|
[1]A. Amir, M. Berg, S. F. Chang, W. Hsu, G. Iyengar, C. Y. Lin, M. Naphade, A. Natsev, C. Neti, H. Nock, J. R. Smith, B. Tseng, Y. Wu, and D. Zhang. IBM Research TRECVID-2003 Video Retrieval System. in Proc. the TRECVID 2003 Workshop, Gaithersburg, Maryland , November 2003. [2]W. H. Adams, G. Iyengar, C. Y. Lin, M. R. Naphade, C. Neti, H. J. Nock, and J. R. Smith. Semantic Indexing of Multimedia Content Using Visual, Audio, and Text Cues. EURASIP Journal on Applied Signal Proceeding, Vol. 2003, Issue 2, pp. 170-185, 2003. [3]D. A. Adjeroh, M. C. Lee, and I. King. A Distance Measure for Video Sequences Similarity Matching. in Proc. the IEEE Conference on Multimedia Computing and Systems, Austin, Texas, August 1998. [4]J. J. Aucouturier and F. Pachet: Music similarity measures: What’s the use? in Proc. of the 3rd International Symposium on Music Information Retrieval, Paris, France, October 2002. [5]J. J. Aucouturier, F. Pachet and M. Sandler: The way it sounds: Timbre models for analysis and retrieval of music signals. IEEE Trans. on Multimedia, vol. 7, no. 6, pp. 1028–1035, 2005. [6]H. Aoki, S. Shimotsuji, and O. Hori. A Shot classification Method of Selecting Effective Key-Frames for Video Browsing. in Proc. the 4th ACM international conference on Multimedia, Boston, Massachusetts, USA, November 1996. [7]G. Adomavicius and A. Tuzhilin: Towards the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Tran. on Knowledge and Data Engineering, vol. 17, no. 6, pp. 634–749, 2005. [8]R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of Items in Large Databases. in Proc. the 1993 ACM SIGMOD international conference on Management of data, Washington, D.C., May 1993. [9]D. Arthur and S. Vassilvitskii: K-Means++: The Advantages of Careful Seeding. in Proc. the 18th Ann. ACM-SIAM Symp. Discrete Algorithms, New Orleans, Louisiana, January 2007. [10]R. Burke: Hybrid recommender systems: survey and experiments. User Modeling and User-Adapted Interaction, Vol. 12, pp. 331-370, 2002. [11]I. Bartolini, P. Ciaccia, V. Oria, and M. T. Ozsu. Flexible integration of multimedia sub-queries with qualitative preferences. Multimedia Tools and Applications, Volume 33, Issue 3, pp.275-300, June 2007. [12]W. T. Balke and U. Guntzer. Multi-Objective Query Processing for Database Systems. in Proc. the 30th International Conference on Very Large Data Bases, Toronto, Canada, September 2004. [13]W. T. Balke, U. Guntzer, and J. X. Zheng. Efficient Distributed Skylining for Web Information Systems. in Proc. the 6th International Conference on Extending Database Technology, Heraklion, Crete, March 2004. [14]L. Chen and T. S. Chua. A Match and Tiling Approach to Content-based Video Retrieval. in Proc. IEEE International Conference on Multimedia and Expo, Tokyo, Japan, August 2001. [15]P. J. Cheng and L. F. Chien. Personalized Image Browsing and Annotation on the Web Using Query Taxonomy. in Proc. International Conference. on Digital Archive Technologies, Taipei, Taiwan, December 2002. [16]S. F. Chang, W. Chen, H. J. Meng, H. Sundaram, and D. Zhong. A Fully Automated Content-Based Video Search Engine Supporting Spatiotemporal Queries. IEEE Trans. on Circuit and Systems for Video Technology, Vol. 8, No. 5, September 1998. [17]E. Chang, K. Goh, G. Sychay and G. Wu. CBSA: content-based soft annotation for multimodal image retrieval using Bayes Point Machines. IEEE Tran. on Circuits and Systems for Video Technology, Special Issue on Conceptual and Dynamical Aspects of Multimedia Content Description, Vol. 13, pp. 26-38, January 2003. [18]Z. Chen, W. Y. Liu, C. H. Hu, M. J. Li, and H. J. Zhang. iFind: A Web Image Search Engine. in Proc. Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New Orleans, Louisiana, USA , September 2001. [19]Y. Chen, J. Z. Wang. A Region-Based Fuzzy Feature Matching Approach to Content-Based Image Retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 24, Issue 9, pp. 1252-1267, September 2002. [20]W. G. Cheng and D. Xu. Content-based video retrieval using the shot cluster tree. in Proc. the 2nd IEEE International Conference on Machine Learning and Cybernetics, Xi’an, China, November 2003. [21]R. Cai, C. Zhang, L. Zhang and W. Y. Ma: Scalable Music Recommendation by Search. in Proc. ACM Multimedia, Augsburg, Germany, September 2007. [22]C. Djeraba. Association and Content-Based Retrieval. IEEE Trans. on Knowledge and Data Engineering, Vol. 15, No. 1, pp. 118-135, January 2003. [23]A. Dorado, J. Calic, E. Izquierdo. A Rule-based Video Annotation System. IEEE Trans. on Circuits and Systems for Video Technology, Vol. 14, Issue 5, pp. 622-633, May 2004. [24]N. Dimitrova, H. J. Zhang, B. Shahraray, I. Sezan, T. Huang, and A. Zakhor. Applications of video-content analysis and retrieval. IEEE Trans. on Multimedia, Vol. 9, pp. 42-55, July-September 2002. [25]R. Fagin. Combining Fuzzy Information from Multiple Systems. in Proc. the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Montreal, Canada, June 1996. [26]R. Fagin, R. Kumar, and D. Sivakumar. Efficient Similarity Search and Classification via Rank Aggregation. in Proc. the 2003 ACM SIGMOD International Conference on Management of Data, San Diego, California, USA, June 2003. [27]R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Algorithms for Middleware. in Proc. the 20th ACM SIGACT-SIGMODSIGART Symposium on Principles of Database Systems, Santa Barbara, California, USA, May 2001. [28]S. L. Feng, R. Manmatha, and V. Lavrenko. Multiple Bernoulli Relevance Models for Image and Video Annotation. in Proc. 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, June 2004. [29]H. Feng, R. Shi and T. S. Chua. A bootstrapping framework for annotating and retrieving WWW images. in Proc. the 12th annual ACM international Conference on Multimedia Technical session, New York, USA, October 2004. [30]M. Flickner, H. Sawhney, J. Ashley, Q. Huang, B. Dom, M.Gorkani, J. Hafner, D. Lee, Petkovic, D. Steele, and P. Y anker. Query By Image and Video Content: The QBIC System. IEEE Computer Magazine, Vol. 28, No. 9, pp. 23-32September 1995. [31]G. Gaughan, A. F. Smeaton, C. Gurrin, H. Lee, and K. Mc Donald. Design, Implementation and Testing of an Interactive Video Retrieval System, in Proc. the 5th ACM SIGMM international workshop on Multimedia information retrieval, Berkeley, CA, USA, November 2003. [32]T. P. Hong, K. Y. Lin, and S. L. Wang. Mining Fuzzy Generalized Association Rules from Quantitative Data under Fuzzy Taxonomic Structures. International Journal of Fuzzy Systems, Vol. 5, No. 4, pp. 239-246, 2003. [33]J. Jeon, V. Lavrenko, and R. Manmatha. Automatic Image Annotation and Retrieval using Cross-Media Relevance Models. in Proc. Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Toronto, Canada, July2003. [34]A. K. Jain, A. Vailaya, and X. Wei. Query by Video Clip. ACM Multimedia Systems: Special Issue on Video Libraries, Vol. 7, No. 5, pp. 369-384, September 1999. [35]Y. Jiao, B. Yang, M. Li and X. Niu. MDCT-Based Perceptual Hashing for Compressed Audio Content Identi?cation. in Proc. IEEE 9th Workshop on Multimedia Signal Processing, Chania, Crete, Greece, October 2007. [36]A. Kandel. Fuzzy Expert Systems, CRC Press, Boca Raton, pp. 8-19, 1992. [37]Y. T. Kim and T. S. Chua. Retrieval of News Video using Video Sequence Matching. in Proc. the 11th International Multimedia Modelling Conference, Washington, DC, USA, January 2005. [38]D. Kim, K. Kim, K. H. Park, J. H. Lee and K. M. Lee. Personalized Music Recommendation System Using Improved K-means Clustering Algorithm. in Proc. the Sixth International Conference on Machine Learning and Applications, Cincinnati, Ohio, December 2007. [39]R. Krishnapuram, S. Medasani, S. H. Jung, Y. S. Choi, and R. Balasubramaniam. Content-Based Image Retrieval Based on a Fuzzy Approach. IEEE Trans. on Knowledge and Data Engineering , Vol. 16, No. 10, pp. 1185-1199, October 2004. [40]S. H. Kim and R.-H. Park. An Efficient Algorithm for Video Sequence Matching Using the Modified Hausdroff Distance and the Directed Divergence. IEEE Trans. on Circuits System Video Technology, Vol. 12, No. 7, pp. 592-596, July 2002. [41]P. Knees, T. Pohle, M. Schedl and G. Widmer. A music search engine built upon audio-based and web-based similarity measures. in Proc. Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, Netherlands, July 2007. [42]B. Logan. Music recommendation from song sets. in Proc. International Society for Music Information Retrieval Conference, Barcelona, Spain, October 2004. [43]V. Lavrenko, S. L. Feng, and R. Manmatha. Statistical Models for Automatic Video Annotation and Retrieval. in Proc. the International Conference on Acoustics, Speech and Signal Processing, Montreal, May 2004. [44]X. Liu, Y. Zhuang, and Y. Pan. A New Approach to Retrieve Video by Example Video Clip. in Proc. the 7th ACM international conference on Multimedia, Orlando, Florida, USA, November 1999. [45]Z. N. Li, Osmar R. Zaiane, and Z. Tauber. Illumination Invariance and Object Model in Content-Based Image and Video Retrieval. Journal of Visual Communication and Image Representation, Academis Press. Vol. 10, No. 3, pp. 219-244, 1999. [46]Y. Luo, and J. N. Hwang. Video Sequence Modeling by Dynamic Bayesian Networks: A Systematic Application from Coarse-to-Fine Grains. in Proc. IEEE International Conference on Image Processing, Barcelona, Catalonia, Spain, September 2003. [47]M. M?ller, F. Kurth and M. Clausen. Audio Matching via Chroma-based Statistical Features. in Proc. International Society for Music Information Retrieval Conference, London, GB , 2005. [48]N. Orio. Music retrieval: a tutorial and review. Foundations and Trends in Information Retrieval, vol.1 no.1, pp.1-96, 2006. [49]Y. Peng and C. W. Ngo. Clip-Based Similarity Measure for Query-Dependent Clip Retrieval and Video Summarization. IEEE Trans. on Circuits and Systems for Video Technology, Vol. 16, No. 5, pp. 612-627, May 2006. [50]A. Popescul, L. Ungar, D. Pennock, and S. Lawrence. Probabilistic models for uni?ed collaborative and content-based recommendation in sparse-data environments. in Proc. the 17th Conference on Uncertainty in Artificial Intelligence, Seattle, USA, August 2001. [51]J. Y. Pan, H.J. Yang, C. Faloutsos, P. Duygulu. Automatic multimedia cross-modal correlation discovery. in Proc. the 10th ACM Int’l Conf. Knowledge Discovery and Data Mining, Seattle, USA, August 2004. [52]M. Rautiainen, T. Ojala, and T. Sepp?nen. Analysing the performance of visual, concept and text features in content-based video retrieval. in Proc. the 6th ACM SIGMM International Workshop on Multimedia Information Retrieval, New York, NY, USA, October 2004. [53]J. R. Smith, and S-F.Chang. VisualSEEK: A fully automated content-based image query system. in Proc. the 4th ACM international Conference on Multimedia, Boston, USA, November 1996. [54]J. R. Smith and S. F. Chang. An Image and Video Search Engine for the World-Wide Web. in Proc. IS&T/SPIE Symposium on Electronic Imaging: Science and Technology (EI'97) - Storage and Retrieval for Image and Video Databases, San Jose, CA, February 1997. [55]H. M. Sanderson and M. D. Dunlop. Image retrieval by hypertext links. in Proc. ACM Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Philadelphia, PA, USA, July1997. [56]J. H. Su, Y. T. Huang and Vincent S. Tseng. Efficient Content-based Video Retrieval by Mining Temporal Patterns. in Proc. the Ninth International Workshop on Multimedia Data Mining (KDD/MDM), Las Vegas, NV, USA, August 24, 2008. [57]S. Santini and R. Jain. Similarity Measures. IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 21, No. 9, pp. 871-883, September 1999. [58]B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-Based Collaborative Filtering Recommendation Algorithms. in Proc. WWW, Hong Kong, 2001. [59]M. K. Shan and S. Y. Lee. Content-based Video Retrieval based on Similarity of Frame Sequence. in Proc. IEEE Conference on Multimedia Computing and Systems, Austin, Texas, USA, August 1998. [60]H. T. Shen, B. C. Ooi and K. L. Tan. Giving meaning to WWW images. in Proc. the 8th annual ACM international conference on Multimedia, LA, USA, October 2000. [61]M. V. Srinivasan, S. Venkatesh, and R. Hosie. Qualitative estimation of camera option parameters from video sequences. Pattern Recognition, Vol. 30, No 4, pp. 93-606, 1997. [62]Y. H. Tian, T. Huang, W. Gao. Exploiting multi-context analysis in semantic image classification. Journal of Zhejiang University SCIENCE, 2005 6A(11): 1268-1283. [63]V. S. Tseng, J. H. Su, and C. J. Chen. Effective Video Annotation by Mining Visual Features and Speech Features. in Proc. the third International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kaohsiung, Taiwan, November 2007. [64]V. S. Tseng, C. J. Lee, and J. H. Su. Classify By Representative Or Associations (CBROA): A Hybrid Approach for Image Classification. in Proc 6th International Workshop on Multimedia Data Mining (held with KDD’05), Chicago, USA, August 2005. [65]V. S. Tseng, M. H. Wang and J. H. Su. A New Method for Image Classification by Using Multilevel Association Rules. in Proc. IEEE International Workshop on Managing Data for Emerging Multimedia Applications (held with ICDE’05), Japan, April 2005. [66]V. S. Tseng, J. H. Su and J. H. Huang. A Novel Video Annotation Method by Integrating Visual Features and Frequent Patterns. in Proc. the 7th International Workshop on Multimedia Data Mining (held with KDD’06), Philadelphia, Pennsylvania, USA, August 2006. [67]V. S. Tseng, J. H. Su, J. H. Huang and C. J. Chen. Integrated Mining of Visual Features, Speech Features and Frequent Patterns for Semantic Video Annotation. IEEE Trans. on Multimedia, vol. 10, no. 1, pp. 260-267, February 2008. [68]V. S. Tseng, J. H. Su, B. W. Wang and Y. M. Lin. Web Image Annotation by Fusing Visual Features and Textual Information. in Proc. the 22nd ACM Symposium on Applied Computing, Seoul, Korea , March 2007. [69]P. Virga and P. Duygulu. Systematic Evaluation of Machine Translation Methods for Image and Video Annotation. in Proc. the 4th International Conference on Image and Video Retrieval, Singapore, July 2005. [70]X. J. Wang et al. Annotating Images by Mining Image Search Results. IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 30, no. 11, pp. 1919-1932, Nov. 2008. [71]L. Wenyin, S. Dumais, Y. Sun, H. Zhang, M. Czerwinski, and B. Field. Semi-automatic image annotation. in Proc. INTERACT2001, 8th IFIP TC.13 Conference on Human-Computer Interaction, Tokyo, Japan, July 2001. [72]R.C.F. Wong and C.H.C. Leung. Automatic Semantic Annotation of Real-World Web Images. IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 30, no. 11, pp. 1933-1944, Nov. 2008. [73]J. Z. Wang, J. Li and G. Wiederhold. SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture Libraries. IEEE Trans. on Pattern Analysis and Machine Intelligence, Vo. 23, No. 9, September 2001. [74]J. Wang, A. P. Vries and M. J. T. Reinders. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. in Proc. Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle, Washington, USA, 2006. [75]Y. Wu, Y. Zhuang, and Y. Pan. Content-Based Video Similarity Model. in Proc. the 8th ACM International Multimedia Conference on Multimedia, pp. 465–467, Los Angeles, CA, USA, 2000. [76]H. Xu, X. Zhou, and L. Lin. WISA: A Novel Web Image Semantic Analysis System. in Proc. Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Singapore, July 2008. [77]K. Yoshii, M. Goto, K. Komatani, T. Ogata and H. G. Okuno. Hybrid Collaborative and Content-based Music Recommendation Using Probabilistic Model with Latent User Preferences. in Proc. International Society for Music Information Retrieval Conference, Victoria, Canada, October 2006. [78]X. Zhu, A. K. Elmagarmid, X. Xue, L. Wu, and A. C. Catlin. InsightVideo: Toward Hierarchical Video Content Organization for Efficient Browsing, Summarization and Retrieval. IEEE Trans. on Multimedia, Vol. 7, No. 4, pp. 648-665, August 2005. [79]Y. Zhang, M. A. Nascimento, and O. R. Za?ane. Building Image Mosaics: An Application of Content-based Image Retrieval. in Proc. IEEE International Conference on Multimedia and Expo, Baltimore, MD, USA, July 2003. [80]X. Zhu, and X. Wu. Sequential Association Mining for Video Summarization. in Proc. the 2003 IEEE International Conference on Multimedia and Expo, Vol. 3, pp. 333-336, July 2003. [81]X. Zhu, and X. Wu. Mining Video Associations for Efficient Database Management. in Proc. 18th the Internal Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 2003. [82]X. Zhu, X. Wu, A. K. Elmagarmid, Z. Feng, and L. Wu. Video Data Mining: Semantic Indexing and Event Detection from the Association Perspective. IEEE Trans. on Knowledge and Data Engineering, Vol. 17, No. 5, May 2005. [83]R. Zhang, Z. Zhang, M. Li, W. Ma, and H. Zhang. A Probabilistic Semantic Model for Image Annotation and Multi-Modal Image Retrieval. ACM Multimedia Systems Journal, Vol. 12, No. 1, pp. 27-33, August 2006.
|