跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/10 21:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林逸軒
研究生(外文):Lin, I-Hsuan
論文名稱:二氧化碳減量政策對經濟成長之影響:考量節能技術進步之內生成長模型
論文名稱(外文):The Economic Effects of CO2 Abatement Polices:the Endogenous Growth Model Embodied Energy-Saving Technology
指導教授:李叢禎李叢禎引用關係林幸樺林幸樺引用關係
指導教授(外文):Lee, Tsung-ChenLin, Xing-Hua
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:經濟學系
學門:社會及行為科學學門
學類:經濟學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:63
中文關鍵詞:二氧化碳排放管制經濟成長能源稅碳稅研發補貼政策
外文關鍵詞:CO2 abatementeconomic growthenergy taxcarbon taxR&D subsidy policy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文延伸van Zon and Yetkiner(2003)之內生成長模型,探討能源使用、 排放管制及經濟成長三者間之關聯性,並說明能源政策、氣候政策以及研發補貼政策應如何設計及調和,以在不損及經濟成長的前題下,達成 減量目標。本文內容主要著重於比較在相同的減量目標下,能源稅及碳稅兩種稅制對經濟成長影響之相對大小,同時分析在這兩種稅制下,政府將課得之稅收用以補貼R&D部門,其補貼後經濟成長率之相對大小。本研究結果主要有二,茲分述如下:首先,課徵碳稅或能源稅均會對經濟成長造成負面衝擊,惟其大小端視減量密集度大小而定,當減量密集度充分小時,課徵碳稅所造成之經濟負面衝擊較課徵能源稅的情境為小;而若減量密集度夠大時,則課徵能源稅之經濟衝擊反而較小。其次,不論在何種稅制下,若政府將課得之稅收補貼節能技術R&D,均可誘發節能技術進步,並達到穩定經濟成長及 減量之目標;在給定相同的 減量目標下,兩種稅制下補貼後之經濟成長率相對大小亦與減量密集度有關,當減量密集度充分小時,碳稅情境下補貼後之經濟成長率較能源稅情境下為高,而若減量密集度充分大時,結論則恰相反。
In this paper, the endogenous growth model developed by van Zon and Yetkiner (2003) is extended to explore the relationship among energy use, CO2 abatement, and economic growth. We illustrate how energy policy, climate policy, and R&D subsidy policy should be designed and coordinated so that the CO2 abatement target is achieved without affecting economic growth. The focus of this paper is to compare the effect of energy tax on economic growth with that of carbon tax, given the same CO2 abatement target. Besides, the scenarios of tax recycling as a subsidy on R&D under these two tax regimes are analyzed. The insights which emerge from this paper are summarized as follows. First, the effect of carbon tax on economic growth and that of energy tax are both negative. Their relative magnitudes hinges crucially on the levels of abatement intensity. When the level of abatement intensity is sufficiently low, the negative effect of carbon tax is smaller than that of energy tax; and vice versa. Second, the results of tax recycling scenarios show that subsidizing R&D would lead to an improvement in energy-saving technology. The relative magnitudes of the economic effects under these two tax regimes also depend on the levels of abatement intensity. When the level of abatement intensity is sufficiently low, the economic growth rate of carbon tax regime is higher than that of energy tax; and vice versa.
目 錄
第一章 緒論............................................ 1
第一節 研究動機與目的...................................1
第二節 本文架構.........................................4
第二章 文獻回顧.........................................5
第一節 前言.............................................5
第二節 技術改變視為內生之原因...........................6
第三節 影響內生創新之三因素.............................10
第三章 理論模型.........................................16
第一節 理論模型設定.....................................16
第二節 政策情境分析.....................................28
第四章 結論與政策建議...................................49
第一節 結論.............................................49
第二節 政策建議.........................................50
第三節 研究限制與未來研究方向...........................50
附 錄..................................................52
附錄A 有效資本、能源及初級資本總需求之求解.........52
附錄B 實質利率為常數之原...........................53
附錄C 中間財貨部門預期利潤成長率之求解.............54
附錄D 計算能源稅與碳稅成長率之關係式...............55
附錄E 各參數之定義.................................57
參考文獻.................................................60
王銘正(2001),「技術進步,環境品質與經濟成長」,《經濟論文叢刊》,29(2),105-116。
李慧琳、李秉正、徐世勳與黃宗煌(1998),「提升能源使用效率之二氧化碳排放減量效果及其經濟影響評估」,《台灣經濟學會年會論文集》,273-315。
黃宗煌、李秉正、林幸樺與徐世勳(2001),「溫室氣體減量策略之經濟影響評估:TAIGEM-D模型之應用」,《自由中國之工業》,90(12),1-26。
黃宗煌、李堅明與莊富欽(2007),「廠商在排放交易制度下之污防性投資與創新行為」,《經濟論文叢刊》,35(1)。
Anderson, D.(1999), “Technical Progress and Pollution Abatement: An Economic Review of Selected Technologies and Practices,” Imperial College Working Paper, London.
Azar, C. and Dowlatabadi, H.(1999), “A review of the treatment of technical change in energy economic models,” Annual Review of Energy and the Environment, 24, 513-544.
Böhiringer, C., Jensen, J. and Rutherford, T.F.(2000), “Energy Market Projections and differentiated carbon abatement in the European union,” In: Carraro, C. (Ed.), Efficiency and Equity of Climate Change Policy. Kluwer Academic Publishers, Dordrecht, 199-220.
Böhringer, C. and Löschel, A.(2002), “Economic impacts of carbon abatement strategies,” In: Böhringer, C., Finus, M., Vogt, C. (Eds.), Controlling Global Warming-Perspectives from Economics, Game Theory and Public Choice (New Horizons in Environmental Economics). Edward Elgar, Cheltenham, 98-172.
Bovenberg, A.L., Smulders, S. (1995), “Environmental quality and pollution-augmenting technological change in a two-sector endogenous growth model,” Journal of Public Economics , 57, 369-391.
Buonanno, P., Carraro, C., Galeotti, M.(2001), “Endogenous induced technical change and the cost of Kyoto,” Nota di Lavoro 64, Fondazione Eni Enrico Mattei (FEEM)Milan, Italy.
Christiansson, L.(1995), “Diffusion and learning curve of renewable energy technologies,” Working Paper WP-95-126, International Institute for Applied Systems Analysis, Laxenburg, Austria.
Dowlatabadi, H.(1998), “Sensitivity of climate change mitigation estimates to assumption about technical change,” Energy Economic, 20, 473-493.
Dowlatabadi, H. and Oravetz, M.(1997), “US Long-term Energy Intensity: Backcast and Projection,” Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh.
Goulder, L.H. and Mathai, M.(2000), “Optimal abatement in the presence of induced technological change,” Journal of Environmental Economics and Management, 39, 1-38.
Goulder, L.H. and Schneider, S. (1999), “Induced technological change, crowding out, and the attractiveness of emissions abatement,” Resource and Environment Economics, 21, 211-253.
Grossman, G., Helpman, E.(1994), “Endogenous innovation in the theory of growth,” Journal of Economic Perspective, 8, 23-44.
Grubb, M.(1997), “Technologies, energy systems, and the timing of abatement: an overview of economic issues,” Energy Policy, 25, 159-172.
Grubb, M.(2000), “Economic dimensions of technological and global responses to the Kyoto protocol,” Journal of Economic Studies, 27, 111-125.
Grubb, M., Edmonds, J., ten Brink, P. and Morrison, M.(1993), “The costs of limiting fossil-fuel emissions: a survey and analysis,” Annual Review of Energy and Environment, 18, 397-478.
Grübler, A. and Messner, S.(1998), “Technological change and the timing of mitigation measures,” Energy Economics, 20, 495-512.
Kalish, S. and Lilien, G. L.(1983), “Optimal price subsidy policy for accelerating the diffusion of innovation,” Marketing Science, Vol. 2, No. 4, 407-420.
Kort P.M.(1992), “The effects of marketable pollution permits on the firm's optimal investment policy”, Working Paper No. 9242, Tilburg University, Economics Department.
Kort P.M.(1996). “Pollution control and the dynamics of the firm - the effect of market base instruments on optimal firm investment”, Optimal Control Application and Methods, 17, 267-279.
Löschel, A.(2002), “Technological change in economic model of environmental policy: a survey,” Centre for European Research (ZEW) and University of Mannheim, P. O., 105-126.
Lucas, R.E.(1988), “On the mechanics of economic development,” Journal of Monetary Economics, 100, 223-251.
Mackay, R.M., Probert, S.D.(1998), “Lickely market-penetration of renewable-energy technologies,” Applied Energy, 59, 1-38.
Manne, A.S. and Richels, R.G.(1990), “The costs of reducing emission-a further sensitivity analysis,” The Energy Journal,11, 69-78.
Manne, A.S. and Richels, R.G.(1994), “The costs of stabilizing global emission: a probabilistic analysis based on expert judgements,” The Energy Journal, 15, 31-56.
Mulder, P., Groot, H. L. F. and Hofkes, A. W.(2003), “Explaining slow diffusion of energy-saving technologies; a vintage model with returns to diversity and learning-by-using,” Resource and Energy Economics, 25, 105-126.
Nordhaus, W.(1999), “Modeling Induced Innovation in Climate Change Policy,” Paper presented at the Workshop on Induced Technological Change and the Environment, International Institute for Applied Systems Analysis (IIASA), Laxenberg, Austria, June 1999.
Romer, P. M.(1990), “Endogenous technological change,” Journal of Political Economy, 1990, Vol. 98, No.5, 71-102.
Sagar, A. D., and van der Zwaan, B.(2006), “Technological innovation in the energy sector: R&D, deployment, and learning-by-doing,” Energy Policy, 34, 2601-2608.
Sumlders, S.(1995), “Environmental policy and sustainable economic growth: An endogenous growth perspective,” De Economist, 143(2), 163-195.
Smulders, S., Nooij, M.(2003), “The impact of energy conservation on technology and economic growth,” Resource and Energy Economics, 25, 59-79.
van Zon, A. and Yetkiner, I. H.(2003), “An endogenous growth model with embodied energy-saving technical change,” Resource and Energy Economics, 25, 81-103.
Weyant, J.(1999), “The Costs of the Kyoto Protocol: A Multi-Model Evaluation,” The Energy Journal, Special Issue.
Weyant, J., Olavson, T.(1999), “Issues in modeling induced technological change in energy, environment and climate policy,” Environmental Modeling and Assessment, 4, 67-85.
Wigley, T.M.L., Richels, R. and Edmonds, J.A.(1996), “Economic and environmental choices in the stabilization of atmospheric concentrations,” Nature, 379, 240-243.
Xepapadeas, A. (1992), “Environmental policy, adjustment costs, and behavior of the firm”, Journal of Environmental Economics and Management, 23, 258-275.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top