跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/23 09:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇家輝
研究生(外文):Ja-HwungSu
論文名稱:多媒體語意註解、擷取與推薦之資料探勘技術
論文名稱(外文):Multimedia Data Mining Techniques for Semantic Annotation, Retrieval and Recommendation
指導教授:曾新穆曾新穆引用關係
指導教授(外文):Vincent S. Tseng
學位類別:博士
校院名稱:國立成功大學
系所名稱:資訊工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:139
中文關鍵詞:多媒體資料庫資料探勘影像註解視訊註解影像擷取視訊擷取音樂推薦
外文關鍵詞:Multimedia databasesdata miningimage annotationvideo annotationimage retrievalvideo retrievalmusic recommendation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:579
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,數位科技的進步造成多媒體資料大量成長,如:影像、視訊、音樂等多媒體資料,加上網路通訊的進步使得多媒體數量更加龐大,分佈更加廣泛。因此,如何將多媒體資料概念化,並作有效率的存取及推薦,已成為近年來一個極具吸引且具挑戰性的議題。為了處理此議題,本研究的主要目的在於發展多媒體知識挖掘技術,從多媒體資料中找出有價值之知識,並藉此達到高品質的多媒體註解、搜尋與推薦。
在多媒體註解的領域中,由於視覺特徵與語意概念的不確定性,造成了視覺特徵與語意概念之間的鴻溝難以縮減。所謂的「視覺特徵與語意概念的不確定性」指的是在人類的不同的語意概念上常存在著相同的視覺特徵。為了減輕此問題所帶來的影響,本研究首先挖掘存在視覺特徵、文字資訊與語音資訊中重要的訊息來完成影像或視訊的註解。關於影像註解方面,我們提出一以視覺特徵為基礎的註解分法,主要是要解決視覺特徵與語意概念的不確定性。此外我們亦針對網頁上的影像提出一以文字資訊為基礎的註解方法,其目的在找出影像註解字與網頁資訊之間的關聯性,以補足視覺特徵為基礎的註解缺點。關於視訊註解方面,我們找出視覺特徵之間、語音特徵之間、視覺與語音特徵之間的關係,並進一步考慮視訊所具有的時間連續性,藉以較正確地註解視訊影片。
基於上述影像註解的結果,人類的語意概念便能與視覺特徵關聯起來,以達成傳統以文字為基礎的影像搜尋。然而,較少影像搜尋系統直接從查詢影像到語意概念偵測,再從偵測的語意概念搜尋相關影像。因此,我們在此研究中提出了整合3種方法的影像搜尋系統來達成概念式的影像擷取,其中包括:影像註解,語意概念比對與模糊排序等方法。除了以語意概念為基礎的影像搜尋外,本研究亦提出內涵式的視訊擷取技術來補足以語意概念為基礎的搜尋所造成的缺失。在本研究提出的內涵式視訊擷取技術中,最重要的即是找出視訊與視訊間具有時間連續性與視覺相似性的樣式,如此可減低運算的時間與增加查詢的準確率。
相對於上述被動的影像或視訊搜尋技術,本研究亦發展一音樂推薦技術,主動提供使用者有興趣的音樂。本技術主要整合音樂內涵與協同式資訊過濾技術,並從使用紀錄的音樂內涵中萃取出使用者聽覺上的喜好樣式。藉由此喜好的聽覺樣式,音樂推薦不再受限於傳統評分多樣性的問題。綜觀以上所述之技術,本研究在多媒體註解、搜尋與推薦上提供了良好的解決方案,並可將這些技術擴充至其他多媒體應用,如行動式的多媒體擷取與推薦等。

In recent years, the advance of digital capturing technologies lead to the rapid growth of multimedia data in various formats, such as image, music, video and so on. Moreover, the modern telecommunication systems make multimedia data widespread and extremely large. Hence, how to conceptualize, retrieve and recommend the multimedia data from such massive multimedia data resources has been becoming an attractive and challenging issue over the past few years. To deal with this issue, the primary aim of this dissertation is to develop effective multimedia data mining techniques for discovering the valuable knowledge from multimedia data, so as to achieve the high quality of multimedia annotation, retrieval and recommendation.
Nowadays, a considerable number of studies in the field of multimedia annotations incur the difficulties of diverse relationships between human concepts and visual contents, namely diverse visual-concept associations. So-called visual-concept diversity indicates that, a set of different concepts share with very similar visual features. To alleviate the problems of diverse visual-concept associations, this dissertation presents the integrated mining of visual, speech and text features for semantic image/video annotation. For image annotation, we propose a visual-based annotation method to disambiguate the image sense while a number of senses are shared by a number of images. Additionally, a textual-based annotation method, which attempts to discover the affinities of image captions and web-page keywords, is also proposed to attack the lack of visual-based annotations. For video annotation, with considering the temporal continuity, the frequent visual, textual and visual-textual patterns can be mined to support semantic video annotation by proposed video annotation models.
Based on the image annotation, the user’s interest and visual images can be bridged semantically for further textual-based image retrieval. However, little work has highlighted the conceptual retrieval from textual annotations to visual images in the last few years. To this end, the second intention in this dissertation is to retrieve the images by proposed image annotation, concept matching and fuzzy ranking techniques. In addition to textual-based image retrieval, the textual-based video retrieval cannot earn the user’s satisfaction either due to the problems of diverse query concepts. To supplement the weakness of textual-based video retrieval, we propose an innovative method to mine the temporal patterns from the video contents for supporting content-based video retrieval. On the basis of discovered temporal visual patterns, an efficient indexing technique and an effective sequence matching technique are integrated to reduce the computation cost and to raise the retrieval accuracy, respectively.
In contrast to passive image/video retrieval, music recommendation is the final concentration in this dissertation to actively provide the users with the preferred music pieces. In this work, we design a novel music recommender that integrates music content mining and collaborative filtering to help the users find what she/he prefers from a huge amount of music collections. By discovering preferable perceptual-patterns from music pieces, the user’s listening interest and music can be associated effectively. Also the traditional rating diversity problem can be alleviated. For each proposed approach above, the experimental results in this dissertation reveal that, our proposed multimedia data mining methods are beneficial for better multimedia annotation, retrieval and recommendation so as to apply to some real multimedia applications, such as mobile multimedia retrieval and recommendation.

ABSTRACT VI
誌 謝 IX
Chapter 1 1
Introduction 1
1.1 Motivation 3
1.2 Contributions 4
1.3 Dissertation Organization 7
Chapter 2 8
Background and Related Work 8
2.1 Video Annotation 8
2.2 Image Annotation 10
2.3 Image Retrieval 13
2.4 Video Retrieval 14
2.5 Music Recommendation 16
Chapter 3 18
Integrated Mining of Visual Features, Speech Features and Frequent Patterns for Semantic Video Annotation 18
3.1 Introduction 18
3.2 The Proposed Video Annotation Method 20
3.2.1 Preprocessing Operation 22
3.2.2 Training Phase 23
3.2.3 Prediction Phase 30
3.3 Empirical Evaluation 35
3.3.1 Experimental Data and Parameter Settings 35
3.3.2 Experimental Results 36
3.3.3 Discussions 42
Chapter 4 45
Intelligent Web Image Annotation for Semantic Image Retrieval 45
4.1 Introduction 45
4.2 Intelligent SeMantic Image explorER (iSMIER) 48
4.2.1 Overview of iSMIER 48
4.2.2 Training Phase 50
4.2.3 Query Phase 61
4.3 Experimental Evaluations 68
4.3.1 Evaluations of Annotation Models 68
4.3.2 Examinations of Concept Matching Model 73
4.3.3 Demonstrations of System Prototype 76
Chapter 5 77
Effective Content-based Video Retrieval Using Pattern Indexing and Matching Techniques 77
5.1 Introduction 77
5.2 The Proposed Content-Based Video Retrieval 79
5.2.1 Basic Idea 80
5.2.2 Overview of The Proposed Method 81
5.2.3 Preprocessing Stage 82
5.2.4 Indexing Stage 87
5.2.5 Search Stage (AFPI-Search) 92
5.3 Experimental Evaluations 96
5.3.1 Experimental Data 96
5.3.2 Experimental Results 98
Chapter 6 107
A Novel Music Recommender by Discovering Preferable Perceptual-Patterns from Music Pieces 107
6.1 Introduction 107
6.2 The Proposed Music Recommender 109
6.2.1 Offline Pre-processing 111
6.2.2 Online Prediction 117
6.3 Experimental Evaluations 122
6.3.1 Experimental Settings 122
6.3.2 Experimental Results 123
Chapter 7 127
Conclusions and Future Work 127
7.1 Conclusions 127
7.2 Future Work 129
References 131


[1]A. Amir, M. Berg, S. F. Chang, W. Hsu, G. Iyengar, C. Y. Lin, M. Naphade, A. Natsev, C. Neti, H. Nock, J. R. Smith, B. Tseng, Y. Wu, and D. Zhang. IBM Research TRECVID-2003 Video Retrieval System. in Proc. the TRECVID 2003 Workshop, Gaithersburg, Maryland , November 2003.
[2]W. H. Adams, G. Iyengar, C. Y. Lin, M. R. Naphade, C. Neti, H. J. Nock, and J. R. Smith. Semantic Indexing of Multimedia Content Using Visual, Audio, and Text Cues. EURASIP Journal on Applied Signal Proceeding, Vol. 2003, Issue 2, pp. 170-185, 2003.
[3]D. A. Adjeroh, M. C. Lee, and I. King. A Distance Measure for Video Sequences Similarity Matching. in Proc. the IEEE Conference on Multimedia Computing and Systems, Austin, Texas, August 1998.
[4]J. J. Aucouturier and F. Pachet: Music similarity measures: What’s the use? in Proc. of the 3rd International Symposium on Music Information Retrieval, Paris, France, October 2002.
[5]J. J. Aucouturier, F. Pachet and M. Sandler: The way it sounds: Timbre models for analysis and retrieval of music signals. IEEE Trans. on Multimedia, vol. 7, no. 6, pp. 1028–1035, 2005.
[6]H. Aoki, S. Shimotsuji, and O. Hori. A Shot classification Method of Selecting Effective Key-Frames for Video Browsing. in Proc. the 4th ACM international conference on Multimedia, Boston, Massachusetts, USA, November 1996.
[7]G. Adomavicius and A. Tuzhilin: Towards the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Tran. on Knowledge and Data Engineering, vol. 17, no. 6, pp. 634–749, 2005.
[8]R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of Items in Large Databases. in Proc. the 1993 ACM SIGMOD international conference on Management of data, Washington, D.C., May 1993.
[9]D. Arthur and S. Vassilvitskii: K-Means++: The Advantages of Careful Seeding. in Proc. the 18th Ann. ACM-SIAM Symp. Discrete Algorithms, New Orleans, Louisiana, January 2007.
[10]R. Burke: Hybrid recommender systems: survey and experiments. User Modeling and User-Adapted Interaction, Vol. 12, pp. 331-370, 2002.
[11]I. Bartolini, P. Ciaccia, V. Oria, and M. T. Ozsu. Flexible integration of multimedia sub-queries with qualitative preferences. Multimedia Tools and Applications, Volume 33, Issue 3, pp.275-300, June 2007.
[12]W. T. Balke and U. Guntzer. Multi-Objective Query Processing for Database Systems. in Proc. the 30th International Conference on Very Large Data Bases, Toronto, Canada, September 2004.
[13]W. T. Balke, U. Guntzer, and J. X. Zheng. Efficient Distributed Skylining for Web Information Systems. in Proc. the 6th International Conference on Extending Database Technology, Heraklion, Crete, March 2004.
[14]L. Chen and T. S. Chua. A Match and Tiling Approach to Content-based Video Retrieval. in Proc. IEEE International Conference on Multimedia and Expo, Tokyo, Japan, August 2001.
[15]P. J. Cheng and L. F. Chien. Personalized Image Browsing and Annotation on the Web Using Query Taxonomy. in Proc. International Conference. on Digital Archive Technologies, Taipei, Taiwan, December 2002.
[16]S. F. Chang, W. Chen, H. J. Meng, H. Sundaram, and D. Zhong. A Fully Automated Content-Based Video Search Engine Supporting Spatiotemporal Queries. IEEE Trans. on Circuit and Systems for Video Technology, Vol. 8, No. 5, September 1998.
[17]E. Chang, K. Goh, G. Sychay and G. Wu. CBSA: content-based soft annotation for multimodal image retrieval using Bayes Point Machines. IEEE Tran. on Circuits and Systems for Video Technology, Special Issue on Conceptual and Dynamical Aspects of Multimedia Content Description, Vol. 13, pp. 26-38, January 2003.
[18]Z. Chen, W. Y. Liu, C. H. Hu, M. J. Li, and H. J. Zhang. iFind: A Web Image Search Engine. in Proc. Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New Orleans, Louisiana, USA , September 2001.
[19]Y. Chen, J. Z. Wang. A Region-Based Fuzzy Feature Matching Approach to Content-Based Image Retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 24, Issue 9, pp. 1252-1267, September 2002.
[20]W. G. Cheng and D. Xu. Content-based video retrieval using the shot cluster tree. in Proc. the 2nd IEEE International Conference on Machine Learning and Cybernetics, Xi’an, China, November 2003.
[21]R. Cai, C. Zhang, L. Zhang and W. Y. Ma: Scalable Music Recommendation by Search. in Proc. ACM Multimedia, Augsburg, Germany, September 2007.
[22]C. Djeraba. Association and Content-Based Retrieval. IEEE Trans. on Knowledge and Data Engineering, Vol. 15, No. 1, pp. 118-135, January 2003.
[23]A. Dorado, J. Calic, E. Izquierdo. A Rule-based Video Annotation System. IEEE Trans. on Circuits and Systems for Video Technology, Vol. 14, Issue 5, pp. 622-633, May 2004.
[24]N. Dimitrova, H. J. Zhang, B. Shahraray, I. Sezan, T. Huang, and A. Zakhor. Applications of video-content analysis and retrieval. IEEE Trans. on Multimedia, Vol. 9, pp. 42-55, July-September 2002.
[25]R. Fagin. Combining Fuzzy Information from Multiple Systems. in Proc. the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Montreal, Canada, June 1996.
[26]R. Fagin, R. Kumar, and D. Sivakumar. Efficient Similarity Search and Classification via Rank Aggregation. in Proc. the 2003 ACM SIGMOD International Conference on Management of Data, San Diego, California, USA, June 2003.
[27]R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Algorithms for Middleware. in Proc. the 20th ACM SIGACT-SIGMODSIGART Symposium on Principles of Database Systems, Santa Barbara, California, USA, May 2001.
[28]S. L. Feng, R. Manmatha, and V. Lavrenko. Multiple Bernoulli Relevance Models for Image and Video Annotation. in Proc. 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, June 2004.
[29]H. Feng, R. Shi and T. S. Chua. A bootstrapping framework for annotating and retrieving WWW images. in Proc. the 12th annual ACM international Conference on Multimedia Technical session, New York, USA, October 2004.
[30]M. Flickner, H. Sawhney, J. Ashley, Q. Huang, B. Dom, M.Gorkani, J. Hafner, D. Lee, Petkovic, D. Steele, and P. Y anker. Query By Image and Video Content: The QBIC System. IEEE Computer Magazine, Vol. 28, No. 9, pp. 23-32September 1995.
[31]G. Gaughan, A. F. Smeaton, C. Gurrin, H. Lee, and K. Mc Donald. Design, Implementation and Testing of an Interactive Video Retrieval System, in Proc. the 5th ACM SIGMM international workshop on Multimedia information retrieval, Berkeley, CA, USA, November 2003.
[32]T. P. Hong, K. Y. Lin, and S. L. Wang. Mining Fuzzy Generalized Association Rules from Quantitative Data under Fuzzy Taxonomic Structures. International Journal of Fuzzy Systems, Vol. 5, No. 4, pp. 239-246, 2003.
[33]J. Jeon, V. Lavrenko, and R. Manmatha. Automatic Image Annotation and Retrieval using Cross-Media Relevance Models. in Proc. Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Toronto, Canada, July2003.
[34]A. K. Jain, A. Vailaya, and X. Wei. Query by Video Clip. ACM Multimedia Systems: Special Issue on Video Libraries, Vol. 7, No. 5, pp. 369-384, September 1999.
[35]Y. Jiao, B. Yang, M. Li and X. Niu. MDCT-Based Perceptual Hashing for Compressed Audio Content Identi?cation. in Proc. IEEE 9th Workshop on Multimedia Signal Processing, Chania, Crete, Greece, October 2007.
[36]A. Kandel. Fuzzy Expert Systems, CRC Press, Boca Raton, pp. 8-19, 1992.
[37]Y. T. Kim and T. S. Chua. Retrieval of News Video using Video Sequence Matching. in Proc. the 11th International Multimedia Modelling Conference, Washington, DC, USA, January 2005.
[38]D. Kim, K. Kim, K. H. Park, J. H. Lee and K. M. Lee. Personalized Music Recommendation System Using Improved K-means Clustering Algorithm. in Proc. the Sixth International Conference on Machine Learning and Applications, Cincinnati, Ohio, December 2007.
[39]R. Krishnapuram, S. Medasani, S. H. Jung, Y. S. Choi, and R. Balasubramaniam. Content-Based Image Retrieval Based on a Fuzzy Approach. IEEE Trans. on Knowledge and Data Engineering , Vol. 16, No. 10, pp. 1185-1199, October 2004.
[40]S. H. Kim and R.-H. Park. An Efficient Algorithm for Video Sequence Matching Using the Modified Hausdroff Distance and the Directed Divergence. IEEE Trans. on Circuits System Video Technology, Vol. 12, No. 7, pp. 592-596, July 2002.
[41]P. Knees, T. Pohle, M. Schedl and G. Widmer. A music search engine built upon audio-based and web-based similarity measures. in Proc. Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, Netherlands, July 2007.
[42]B. Logan. Music recommendation from song sets. in Proc. International Society for Music Information Retrieval Conference, Barcelona, Spain, October 2004.
[43]V. Lavrenko, S. L. Feng, and R. Manmatha. Statistical Models for Automatic Video Annotation and Retrieval. in Proc. the International Conference on Acoustics, Speech and Signal Processing, Montreal, May 2004.
[44]X. Liu, Y. Zhuang, and Y. Pan. A New Approach to Retrieve Video by Example Video Clip. in Proc. the 7th ACM international conference on Multimedia, Orlando, Florida, USA, November 1999.
[45]Z. N. Li, Osmar R. Zaiane, and Z. Tauber. Illumination Invariance and Object Model in Content-Based Image and Video Retrieval. Journal of Visual Communication and Image Representation, Academis Press. Vol. 10, No. 3, pp. 219-244, 1999.
[46]Y. Luo, and J. N. Hwang. Video Sequence Modeling by Dynamic Bayesian Networks: A Systematic Application from Coarse-to-Fine Grains. in Proc. IEEE International Conference on Image Processing, Barcelona, Catalonia, Spain, September 2003.
[47]M. M?ller, F. Kurth and M. Clausen. Audio Matching via Chroma-based Statistical Features. in Proc. International Society for Music Information Retrieval Conference, London, GB , 2005.
[48]N. Orio. Music retrieval: a tutorial and review. Foundations and Trends in Information Retrieval, vol.1 no.1, pp.1-96, 2006.
[49]Y. Peng and C. W. Ngo. Clip-Based Similarity Measure for Query-Dependent Clip Retrieval and Video Summarization. IEEE Trans. on Circuits and Systems for Video Technology, Vol. 16, No. 5, pp. 612-627, May 2006.
[50]A. Popescul, L. Ungar, D. Pennock, and S. Lawrence. Probabilistic models for uni?ed collaborative and content-based recommendation in sparse-data environments. in Proc. the 17th Conference on Uncertainty in Artificial Intelligence, Seattle, USA, August 2001.
[51]J. Y. Pan, H.J. Yang, C. Faloutsos, P. Duygulu. Automatic multimedia cross-modal correlation discovery. in Proc. the 10th ACM Int’l Conf. Knowledge Discovery and Data Mining, Seattle, USA, August 2004.
[52]M. Rautiainen, T. Ojala, and T. Sepp?nen. Analysing the performance of visual, concept and text features in content-based video retrieval. in Proc. the 6th ACM SIGMM International Workshop on Multimedia Information Retrieval, New York, NY, USA, October 2004.
[53]J. R. Smith, and S-F.Chang. VisualSEEK: A fully automated content-based image query system. in Proc. the 4th ACM international Conference on Multimedia, Boston, USA, November 1996.
[54]J. R. Smith and S. F. Chang. An Image and Video Search Engine for the World-Wide Web. in Proc. IS&T/SPIE Symposium on Electronic Imaging: Science and Technology (EI'97) - Storage and Retrieval for Image and Video Databases, San Jose, CA, February 1997.
[55]H. M. Sanderson and M. D. Dunlop. Image retrieval by hypertext links. in Proc. ACM Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Philadelphia, PA, USA, July1997.
[56]J. H. Su, Y. T. Huang and Vincent S. Tseng. Efficient Content-based Video Retrieval by Mining Temporal Patterns. in Proc. the Ninth International Workshop on Multimedia Data Mining (KDD/MDM), Las Vegas, NV, USA, August 24, 2008.
[57]S. Santini and R. Jain. Similarity Measures. IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 21, No. 9, pp. 871-883, September 1999.
[58]B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-Based Collaborative Filtering Recommendation Algorithms. in Proc. WWW, Hong Kong, 2001.
[59]M. K. Shan and S. Y. Lee. Content-based Video Retrieval based on Similarity of Frame Sequence. in Proc. IEEE Conference on Multimedia Computing and Systems, Austin, Texas, USA, August 1998.
[60]H. T. Shen, B. C. Ooi and K. L. Tan. Giving meaning to WWW images. in Proc. the 8th annual ACM international conference on Multimedia, LA, USA, October 2000.
[61]M. V. Srinivasan, S. Venkatesh, and R. Hosie. Qualitative estimation of camera option parameters from video sequences. Pattern Recognition, Vol. 30, No 4, pp. 93-606, 1997.
[62]Y. H. Tian, T. Huang, W. Gao. Exploiting multi-context analysis in semantic image classification. Journal of Zhejiang University SCIENCE, 2005 6A(11): 1268-1283.
[63]V. S. Tseng, J. H. Su, and C. J. Chen. Effective Video Annotation by Mining Visual Features and Speech Features. in Proc. the third International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kaohsiung, Taiwan, November 2007.
[64]V. S. Tseng, C. J. Lee, and J. H. Su. Classify By Representative Or Associations (CBROA): A Hybrid Approach for Image Classification. in Proc 6th International Workshop on Multimedia Data Mining (held with KDD’05), Chicago, USA, August 2005.
[65]V. S. Tseng, M. H. Wang and J. H. Su. A New Method for Image Classification by Using Multilevel Association Rules. in Proc. IEEE International Workshop on Managing Data for Emerging Multimedia Applications (held with ICDE’05), Japan, April 2005.
[66]V. S. Tseng, J. H. Su and J. H. Huang. A Novel Video Annotation Method by Integrating Visual Features and Frequent Patterns. in Proc. the 7th International Workshop on Multimedia Data Mining (held with KDD’06), Philadelphia, Pennsylvania, USA, August 2006.
[67]V. S. Tseng, J. H. Su, J. H. Huang and C. J. Chen. Integrated Mining of Visual Features, Speech Features and Frequent Patterns for Semantic Video Annotation. IEEE Trans. on Multimedia, vol. 10, no. 1, pp. 260-267, February 2008.
[68]V. S. Tseng, J. H. Su, B. W. Wang and Y. M. Lin. Web Image Annotation by Fusing Visual Features and Textual Information. in Proc. the 22nd ACM Symposium on Applied Computing, Seoul, Korea , March 2007.
[69]P. Virga and P. Duygulu. Systematic Evaluation of Machine Translation Methods for Image and Video Annotation. in Proc. the 4th International Conference on Image and Video Retrieval, Singapore, July 2005.
[70]X. J. Wang et al. Annotating Images by Mining Image Search Results. IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 30, no. 11, pp. 1919-1932, Nov. 2008.
[71]L. Wenyin, S. Dumais, Y. Sun, H. Zhang, M. Czerwinski, and B. Field. Semi-automatic image annotation. in Proc. INTERACT2001, 8th IFIP TC.13 Conference on Human-Computer Interaction, Tokyo, Japan, July 2001.
[72]R.C.F. Wong and C.H.C. Leung. Automatic Semantic Annotation of Real-World Web Images. IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 30, no. 11, pp. 1933-1944, Nov. 2008.
[73]J. Z. Wang, J. Li and G. Wiederhold. SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture Libraries. IEEE Trans. on Pattern Analysis and Machine Intelligence, Vo. 23, No. 9, September 2001.
[74]J. Wang, A. P. Vries and M. J. T. Reinders. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. in Proc. Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle, Washington, USA, 2006.
[75]Y. Wu, Y. Zhuang, and Y. Pan. Content-Based Video Similarity Model. in Proc. the 8th ACM International Multimedia Conference on Multimedia, pp. 465–467, Los Angeles, CA, USA, 2000.
[76]H. Xu, X. Zhou, and L. Lin. WISA: A Novel Web Image Semantic Analysis System. in Proc. Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Singapore, July 2008.
[77]K. Yoshii, M. Goto, K. Komatani, T. Ogata and H. G. Okuno. Hybrid Collaborative and Content-based Music Recommendation Using Probabilistic Model with Latent User Preferences. in Proc. International Society for Music Information Retrieval Conference, Victoria, Canada, October 2006.
[78]X. Zhu, A. K. Elmagarmid, X. Xue, L. Wu, and A. C. Catlin. InsightVideo: Toward Hierarchical Video Content Organization for Efficient Browsing, Summarization and Retrieval. IEEE Trans. on Multimedia, Vol. 7, No. 4, pp. 648-665, August 2005.
[79]Y. Zhang, M. A. Nascimento, and O. R. Za?ane. Building Image Mosaics: An Application of Content-based Image Retrieval. in Proc. IEEE International Conference on Multimedia and Expo, Baltimore, MD, USA, July 2003.
[80]X. Zhu, and X. Wu. Sequential Association Mining for Video Summarization. in Proc. the 2003 IEEE International Conference on Multimedia and Expo, Vol. 3, pp. 333-336, July 2003.
[81]X. Zhu, and X. Wu. Mining Video Associations for Efficient Database Management. in Proc. 18th the Internal Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 2003.
[82]X. Zhu, X. Wu, A. K. Elmagarmid, Z. Feng, and L. Wu. Video Data Mining: Semantic Indexing and Event Detection from the Association Perspective. IEEE Trans. on Knowledge and Data Engineering, Vol. 17, No. 5, May 2005.
[83]R. Zhang, Z. Zhang, M. Li, W. Ma, and H. Zhang. A Probabilistic Semantic Model for Image Annotation and Multi-Modal Image Retrieval. ACM Multimedia Systems Journal, Vol. 12, No. 1, pp. 27-33, August 2006.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊