跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 22:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏堯
研究生(外文):Bo-Yau Huang
論文名稱:KMUP-1在心肌細胞H9c2對缺氧引發凋亡的保護作用
論文名稱(外文):Anti-apoptotic role for KMUP-1 in simulated ischemia-inducedmyocardial cell injury
指導教授:葉竹來葉竹來引用關係
指導教授(外文):Jwu-Lai Yeh
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:藥理學研究所碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:84
中文關鍵詞:缺血低氧H9c2細胞細胞凋亡KMUP-1
外文關鍵詞:IschemiaHypoxiaH9c2 cellsApoptosisKMUP-1
相關次數:
  • 被引用被引用:2
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
心臟在缺血狀態下心肌會產生凋亡,缺血後所產生的氧化壓力以及鈣離子超載是缺血誘導心肌凋亡的主要原因,我們假設KMUP-1可以減少缺血後所產生的氧化壓力以及鈣離子超載,而具有心臟保護作用。本論文利用低氧模式並且去除血清以及葡萄糖以模擬體內心肌缺氧之生理環境,經由去氧核醣核酸裂片(DNA fragmentation)的產生以及Hoechst 33342 陽性反應得知,心肌細胞在此低氧模式下會產生細胞凋亡。由本實驗結果發現:KMUP-1可以減少低氧模式所造成的細胞凋亡,而且在正常氧壓下,KMUP-1對H9c2並沒有明顯毒性;KMUP-1能減少一些誘導細胞產生凋亡的因子,例如:DNA fragmentation的產生、活性氧化物(ROS)的生成、以及Bcl-2/Bax蛋白質比值的下降;KMUP-1會增加eNOS表現並且促進一氧化氮(NO)的生成,KMUP-1也會活化sGC進而增加PKG表現,已知NO對心肌缺血現象有許多的益處,例如抑制Ca2+內流以及減少心臟細胞的耗氧量;KMUP-1可以增加低氧環境下磷酸化ERK表現量,並且減少磷酸化JNK與p38的表現量;此外,KMUP-1也可以防止脫脂酸磷脂醯膽鹼(LPC)引起的H9c2細胞毒性,並抑制LPC所引起的ROS生成、細胞內鈣離子上升、ERK磷酸化減少,以及p38磷酸化增加之作用。由以上結果得知KMUP-1對於低氧模式以及LPC模式所誘導的細胞凋亡現象有改善之效果,其心臟保護作用機轉是KMUP-1可能經由 MAPK訊息傳導路徑、NO-cGMP-PKG路徑,並且減少細胞內ROS的產生以及Ca2+超載之作用,而防止心肌細胞因缺氧或LPC所因起的細胞損傷。
Cardiac myocytes undergo apoptosis under condition of ischemia. Myocardial oxidative stress and Ca2+ overload induced by ischemia may be involved in the development and progression of myocardial apoptosis. We hypothesized that KMUP-1 could prevent the ischemia-induced reactive oxygen species production and Ca2+ overload, leading to decreased calcium-responsive signaling in myocardial dysfunction. We showed that serum/glucose deprivation and hypoxia, components of ischemia in vivo, resulted in apoptosis of H9c2 cardiomyoblasts. H9c2 cells apoptosis is evidenced by an increase in DNA ladder and Hoechst 33342 positive. In this model of simulated ischemia, represented by serum/glucose deprivation and hypoxia, KMUP-1 (0.1, 1, and 10 μM) could protect H9c2 cells against simulated ischemia-induced apoptosis. KMUP-1 also inhibited several of the molecular events of apoptosis that follow simulated ischemia, such as the DNA fragmentation, the production of ROS, and the ratio of Bcl-2 to Bax. Furthermore, KMUP-1 could modulate eNOS and enhances NO production. KMUP-1 also could stimulate soluble guanylate cyclase (sGC) and activate PKG. NO has been shown to exert a number of actions that would be expected to be beneficial during myocardial ischemia, including inhibition of Ca2+ inflow and a decrease in myocardiac calculated oxygen consumption. Moreover, our results suggested that KMUP-1 can not only increase the expression of ERK, but can also decrease the expression of JNK and p38. In addition, pretreatment with KMUP-1 could protect against LPC-induced cytotoxicity in H9c2 cells and the drug can also inhibit LPC-stimulated ROS production, intracellular calcium elevation, the decrease of ERK phosphorylation, and the increase of p38 phosphorylation. In conclusion, these results demonstrate that KMUP-1 can increase the survival rate of H9c2 cells in the hypoxia and LPC models. The cardioprotective effect of KMUP-1 may via MAPK and NO-cGMP-PKG pathway, decrease intracellular ROS production, and Ca2+ overload to prevent myocardial ischemic injury.
1. 中文摘要 --------------------------------- 1
2. 英文摘要 --------------------------------- 2
3. 縮寫表 ----------------------------------- 4
4. 緒論 ------------------------------------- 5
5. 研究材料 --------------------------------- 14
6. 研究方法 --------------------------------- 24
7. 研究結果 --------------------------------- 38
8. 討論 ------------------------------------- 45
9. 結論和未來展望 --------------------------- 51
10. 參考文獻 --------------------------------- 53
11. 附圖 ------------------------------------- 59
參考文獻
吳秉儒 (2006)KMUP-1減少Isoproterenol和自發性高血壓所誘發大鼠的心肌肥厚之研究。高雄醫學大學藥理學研究所碩士論文
Adderley SR, Fitzgerald DJ (1999) Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. J Biol Chem 274:5038-5046.
Agullo L, Garcia-Dorado D, Escalona N, Inserte J, Ruiz-Meana M, Barrabes JA, Mirabet M, Pina P, Soler-Soler J (2002) Hypoxia and acidosis impair cGMP synthesis in microvascular coronary endothelial cells. Am J Physiol Heart Circ Physiol 283:H917-925.
Annunziato L, Amoroso S, Pannaccione A, Cataldi M, Pignataro G, D''Alessio A, Sirabella R, Secondo A, Sibaud L, Di Renzo GF (2003) Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol Lett 139:125-133.
Appaix F, Guerrero K, Rampal D, Izikki M, Kaambre T, Sikk P, Brdiczka D, Riva-Lavieille C, Olivares J, Longuet M, Antonsson B, Saks VA (2002) Bax and heart mitochondria: uncoupling and inhibition of respiration without permeability transition. Biochim Biophys Acta 1556:155-167.
Argaud L, Ovize M (2000) Myocardial metabolism abnormalities during ischemia and reperfusion. Arch Mal Coeur Vaiss 93:87-90.
Baker JE, Holman P, Kalyanaraman B, Griffith OW, Pritchard KA, Jr. (1999) Adaptation to chronic hypoxia confers tolerance to subsequent myocardial ischemia by increased nitric oxide production. Ann N Y Acad Sci 874:236-253.
Benn SC, Woolf CJ (2004) Adult neuron survival strategies--slamming on the brakes. Nat Rev Neurosci 5:686-700.
Bers DM, Despa S (2006) Cardiac myocytes Ca2+ and Na+ regulation in normal and failing hearts. J Pharmacol Sci 100:315-322.
Boldin MP, Goncharov TM, Goltsev YV, Wallach D (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85:803-815.
Bonavita F, Stefanelli C, Giordano E, Columbaro M, Facchini A, Bonafe F, Caldarera CM, Guarnieri C (2003) H9c2 cardiac myoblasts undergo apoptosis in a model of ischemia consisting of serum deprivation and hypoxia: inhibition by PMA. FEBS Lett 536:85-91.
Bootman M, Niggli E, Berridge M, Lipp P (1997) Imaging the hierarchical Ca2+ signalling system in HeLa cells. J Physiol 499 ( Pt 2):307-314.
Brady NR, Hamacher-Brady A, Gottlieb RA (2006) Proapoptotic BCL-2 family members and mitochondrial dysfunction during ischemia/reperfusion injury, a study employing cardiac HL-1 cells and GFP biosensors. Biochim Biophys Acta 1757:667-678.
Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175-195.
Burton KP, Buja LM, Sen A, Willerson JT, Chien KR (1986) Accumulation of arachidonate in triacylglycerols and unesterified fatty acids during ischemia and reflow in the isolated rat heart. Correlation with the loss of contractile function and the development of calcium overload. Am J Pathol 124:238-245.
Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647-656.
Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341 ( Pt 2):233-249.
Cuong DV, Kim N, Youm JB, Joo H, Warda M, Lee JW, Park WS, Kim T, Kang S, Kim H, Han J (2006) Nitric oxide-cGMP-protein kinase G signaling pathway induces anoxic preconditioning through activation of ATP-sensitive K+ channels in rat hearts. Am J Physiol Heart Circ Physiol 290:H1808-1817.
Das A, Xi L, Kukreja RC (2005) Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem 280:12944-12955.
Demaurex N, Distelhorst C (2003) Cell biology. Apoptosis--the calcium connection. Science 300:65-67.
Engidawork E, Loidl F, Chen Y, Kohlhauser C, Stoeckler S, Dell''Anna E, Lubec B, Lubec G, Goiny M, Gross J, Andersson K, Herrera-Marschitz M (2001) Comparison between hypothermia and glutamate antagonism treatments on the immediate outcome of perinatal asphyxia. Exp Brain Res 138:375-383.
Fan Y, Wu D, Jin L, Yin Z (2005) Human glutamylcysteine synthetase protects HEK293 cells against UV-induced cell death through inhibition of c-Jun NH2-terminal kinase. Cell Biol Int 29:695-702.
Ferdinandy P, Schulz R (2003) Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol 138:532-543.
Ferrari R, Guardigli G, Mele D, Percoco GF, Ceconi C, Curello S (2004) Oxidative stress during myocardial ischaemia and heart failure. Curr Pharm Des 10:1699-1711.
Forbes RA, Steenbergen C, Murphy E (2001) Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res 88:802-809.
Forkel J, Chen X, Wandinger S, Keser F, Duschin A, Schwanke U, Frede S, Massoudy P, Schulz R, Jakob H, Heusch G (2004) Responses of chronically hypoxic rat hearts to ischemia: KATP channel blockade does not abolish increased RV tolerance to ischemia. Am J Physiol Heart Circ Physiol 286:H545-551.
Frandsen U, Lopez-Figueroa M, Hellsten Y (1996) Localization of nitric oxide synthase in human skeletal muscle. Biochem Biophys Res Commun 227:88-93.
Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D''Alonzo AJ, Lodge NJ, Smith MA, Grover GJ (1997) Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 81:1072-1082.
Gradzka I (2006) [Mechanisms and regulation of the programmed cell death]. Postepy Biochem 52:157-165.
Guidarelli A, Clementi E, Sciorati C, Cantoni O (1998) The mechanism of the nitric oxide-mediated enhancement of tert-butylhydroperoxide-induced DNA single strand breakage. Br J Pharmacol 125:1074-1080.
Gusev EI, Skvortsova VI (2002) Glutamate neurotransmission and calcium metabolism in cerebral ischaemia and under normal conditions. Usp Fiziol Nauk 33:80-93.
Hansford RG (1994) Physiological role of mitochondrial Ca2+ transport. J Bioenerg Biomembr 26:495-508.
Holmuhamedov EL, Jovanovic S, Dzeja PP, Jovanovic A, Terzic A (1998) Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol 275:H1567-1576.
Hoque AN, Hoque N, Hashizume H, Abiko Y (1995) A study on dilazep: II. Dilazep attenuates lysophosphatidylcholine-induced mechanical and metabolic derangements in the isolated, working rat heart. Jpn J Pharmacol 67:233-241.
Ichas F, Jouaville LS, Mazat JP (1997) Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89:1145-1153.
Ilangovan G, Osinbowale S, Bratasz A, Bonar M, Cardounel AJ, Zweier JL, Kuppusamy P (2004) Heat shock regulates the respiration of cardiac H9c2 cells through upregulation of nitric oxide synthase. Am J Physiol Cell Physiol 287:C1472-1481.
Kale RK (2003) Post-irradiation free radical generation: evidence from the conversion of xanthine dehydrogenase into xanthine oxidase. Indian J Exp Biol 41:105-111.
Kass GE, Orrenius S (1999) Calcium signaling and cytotoxicity. Environ Health Perspect 107 Suppl 1:25-35.
Kikuchi M, Tenneti L, Lipton SA (2000) Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. J Neurosci 20:5037-5044.
Kitta K, Day RM, Ikeda T, Suzuki YJ (2001) Hepatocyte growth factor protects cardiac myocytes against oxidative stress-induced apoptosis. Free Radic Biol Med 31:902-910.
Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132-1136.
Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 88:4651-4655.
Lanave C, Santamaria M, Saccone C (2004) Comparative genomics: the evolutionary history of the Bcl-2 family. Gene 333:71-79.
Li DY, Tao L, Liu H, Christopher TA, Lopez BL, Ma XL (2006) Role of ERK1/2 in the anti-apoptotic and cardioprotective effects of nitric oxide after myocardial ischemia and reperfusion. Apoptosis 11:923-930.
Li G, Xiao Y, Zhang L (2005) Cocaine induces apoptosis in fetal rat myocardial cells through the p38 mitogen-activated protein kinase and mitochondrial/cytochrome c pathways. J Pharmacol Exp Ther 312:112-119.
Lin RJ, Wu BN, Lo YC, Shen KP, Lin YT, Huang CH, Chen IJ (2002) KMUP-1 relaxes rabbit corpus cavernosum smooth muscle in vitro and in vivo: involvement of cyclic GMP and K+ channels. Br J Pharmacol 135:1159-1166.
Lips DJ, Bueno OF, Wilkins BJ, Purcell NH, Kaiser RA, Lorenz JN, Voisin L, Saba-El-Leil MK, Meloche S, Pouyssegur J, Pages G, De Windt LJ, Doevendans PA, Molkentin JD (2004) MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation 109:1938-1941.
Liu Y, Sato T, O''Rourke B, Marban E (1998) Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation 97:2463-2469.
Lundbaek JA, Andersen OS (1994) Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J Gen Physiol 104:645-673.
Marin-Garcia J, Goldenthal MJ (2004) Heart mitochondria signaling pathways: appraisal of an emerging field. J Mol Med 82:565-578.
Marsden VS, Strasser A (2003) Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. Annu Rev Immunol 21:71-105.
Marushige K, Marushige Y (1999) Changes in the mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling associated with the induction of apoptosis. Anticancer Res 19:3865-3871.
Morioka M, Fukunaga K, Yasugawa S, Nagahiro S, Ushio Y, Miyamoto E (1992) Regional and temporal alterations in Ca2+/calmodulin-dependent protein kinase II and calcineurin in the hippocampus of rat brain after transient forebrain ischemia. J Neurochem 58:1798-1809.
O''Rourke B (2000) Myocardial K(ATP) channels in preconditioning. Circ Res 87:845-855.
Oe H, Kuzuya T, Hoshida S, Nishida M, Hori M, Kamada T, Tada M (1994) Calcium overload and cardiac myocyte cell damage induced by arachidonate lipoxygenation. Am J Physiol 267:H1396-1402.
Peng CH, Tseng TH, Huang CN, Hsu SP, Wang CJ (2005) Apoptosis induced by penta-acetyl geniposide in C6 glioma cells is associated with JNK activation and Fas ligand induction. Toxicol Appl Pharmacol 202:172-179.
Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, Davis RJ (1995) Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 270:7420-7426.
Reid MB, Kobzik L, Bredt DS, Stamler JS (1998) Nitric oxide modulates excitation-contraction coupling in the diaphragm. Comp Biochem Physiol A Mol Integr Physiol 119:211-218.
Rizzuto R, Bernardi P, Pozzan T (2000) Mitochondria as all-round players of the calcium game. J Physiol 529 Pt 1:37-47.
Ruiz-Meana M, Garcia-Dorado D, Miro-Casas E, Abellan A, Soler-Soler J (2006) Mitochondrial Ca2+ uptake during simulated ischemia does not affect permeability transition pore opening upon simulated reperfusion. Cardiovasc Res 71:715-724.
Sermadiras S, Dumas M, Joly-Berville R, Bonte F, Meybeck A, Ratinaud MH (1997) Expression of Bcl-2 and Bax in cultured normal human keratinocytes and melanocytes: relationship to differentiation and melanogenesis. Br J Dermatol 137:883-889.
Shimizu S, Eguchi Y, Kamiike W, Matsuda H, Tsujimoto Y (1996) Bcl-2 expression prevents activation of the ICE protease cascade. Oncogene 12:2251-2257.
Touyz RM (2005) Reactive oxygen species as mediators of calcium signaling by angiotensin II: implications in vascular physiology and pathophysiology. Antioxid Redox Signal 7:1302-1314.
Turner NA, Xia F, Azhar G, Zhang X, Liu L, Wei JY (1998) Oxidative stress induces DNA fragmentation and caspase activation via the c-Jun NH2-terminal kinase pathway in H9c2 cardiac muscle cells. J Mol Cell Cardiol 30:1789-1801.
Uemura K, Adachi-Akahane S, Shintani-Ishida K, Yoshida K (2005) Carbon monoxide protects cardiomyogenic cells against ischemic death through L-type Ca2+ channel inhibition. Biochem Biophys Res Commun 334:661-668.
Vincenz C, Dixit VM (1997) Fas-associated death domain protein interleukin-1beta-converting enzyme 2 (FLICE2), an ICE/Ced-3 homologue, is proximally involved in CD95- and p55-mediated death signaling. J Biol Chem 272:6578-6583.
Watanabe M, Okada T (2003) Lysophosphatidylcholine-induced myocardial damage is inhibited by pretreatment with poloxamer 188 in isolated rat heart. Mol Cell Biochem 248:209-215.
Winstead MV, Lucas KK, Dennis EA (2005) Group IV cytosolic phospholipase A2 mediates arachidonic acid release in H9c2 rat cardiomyocyte cells in response to hydrogen peroxide. Prostaglandins Other Lipid Mediat 78:55-66.
Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326-1331.
Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein EH (2000) Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 86:692-699.
Zhang X, Bedard EL, Potter R, Zhong R, Alam J, Choi AM, Lee PJ (2002) Mitogen-activated protein kinases regulate HO-1 gene transcription after ischemia-reperfusion lung injury. Am J Physiol Lung Cell Mol Physiol 283:L815-829.
Zhu WZ, Xie Y, Chen L, Yang HT, Zhou ZN (2006) Intermittent high altitude hypoxia inhibits opening of mitochondrial permeability transition pores against reperfusion injury. J Mol Cell Cardiol 40:96-106.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top