski, and H. Wachowska, “Ammoxidation of active carbons for improvement of supercapacitor characteristics”, Electrochim. Acta, 48, 1491-1498 (2003).
15. K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, and J. Machnikowski, “Electrochemical capacitors based on highly porous carbons prepared by KOH activation”, Electrochim. Acta, 49, 515-523 (2004).
16. T. Momma, X. Liu, T. Osaka, Y. Ushio, and Y. Sawada, “Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor”, J. Power Sources, 60, 249-253 (1996).
17. T. R. Jow and J. P. Zheng, “Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide”, J. Electrochem. Soc., 145, 49-82 (1998).
18. J. P. Zheng, “Ruthenium oxide-carbon composite electrodes for electrochemical capacitors”, Electrochem. Solid-State Lett., 2, 359-361 (1999).
19. C. C. Hu and Y. H. Huang, “Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors”, J. Electrochem. Soc., 146, 2465-2471 (1999).
20. I. H. Kim and K. B. Kim, “Ruthenium oxide thin film electrodes for supercapacitors”, Electrochem. Solid-State Lett., 4, A62-A64 (2001).
21. J. Zhang, D. Jiang, B. Chen. J. Zhu, L. Jiang, and H. Fang, “Preparation and electrochemistry of hydrous ruthenium oxide/active carbon electrode materials for supercapacitor”, J. Electrochem. Soc., 148, A1362-A1367 (2001).
22. H. Y. Lee, V. Manivannan, and J. B. Goodenough, “Electrochemical capacitors with KCl electrolyte”, C. R. Acad. Sci. Paris, t. 2, serie II c, 565-577 (1999).
23. H. Y. Lee and J. B. Goodenough, “Supercapacitor behavior with KCl electrolyte”, J. Solid State Chem., 144, 220-223 (1999).
24. S-C. Pang, M .A. Anderson, and T. W. Chapman, “Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel derived and electrodeposited manganese dioxide”, J. Electrochem. Soc., 147, 444-450 (2000).
25. H. Y. Lee, S. W. Kim, and H. Y. Lee, “Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode”, Electrochem. Solid-State Lett., 4, A19-A22 (2001).
26. M. Toupin, T. Brousse, and D. Bélanger, “Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide”, Chem. Mater., 14, 3946-3952 (2002).
27. C. C. Hu and T. W. Tsou, “Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition”, Electrochem. Commun., 4, 105-109 (2002).
28. C. C. Hu and T. W. Tsou, “Capacitive and textual characteristics of hydrous manganese oxide prepared by anodic deposition”, Electrochim. Acta, 47, 3523-3532 (2002).
29. M. S. Hong, S. H. Lee, and S. W. Kim, “Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor”, Electrochem. Solid-State Lett., 5, A227-A230 (2002).
30. J. Jiang and A. Kucernak, “Electrochemical supercapacitor material based in manganese oxide: preparation and characterization”, Electrochim. Acta, 47, 2381-2386 (2002).
31. Y. U. Jeong and A. Manthiram, “Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes”, J. Electrochem. Soc., 149, A1419-A1422 (2002).
32. H. Kim and B. N. Popov, “Synthesis and characterization of MnO2-based mixed oxides as supercapacitors”, J. Electrochem. Soc., 150, D56-D62 (2003).
33. J.-K. Chang and W.-T. Tsai, “Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors”, J. Electrochem. Soc., 150, A1333-A1338 (2003).
34. R. N. Reddy and R. G. Reddy, “Sol-gel MnO2 as an electrode material for electrochemical capacitors”, J. Power Sources, 124, 330-337 (2003).
35. R. N. Reddy and R. G. Reddy, “Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material”, J. Power Sources, 132, 315-320 (2004).
36. M. Toupin. T. Brousse. and D. Belanger, “Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor”, Chem. Mater., 16, 3184-3190 (2004).
37. J. Li, X. Wang, Q. Huang, S. Gamboa, and P. J. Sebastian, “A new type of MnO2·xH2O/CRF composite electrode for supercapacitors”, J. Power Sources, 160, 1501-1505 (2006).
38. V. Subramanian, H. Zhu, and B. Wei, “Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials”, Electrochem. Commun., 8, 827-832 (2006).
39. S. Devaraj, and N. Munichandraiah, ”Electrochemical supercapacitor studies of nanostructured α-MnO2 synthesized by microemulsion method and the effect of annealing”, J. Electrochem. Soc., 154, A80-A88 (2007).
40. N. L. Wu, S. Y. Wang, C. Y. Han, D. S. Wu and L. R. Shiue, “Electrochemical capacitor of magnetite in aqueous electrolytes”, J. Power Sources, 113, 173-178 (2003).
41. S. Y. Wang and N. L. Wu, “Operating characteristics of aqueous magnetite electrochemical capacitors”, J. Appl. Electrochem., 33, 345-348 (2003).
42. T. Brousse and D. Bélanger, “A hybrid Fe3O4-MnO2 capacitor in mild aqueous electrolyte”, Electrochem. Solid-State Lett., 6, A244-A248 (2003).
43. K. W. Chung, K .B. Kim, S. H. Han, and H. Lee, “Novel synthesis and electrochemical characterization of nano-sized cellular Fe3O4 thin film”, Electrochem. Solid-State Lett., 8, A259-A262 (2005).
44. C. Lin, J. A. Ritter, and B. V. Popov, ”Characterization of sol-gel derived cobalt oxide xerogels as electrochemical capacitors”, J. Electrochem. Soc., 145, 4097-4103 (1998).
45. V. Srinivasan and J. W. Weidner, “Capacitance studies of cobalt oxide films formed via electrochemical precipitation”, J. Power Sources, 108, 15-20 (2002).
46. H. K. Kim, T. Y. Seong, J. H. Lim, W. I. Cho, and Y. S. Yoon, “Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors”, J. Power Sources, 102, 167-171 (2001).
47. W. C. Chen and T. C. Wen, “Electrochemical and capacitive properties of polyaniline-implanted porous carbon electrode for supercapacitors”, J. Power Sources, 117, 273-282 (2003).
48. J. M. Pernaut and G. Goulart, “Electrochemical capacitor using polymer/carbon composites”, J. Power Sources, 55, 93-96 (1995).
49. X. Liu and T. Osaka, “Properties of electric double-layer capacitors with various polymer gel electrolytes”, J. Electrochem. Soc., 144, 3066-3071 (1997).
50. T. Osaka, X. Liu, and M. Nojima, “Acetylene black/poly(vinylidene fluoride) gel electrolyte composite electrode for an electric double-layer capacitor”, J. Power Sources, 74, 122-128 (1998).
51. Y. K. Zhou, B. L. He, F. B. Zhang, and H. L. Li, “Hydrous manganese oxide/carbon nanotube composite electrodes for electrochemical capacitors”, J. Solid-State Electrochem., 8, 482-487 (2004).
52. M. Wu, G. A. Snook, G. Z. Chen, and D. J. Fray, “Redox deposition of manganese oxide on graphite for supercapacitors”, Electrochem. Commun., 6, 449-504 (2004).
53. J. N. Broughton and M. J. Brett, “Electrochemical capacitance in manganese thin films with chevron microstructure”, Electrochem. Solid-State Lett., 5, A279-A282 (2002).
54. J. N. Broughton and M. J. Brett, “Investigation of thin sputtered Mn films for electrochemical capacitors”, Electrochim. Acta, 49, 4439-4446 (2004).
55. S. L. Kuo and N. L. Wu, “Investigation of pseudocapacitive charge-storage reaction of MnO2·nH2O supercapacitors in aqueous electrolytes”, J. Electrochem. Soc., 153, A1317-A1324 (2006).
56. C. A. Lin, “The development of (oil-type) acrylic adhesive in medicinal grade with absorption of sweat”, Master Thesis, Department of Applied Chemistry, Chaoyang University of Technology, p. 6-12 (2004).
57. W. R. Liu and M. H. Yang, H. C. Wu , S. M. Chiao and N. L. Wu, “Enhanced cycle life of Si anode for Li-Ion batteries by using modified elastomeric binder”, Electrochem. Solid-State Lett., 8, A100-A103 (2005).
58. S. L. Kuo, “Synthesis and characterization of oxide supercapacitors”, Ph.D Thesis, Department of Chemical Engineering, National Taiwan University, p. 105 (2006).
59. C. Porter, P. L. Taberna, P. Simon, C. Laberty-Robert, “Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications”, Electrochim. Acta, 49, 905-912 (2004).
60. M. Toupin, T. Brousse, and Bélanger, “Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide”, Chem. Mater., 14, 3946-3952 (2002).
61. S. C. Pang, M .A. Anderson, and T. W. Chapman, “Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide”, J. Electrochem. Soc., 147, 444-450 (2000).
62. S. C. Pang, and M .A. Anderson, “Novel electrode materials for electrochemical capacitors: part II. Material characterization of sol-gel-derived and electrodeposited manganese dioxide thin films”, J. Master. Res., 15, 2096-2105 (2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top