跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 04:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙峻毅
研究生(外文):Jyun - Yi Jhao
論文名稱:以噬菌體呈現與單鏈抗體技術發展抗眼鏡蛇蛇毒抗體
論文名稱(外文):Development of antibody against Naja naja atra venom using phage display and single-chain Fv antibody technology
指導教授:楊文仁楊文仁引用關係
指導教授(外文):Wen-Jen Yang
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:103
中文關鍵詞:單鏈抗體眼鏡蛇噬菌體呈現技術
外文關鍵詞:single chain fragment variable (scFv)Naja naja atraphage display technology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:398
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣每年約有500 ~ 1000人被毒蛇咬傷,注射抗蛇毒血清是目前用以治療被蛇毒咬傷最有效的方法。目前抗蛇毒血清的製備主要以去毒性蛇毒免疫馬匹後精製而得。然而,在以馬匹製造抗蛇毒血清過程中,需歷經3到5個月的去毒性蛇毒針劑注射,常導致馬匹逐漸消瘦甚至死亡,因此研發新式有效的蛇毒抗體是一項重要課題。本實驗主要利用噬菌體呈現蛇毒擬抗原決定位免疫小鼠產生抗體以及基因工程產生單鏈變異區片段抗體(single-chain variable fragment, scFv)兩種方式,開發新的製造抗眼鏡蛇蛇毒抗體的方法。在噬菌體呈現蛇毒擬抗原決定位方面,將先前篩選出八個代表眼鏡蛇蛇毒不同抗原決定位的擬抗原噬菌體免疫小鼠後的抗血清混合,進行中和眼鏡蛇蛇毒能力的試驗,結果發現小鼠存活率為100%,中和效力為16 TU (Tanaka unit)。在單鏈變異區片段抗體製備方面,從具有抗眼鏡蛇蛇毒抗體的小鼠脾臟細胞萃取mRNA,以聚合酶鏈連鎖反應擴增出抗體重鏈及輕鏈的變異區基因,建構出單鏈變異區片段抗體基因,將此抗體基因接合到pET101載體後轉形至大腸桿菌中大量表現抗體蛋白。將這些抗體蛋白混合後,利用動物實驗分析中和蛇毒效果,結果顯示小鼠存活率為50%,中和效力為8TU。綜合上述結果顯示,此兩種方式生產之抗體具有中和蛇毒蛋白能力,利用這兩種策略製造抗體,可以改進傳統製造抗蛇毒血清需耗費大量時間、金錢、人力等缺點,並提供製造抗蛇毒血清可行的替代路徑。
It is about 500 ~1000 people bitten by venomous snake in Taiwan every year. The most effective method used to treat the wound by venomous snake is the injection of antivenin. So far, the preparation of antivenin is by injecting horse with detoxified snake venom and then purifies the antiserum. However, it needs to take 3~5 months to immunize the horse for the production of antiserum. It usually causes horse being emaciated gradually and even leads to die. Therefore, it is a crucial topic to develop a novel effective anti-snake venom antibody. Two strategies were used in this study for this purpose. One is the production of antisera using phages displaying the snake venom mimotope on their coat protein as antigen, the other is the production of single chain variable fragment (scFv) antibody by gene engineering. Previously isolated eight phage clones which carrying various mimotopes of Taiwan cobra snake venom were selected to immunize mice to produce antisera. The pooled antisera were used for the cobra snake venom neutralization test. The results showed that 100% survival of the testing mice and equal to 16 TU (Tanaka unit) of neutralizing efficacy. For scFv antibody preparation, mRNA was isolated from the splenocytes of mouse which had high antibody titer against cobra snake venom. The genes encode for variable regions of heavy chain and light chain of antibodies were amplified by PCR to construct the scFv antibody genes. The scFv gene was ligated to pET101 vector and transformed to E. coli for the overexpression of scFv antibody protein. The pooled scFv antibodies were used to analyze the neutralizing efficacy against cobra snake venom in vivo. The results showed that 50% survival of the testing mice and equal to 8 TU (Tanaka unit) of neutralizing efficacy. To sum up, the antibodies produced by above two strategies have the neutralizing capability against snake venom. These strategies could improve the disadvantages including time-consuming, expensive, and labor- intensive of traditional antivenin production and provide alternative pathway for the production of antivenin.
目錄.....................................................................................................Ⅰ
表目錄......................................................................................................Ⅴ
圖目錄......................................................................................................Ⅵ
附錄目錄..................................................................................................Ⅶ
中文摘要....................................................................................................1
英文摘要....................................................................................................2
第一章 前言............................................................................................3
1.1蛇毒簡介..............................................................................................3
1.1.1眼鏡蛇(Naja naja atra).....................................................................4
1.2眼鏡蛇蛇毒...........................................................................................5
1.2.1心臟毒素(Cardiotoxin,CTX)…….....................................................5
1.2.1.1心臟毒素的分類.............................................................................7
1.2.2神經毒素............................................................................................7
1.2.2.1神經毒素分類……………….........................................................8
1.2.3磷脂質水解酵素A2...........................................................................9
1.2.3.1磷脂質水解酵素A2分類..............................................................10
1.2.4蛇毒蛋白水解酵素..........................................................................11
1.2.4.1絲胺酸蛋白水解酵素...................................................................11
1.2.4.2金屬蛋白水解酵素.......................................................................12
1.3蛇毒咬傷處置.....................................................................................14
1.4抗蛇毒血清製備與效價檢測.............................................................15
1.5噬菌體.................................................................................................16
1.5.1 M13噬菌體..................................................................................17
1.6噬菌體呈現技術.................................................................................18
1.6.1噬菌體呈現系統型式......................................................................19
1.6.2噬菌體呈現胜肽庫與抗原決定位..................................................20
1.6.3噬菌體呈現技術在蛇毒蛋白上的應用..........................................21
1.7免疫球蛋白(immunoglobulin) ..........................................................22
1.7.1免疫球蛋白的結構與功能簡介......................................................22
1.7.2重組抗體(Recombinant antibody) ..................................................24
1.7.3連接子(Linker) ...............................................................................25
1.7.4重組抗體之應用..............................................................................26
1.8研究目的.............................................................................................27
第二章 材料與方法............................................................................28
2.1材料.....................................................................................................28
2.1.1培養基及培養液之配方..................................................................28
2.1.2緩衝液及實驗試劑之配置..............................................................29
2.2方法.....................................................................................................32
2.2.1眼鏡蛇蛇毒之無毒化......................................................................32
2.2.2動物免疫..........................................................................................32
2.2.2.1去毒性眼鏡蛇蛇毒免疫小鼠.......................................................32
2.2.2.2噬菌體免疫小鼠...........................................................................33
2.2.3抗血清製備......................................................................................33
2.2.4酵素連結免疫吸附法(enzyme-linked immunosorbent assay, ELISA) ....................................................................................................34
2.2.5免疫後小鼠脾臟細胞之取得..........................................................34
2.2.6小鼠脾臟細胞mRNA抽取.............................................................35
2.2.7 cDNA合成......................................................................................36
2.2.8聚合酶連鎖反應(polymerase chain reaction, PCR) ......................36
2.2.8.1抗體重鏈及輕鏈變異區基因PCR選殖......................................36
2.2.8.2抗體重鏈及輕鏈變異區基因組裝...............................................37
2.2.8.3完整單鏈抗體基因PCR放大......................................................37
2.2.9洋菜膠電泳(agarose gel electrophoresis) .......................................38
2.2.10目標蛋白DNA之純化..................................................................38
2.2.11單鏈抗體基因與質體接合反應....................................................39
2.2.12質體轉型(transformation) ............................................................39
2.2.13 Colony PCR進行質體DNA選殖.................................................40
2.2.14質體DNA之純化..........................................................................40
2.2.15目標蛋白表現................................................................................41
2.2.16融合蛋白之純化............................................................................41
2.2.17 SDS-PAGE分析............................................................................42
2.2.18西方點墨法分析(Western blot analysis) ......................................43
2.2.19噬菌體之放大培養........................................................................43
2.2.20噬菌體效價測定............................................................................44
2.2.21以西方點墨法測試抗體與蛇毒接合能力(Binding assay)..........44
2.2.22動物中和測定法............................................................................45
2.2.22.1蛇毒抗原之毒力測定(Minimal Lethal Dose) ...........................45
2.2.22.2抗蛇毒血清抗體效價測定.........................................................46
第三章 結果..........................................................................................47
3.1蛇毒免疫小鼠抗體效價.....................................................................47
3.2抗體重鏈(Heavy chain)及輕鏈(Light chain)基因放大及scFv DNA
重組....................................................................................................47
3.3單鏈抗體基因質體之建構與確認.....................................................48
3.4單鏈抗體基因在原核細胞之表現與純化.........................................48
3.5單鏈抗體胺基酸分析.........................................................................49
3.6以ELISA分析擬抗原噬菌體免疫小鼠後血清抗體與單鏈抗體....50
3.7抗體蛋白接合試驗(antibody protein binding assay) ........................50
3.8動物中和測定.....................................................................................51
3.8.1蛇毒抗原之毒力測定(Minimal Lethal Dose;MLD) .....................51
3.8.2抗蛇毒血清抗體效價測定..............................................................51
表..............................................................................................................53
圖..............................................................................................................59
第四章 討論..........................................................................................72
參考文獻..................................................................................................77
附錄..........................................................................................................87
毛壽先, 殷鳳儀 (1990) 台灣常見陸地蛇類簡介. 台灣省立博物館.台北市
洪東榮 (2002) 台灣毒蛇咬傷的診斷、治療及中毒機轉之研究. 國立台灣大學毒理研究所博士論文.
林華慶 (2001) 台灣陸生蛇類的保育現況.科學月刊. 377期, 398-405頁.
廖明一 (1990) 台灣產毒蛇蛇毒類毒素及抗血清之研究. 國立台灣大學獸醫研究所博士班論文.
楊玉齡, 羅時成 (1996) 台灣蛇毒傳奇.天下文化, 台北.
鐘豐宇 (2003) 台灣眼鏡蛇蛇毒心臟毒素VI型(心臟毒素A6)1.6Å解析度的晶體結構. 國立清華大學生命科學研究所碩士論文
王炳傑 (2007) 以噬菌體呈現技術探討眼鏡蛇蛇毒蛋白抗原決定位及免疫學研究. 國立高雄大學生物科技研究所碩士論文
楊雅齡 (2005) 喜姆比蘭嵌紋病毒單鏈抗體基因轉殖至細菌之研究.國立高雄師範大學生物科學研究所碩士論文
許游章 (1998) 眼鏡蛇蛇毒與細胞膜作用機制之研究. 國立清華大學生命科學系博士論文
杜銘章 (2004) 蛇類大驚奇. 遠流出版社. 台北市.
王文正 (2002) 台灣百步蛇的精製蛇毒蛋白agglucetin與acurhagin之分子結構和作用機轉的探討. 國立台灣大學醫學院藥理學研究所博士論文.
江正榮 (2009) 開發抗龜殼花及赤尾鲐蛇毒雙價IgY抗體並建立ELISA分析方法確效檢測其效價. 行政院衛生署疾病管制局98年度科技研究發展計畫.
楊文仁、黃玫琪、曹雯珊、宣大衛 (2003) 噬菌體呈現技術及其在生物科技上之應用. 生物科學. 第四十六卷. pp. 12-26.
劉四红, 孔天翰 (2006) 抗眼鏡蛇毒雞卵黃抗體的製備、純化和保護性實驗研究. 中國病理生理雜誌.
林華慶 (2001) 台灣陸生蛇類的保育現況.科學月刊. 377期, 398-405頁.
吳和生 (2002) 蛇毒之無毒化及其高效價抗蛇毒血清製備的再探討. 行政院衛生署疾病管制局九十一年度委託研究計畫
Alfthan, K., Takkinen, K., Sizmann, D., Soderlund, H., and Teeri, T. T. (1995). Properties of a single-chain antibody containing different linker peptides. Protein Eng. 8: 725-731.
Anthony, T. Tu (1973) Neurotoxins of animal venoms: snakes. Annu Rev Biochem 42: 235-258.
Arni, R. K., and Ward, R. J. (1996) Phospholipase A2--a structural review. Toxicon 34: 827-841.
Argos, P. (1990). An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J Mol Biol 211: 943-958.
Benvenuto, E., and Tavladoraki, P. (1995) Immunotherapy of plant viral diseases. Trends Microbiol. 3: 272-275.
Bilwes, A., Rees, B., Moras, D., Menez, R. and Menez, A. (1994) X-ray structure at 1.55 A of toxin gamma, a cardiotoxin from Naja nigricollis venom. Crystal packing reveals a model for insertion into membranes. J Mol Biol 239 : 122-136.
Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., Lee, S. M., Lee, T., Pope, S.H., Riordan, G. S., and Whitlow, M. 1988. Single-chain antigen-binding proteins. Science 21: 423-426.
Burden, S. J., Hartzell, H. C., and Yoshikami, D. (1975) Acetylcholine receptors at neuromuscular synapses: Phylogenetic differences detected by snake a-neurotoxins. Proc Natl Acad Sci U. S. A 72:3245-3249
Byeon, W.H., and Weisblum, B. (2004) Affinity adsorbent based on combinatorial phage display peptides that bind alpha-cobratoxin. J Chromatogr B Analyt Technol Biomed Life Sci 805: 361-363.
Chou, T. C., and Lee, C. Y. (1969) Effect of whole and fractionated cobra venom on sympathetic ganglionic transmission. Eur. J. Pharmacol. 8:326-330
Chiou, S. H., Hung, C. C., Huang, H. C., Chen, S. T., Wang, K. T., Yang, C. C. (1995) Sequence comparison and computer modelling of cardiotoxins and cobrotoxin isolated from Taiwan cobra. Biochem Biophys Res Commun. 206: 22-32
Chien, K. Y., Chiang, C. M., Hseu, Y. C., Vyas, A. A., Rule, G. S. and Wu, W. (1994) Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. J Biol Chem 269:14473- 14483.
Chang, C. C., Kawata, Y., Sakiyama, F. and Hayashi, K. (1990) The role of an invariant tryptophan residue in alpha-bungarotoxin and cobrotoxin. Investigation of active derivatives with the invariant tryptophan replaced by kynurenine. Eur J Biochem 193: 567-572.
Chien, K. Y., Huang, W. N., Jean, J. H., and Wu, W. G. (1991) Fusion of sphingomyelin vesicles induced by proteins from Taiwan cobra (Naja naja atra) venom. Interactions of zwitterionic phospholipids with cardiotoxin analogues. J Biol Chem 266: 3252-3259.
Chioato, L., and Ward, R.J. (2003) Mapping structural determinants of biological activities in snake venom phospholipases A2 by sequence analysis and site directed mutagenesis. Toxicon 42: 869-883.
Chang, C. C., Chen, C. C. and Kuo, K. W. (1985) Immunochemical characterization of cobrotoxin modified with glutaraldehyde. Gaoxiong Yi Xue Ke Xue Za Zhi 1: 2-11.
Chien, C. M., Yang, S. H., Lu, M. C., Chang, L. S., and Lin, S. R. (2004) Cardiotoxin III induces apoptosis in T24 cells via reactive oxygen species-independent mitochondrial death. Drug Dev Res 63:219- 224.
Clackson, T., Hoogenboom, H. R., Griffiths, A. D., and Winter, G. (1991). Making antibody fragments using phage display libraries. Nature 352: 624-628.
Davidson, F. F and Dennis, E. A. (1990) Evolutionary relationships and implications for the regulation of phospholipase A2 from snake venom to human secreted forms. J. Mol. Evol. 31, 228- 238
Dennis, E. A. (1983) Phospholipases, Enzymes XVI, Academic Press, New York, pp. 307-353.
Dennis, E. A. (1994) Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 269:13057-60
Devi, C. M., Bai, M. H., and Krishnan, L. K. (2002) Development of viper-venom antibodies in chicken egg yolk and assay of their antigen binding capacity. Toxicon. 40: 857-861
Desplancq, D., King, D. J., Lawson, A. D., and Mountain, A. (1994) Multimerization behaviour of single chain Fv variants for the tumour-binding antibody B72.3. Protein Eng 7: 1027-1033.
Dufton, M. J., and Hidder, R. C. (1988) Structure and pharmacology of elapid cytotoxins. Pharmacol Ther 36: 1-40.
Dufton, M. J., and Hider, R. C. (1991) The structure and pharmacology of elapid cytotoxins, in: Harvey A.L., Snake Toxins. Pergamon Press, New York, pp. 259–302.
Eaker, D., and Porath, J. (1967) The amino acid sequence of neurotoxin from Naja nigricollis venom, Jpn J Microbiol 11:353–355.
Edelman, G. M. (1973) Antibody structure and molecular immunology. Science 180: 830-840.
Endo, T., and Tamiya, N. (1991) Structure–function relationship of postsynaptic neurotoxins from snake venoms, in: Harvey A.L., Snake Toxins, Pergamon Press, New York, pp. 165–222.
Endo, T., and Tamiya, N. (1987) Current view on the structure-function relationship of postsynaptic neurotoxins from snake venoms. Pharmacol Ther 34: 403-451.
Feofanov, A. V., Sharonov, G. V., Astapova, M. V., Rodionov, D. I., Utkin, Y. N. and Arseniev, A. S. (2005) Cancer cell injury by cytotoxins from cobra venom is mediated through lysosomal damage. Biochem J 390: 11-18.
Fiordalisi, J. J., al-Rabiee, R., Chiappinelli, V. A. and Grant, G. A. (1994) Site-directed mutagenesis of kappa-bungarotoxin: implications for neuronal receptor specificity. Biochemistry 33: 3872-3877.
Fox, J. W. and Serrano, S. M. (2005) Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon 45: 969-985.
Gao, C., Mao, S., Lo, C. H., Wirsching, P., Lerner, R. A. and Janda, K. D. (1999) Making artificial antibodies: a format for phage display of combinatorial heterodimeric arrays. Proc Natl Acad Sci U S A 96: 6025-30.
Gao, C., Mao, S., Kaufmann, G., Wirsching, P., Lerner, R. A. and Janda, K. D. (2002) A method for the generation of combinatorial antibody libraries using pIX phage display. Proc Natl Acad Sci U S A 99: 12612-6.
Hayashi, K., Takechi, M., Sasaki, T., Lee, C. Y. (1975) Amino acid sequence of cardiotoxin-analogue I from the venom of Naja naja atra. Biochem Biophys Res Commun. 64: 360-6.
Harlow, E., and Lane, D. (1988) Antibodies:A laboratory manual, Cold Spring Harbor Laboratory, first edition.
Heinrikson, R. L., Krueger, E. T., Keim, P. S. (1977) Amino acid sequence of phospholipase A2-alpha from the venom of Crotalus adamanteus. A new classification of phospholipases A2 based upon structural determinants. J Biol Chem. 25;252:4913-21.
Hite, L. A., Jia, L. G., Bjarnason, J. B. and Fox, J. W. (1994) cDNA sequences for four snake venom metalloproteinases: structure, classification, and their relationship to mammalian reproductive proteins. Arch Biochem Biophys 308: 182-191.
Hung, C. C., Wu, S. H., and Chiou, S. H. (1993) Sequence characterization of cardiotoxins from Taiwan cobra: isolation of a new isoform. Biochem Mol Biol Int. 31: 1031-40
Hung, D. Z., Liau, M. Y., and Lin-Shiau, S. Y. (2003) The clinical significanceof venom detection in patients of cobra snakebite. Toxicon 41: 409-415.
Hust, M., and Dübel, S. (2004) Mating antibody phage display with proteomics. Trends Biotechnol. 22:8-14
Hufton, S. E., Moerkerk, P. T., Meulemans, E. V., de Bruine, A., Arends, J. W. and Hoogenboom, H. R. (1999) Phage display of cDNA repertoires: the pVI display system and its applications for the selection of immunogenic ligands. J Immunol Methods 231: 39-51.
Huston, J. S., Levinson, D., Mudgett-Hunter, M., Tai, M. S., Novotny, J., Margolies, M. N., Ridge, R. J., Bruccoleri, R. E., Haber, E., and Crea, R. (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85: 5879-5883.
Iannolo, G., Minenkova, O., Petruzzelli, R., and Cesareni, G. (1995) Modifying filamentous phage capsid: limits in the size of the major capsid protein. J Mol Biol 248: 835-44.
Jayaraman, G., Kumar, T. K., Tsai, C. C., Srisailam, S., Chou, S. H., Ho, C. L. and Yu, C. (2000) Elucidation of the solution structure of cardiotoxin analogue V from the Taiwan cobra (Naja naja atra)--identification of structural features important for the lethal action of snake venom cardiotoxins. Protein Sci 9: 637-646.
Johnson, S., and Bird, R. E. (1991) Construction of single-chain Fv derivatives monoclonal antibodies and their production in Escherichia coli. Methods in Enzymology 203: 88-98.
Kaneda, N., Sasaki, T., and Hayashi, K. (1977) Primary structures of cardiotoxin analogues II and IV from the venom of Naja jaja atra. Biochim Biophys Acta. 491: 53-66.
Kaneda, N., and Hayashi, K. (1983) Separation of cardiotoxins (cytotoxins) from the venoms of Naja naja and Naja naja atra by reversed-phase high-performance liquid chromatography. J Chromatogr 281: 289-92
Karlsson, E. (1979) Chemistry of protein toxins in snake venoms, in: C.Y. Lee (Ed.), Snake Venoms, Handbook of Experimental Pharmacology, Springer-Verlag, Berlin, pp. 159–212.
Kaguni, J. M., and Kornberg, A. (1982) The rho subunit of RNA polymerase holoenzyme confers specificity in priming M13 viral DNA replication. J. Biol. Chem., 257: 5437-5443.
Kini, R. M. (2006) Anticoagulant proteins from snake venoms: structure, function and mechanism. Biochem J 397: 377-387.
Kwasnikowski, P., Kristensen, P. and Markiewicz, W. T. (2005) Multivalent display system on filamentous bacteriophage pVII minor coat protein. J Immunol Methods 307: 135-43.
Lambeau, G., and Lazdunski, M. (1999) Receptors for a growing family of secreted phospholipases A2. Trends. Pharmaco.l Sci. 20, 162-170
Lin, S. R., Chang, L. S., and Chang, K. L. (2002) Separation and structure-function studies of Taiwan cobra cardiotoxins. J Protein Chem 21: 81-86.
Liau, M. Y. and Huang, R. J. (1997) Toxoids and antivenoms of venomous snakes in Taiwan. Toxin Reviews. 16:3,163-175.
Lynch, V. J. (2007) Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes. BMC Evol Biol 7: 2.
Markland, F. S. (1998) Snake venom fibrinogenolytic and fibrinolytic enzymes: an updated inventory. Registry of Exogenous Hemostatic Factors of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost 79: 668-674.
Matsui, T., Fujimura, Y. and Titani, K. (2000) Snake venom proteases affecting hemostasis and thrombosis. Biochim Biophys Acta 1477:146-156.
Marvin, D. A. and Hohn, B. (1969) Filamentous bacterial viruses. Bacteriol Rev 33: 172-209.
Menez, A., Boulain, J. C., Faure, G., Couderc, J., Liacopoulos, P., Tamiya, N. and Fromageot, P. (1982) Comparison of the "toxic" and antigenic regions in toxin alpha isolated from Naja nigricollis venom. Toxicon 20: 95-103.
Mebs, D., Narita, K., Iwanaga, S., Samejima, Y. and Lee, C. Y. (1971) Amino acid sequence of κ-bungarotoxin from the venom of Bungarus multicinctus. BiochemBiophys Res Commun 44: 711-716.
Mebs, D. (1988) Snake venom toxins: Structural aspects. in “Neurotoxins in Neurochemistry” Ellis Horwood, Chichester, England. pp.3-12,
Meyer, T.F., Geider, K., Kurz, C. and Schaller, H. (1979) Cleavage site of bacteriophage fd gene II-protein in the origin of viral strand replication. Nature 278, 365-367.
Narita, K., and Lee, C. Y. (1970) The amino acid sequence of cardiotoxin from Formosan cobra (Naja naja atra) venom. Biochem Biophys Res Commun 41: 339-43.
Owen, M., Gandecha, A., Cockburn, B., and Whitelam, G. (1992) Synthesis of a function anti-phytochrome single-chain Fv protein in transgenic tobacco. Bio/Technology 10: 790-794.
Parry, M. A., Jacob, U., Huber, R., Wisner, A., Bon, C. and Bode, W. (1998) The crystal structure of the novel snake venom plasminogen activator TSV- PA: a prototype structure for snake venom serine proteinases. Structure 6: 1195-1206.
Perona, J. J. and Craik, C. S. (1997) Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold. J Biol Chem 272: 29987-29990.
Pirkle, H., and Theodor, I. (1990) Thrombin-like venom enzymes: structure and function. Adv Exp Med Biol 281: 165-175.
Pirkle, H. (1998) Thrombin-like enzymes from snake venoms: an updated inventory. Scientific and Standardization Committee's Registry of Exogenous HemostaticFactors. Thromb Haemost 79: 675-683.
Pratt, D., Laws, P. and Griffith, J. (1974) Complex of bacteriophage M13 single-stranded DNA and gene 5 protein. J Mol Biol 82, 425-439.
Russel, M. (1991) Filamentous phage assembly. Mol. Microbiol., 5, 1607-1613.
Sang, hoon. Cha., Kyung, woo. Lee., Byung, ung. Hur., Suk, yoon. Song., Hyo, jung. Choi., Sang, hoon. Shin. (2009) Methods for rapid identification of a functional single-chain variable fragment using alkaline phosphatase fusion. BMB reports. 731-736
Shoibonov, B. B., Osipov, A. V., Kryukova, E. V., Zinchenko, A. A., Lakhtin, V. M., Tsetlin, V. I. and Utkin, Y. N. (2005) Oxiagin from the Naja oxiana cobra venom is the first reprolysin inhibiting the classical pathway of complement. Mol Immunol 42: 1141-1153.
Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228: 1315-1317.
Stewart, C. S., MacKenzie, C. R., and Hall, J. C. (2007) Isolation, characterization and pentamerization of alpha-cobrotoxin specific single-domain antibodies from a naive phage display library: preliminary findings for antivenom development. Toxicon 49: 699-709.
Sun, Y. J., Wu, W. G., Chiang, C. M., Hsin, A. Y. and Hsiao, C. D. (1997) Crystal structure of cardiotoxin V from Taiwan cobra venom: pH-dependent conformational change and a novel membrane-binding motif identified in the three-finger loops of P-type cardiotoxin. Biochemistry 36: 2403-2413.
Sun, P., Ren, X. D., Zhang, H. W., Li, X. H., Cai, S. H., Ye, K. H. and Li, X. K. (2003) Serum from rabbit orally administered cobra venom inhibits growth of implanted hepatocellular carcinoma cells in mice. World J Gastroenterol 9(11): 2441-2444.
Su, S. H., Su, S. J., Lin, S. R., and Chang, K. L. (2003) Cardiotoxin-III selectively enhances activation-induced apoptosis of human CD8+ T lymphocytes. Toxicol Appl Pharmacol 193: 97-105.
Takeya, H., Miyata, T., Nishino, N., Omori-Satoh, T. and Iwanaga, S. (1993) Snake venom hemorrhagic and nonhemorrhagic metalloendopeptidases. Methods Enzymol 223: 365-378.
Tavladoraki, P., Benvenuto, E., Trinca, S., De Martinis, D., Cattaneo, A., and Galeffi, P. (1993). Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366: 469-472.
Tokunaga, F., Nagasawa, K., Tamura, S., Miyata, T., Iwanaga, S. and Kisiel, W. (1988) The factor V-activating enzyme (RVV-V) from Russell's viper venom. Identification of isoproteins RVV-V alpha, -V beta, and -V gamma and their complete amino acid sequences. J Biol Chem 263:17471-17481.
Tsai, C. H., Yang, S. H., Chien, C. M., Lu, M. C., Lo, C. S., Lin, Y. H., Hu, X. W. and Lin, S. R. (2006) Mechanisms of cardiotoxin III-induced apoptosis in human colorectal cancer COLO205 cells. Clin Exp Pharmacol Physiol 33: 177-182.
Tsetlin, V. (1999) Snake venom alpha-neurotoxins and other 'three-finger' proteins. Eur J Biochem 264: 281-286.
van Wezenbeek, P. M., Hulsebos, T. J., and Schoenmakers, J. G. (1980) Nucleotide sequence of the filamentous bacteriophage M13 DNA genome: comparison with phage fd. Gene 11: 129-48.
Wang, P. C., Loh, K. S., Lin, S T., Chien, T. L., Chiang, J. R., Hsieh, W. C., Miao, B. L., Su, C. F., Yang, W. Jen. (2009) Consensus sequence L/PKSSLL mimics crucial epitope on Loop III of Taiwan cobra cardiotoxin. Biochem and Biophys Research Commun 387:617–622.
Wang, F., Li, H., Liu, M. N., Song, H., Han, H. M., Wang, Q. L., Yin, C. C., Zhou, Y. C., Qi, Z., Shu, Y. Y., Lin, Z. J. and Jiang, T. (2006) Structural and functional analysis of natrin, a venom protein that targets various ion channels. Biochem Biophys Res Commun 351: 443-448.
Wang, H. L., Lee, C. H., and Hsu, H. T. (2004). Molecular cloning and sequencing of heavy and light chain cDNA from Papaya ringspot and Cymbidium mosaic viruses-specific monoclonal antibodies. Plant Pathol Bull 13: 7-16.
Whitlow, M., Bell, B. A., Feng, S. L., Filpula, D., Hardman, K. D., Hubert, S. L., Rollence, M. L., Wood, J. F., Schott, M. E., and Milenic, D. E. (1993). An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng 6: 989-995.
Whitlow, M., Filpula, D., Rollence, M. L., Feng, S. L., and Wood, J. F. (1994) Multivalent Fvs: characterization of single-chain Fv oligomers and preparation of a bispecific Fv. Protein Eng 7: 1017-1026.
Wu, S. S., Tseng ,M. J. And Wang, K. T. (1982) Separation of cardiotoxins (cytotoxins) from the venoms of Naja naja and Naja naja atra by reversed-phase high-performance liquid chromatography. J chromatogr 242: 373-396.
Yang, S. H., Chien, C. M., Lu, M. C., Lu, Y. J., Wu, Z. Z. and Lin, S. R. (2005 a) Cardiotoxin III induces apoptosis in K562 cells through a mitochondrial-mediated pathway. Clin. Exp. Pharmacol. Physiol. 32: 515-520.
Yang, S. H., Lu, M. C., Chien, C. M., Tsai, C. H., Lu, Y. J., Hour, T. C., and Lin, S. R. (2005 b) Induction of apoptosis in human leukemia K562 cells by cardiotoxin III. Life Sci 76: 2513-2522.
Yang, C. C. (1974) Chemistry and evolution of toxins in snake venoms. Toxicon 12: 1-43.
Yang, C. C. (1984) Snake neurotoxin. The Sanke 16: 90-103.
Yulin, Liu., Xiaohang, Jin., Weiquan, Huang., and Hong, Qin. (2010) Production of an anti-idiotypic antibody single chain variable fragment vaccine against Edwardsiella tarda. Acta Biochim Biophys Sin 129–136.
Zaheer, A., Noronha, S. H., Hospattankar, A. V., Braganca. B. M. (1975) Inactivation of [Na+-K+]-stimulated ATPase by a cytotoxic protein from cobra venom in relation to its lytic effects on cells. Biochim Biophys Acta 394: 293-303.
Zhang, Y., Wisner, A., Maroun, R. C., Choumet, V., Xiong, Y. and Bon, C. (1997) Trimeresurus stejnegeri snake venom plasminogen activator. Site- directed mutagenesis and molecular modeling. J Biol Chem 272: 20531- 20537.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top