|
[1] Kubo R.: Electronic Properties of Metallic Fine Particles. I. Journal of the Physical Society of Japan, 17, 975 (1962) [2] Medina-Ramirez I., Bashir S., Luo Z., Liu J. L.: Green synthesis and characterization of polymer-stabilized silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 73, 185-191 (2009) [3] Link S., Burda C., Wang Z. L., El-Sayed M. A.: Electron dynamics in gold and gold--silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron--phonon relaxation. The Journal of Chemical Physics, 111, 1255-1264 (1999) [4] Wang Y., Wang Y., Chen K., Li B.: Non-equilibrium molecular dynamics simulation of electrokinetic effects on heterogeneous ionic transport in nano-channel. Chemical Engineering Science, 66, 2807-2816 (2011) [5] Johnson C. J., Zhukovsky N., Cass A. E. G., Nagy J. M.: Proteomics, nanotechnology and molecular diagnostics. PROTEOMICS, 8, 715-730 (2008) [6] Qiu L., Saravanamuttu K.: Optical self-trapping in a photopolymer doped with Ag nanoparticles: a single-step route to metallodielectric cylindrical waveguides. J Opt Soc Am B, 29, 1085-1093 (2012) [7] Gupta A., Choudhary V.: Electromagnetic interference shielding behavior of poly(trimethylene terephthalate)/multi-walled carbon nanotube composites. Composites Science and Technology, 71, 1563-1568 (2011) [8] Jalali M., Dauterstedt S., Michaud A., Wuthrich R.: Electromagnetic shielding of polymer–matrix composites with metallic nanoparticles. Composites Part B: Engineering, 42, 1420-1426 (2011) [9] Li Y, Zhou J, Zhang K, C. S.: Gold nanoparticle multilayer films based on surfactant films as a template: preparation, characterization, and application. Journal of Chemical Physics, 126, (2007) [10] Wu H., Lin D., Pan W.: High performance surface-enhanced raman scattering substrate combining low dimensional and hierarchical nanostructures. Langmuir, 26, 6865-6868 (2010) [11] Mrozek I., Pettenkofer C., Otto A.: Raman spectroscopy of carbon monoxide adsorbed on silver island films. Surface Science, 238, 192-198 (1990) [12] Tetsumoto T., Gotoh Y., Ishiwatari T.: Mechanistic studies on the formation of silver nanowires by a hydrothermal method. Journal of Colloid and Interface Science, 362, 267-273 (2011) [13] Kudo H., Itoh T., Kashiwagi T., Ishikawa M., Takeuchi H., Ukeda H.: Surface enhanced Raman scattering spectroscopy of Ag nanoparticle aggregates directly photo-reduced on pathogenic bacterium (Helicobacter pylori). Journal of Photochemistry and Photobiology A: Chemistry, 221, 181-186 (2011) [14] Murphy C. J., Jana N. R.: Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Advanced Materials, 14, 80-82 (2002) [15] Kurowska E., Brzózka A., Jarosz M., Sulka G. D., Jaskuła M.: Silver nanowire array sensor for sensitive and rapid detection of H2O2. Electrochimica Acta, [16] Park J.-A., Moon J., Lee S.-J., Lim S.-C., Zyung T.: Fabrication and characterization of ZnO nanofibers by electrospinning. Current Applied Physics, 9, S210-S212 (2009) [17] Dökme İ., Altındal Ş., Tunç T., Uslu İ.: Temperature dependent electrical and dielectric properties of Au/polyvinyl alcohol (Ni, Zn-doped)/n-Si Schottky diodes. Microelectronics Reliability, 50, 39-44 (2010) [18] Yarin A. L., Koombhongse S., Reneker D. H.: Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. Journal of Applied Physics, 90, 4836-4846 (2001) [19] Taylor G. I.: Disintegration of Water Droplets in an Electric Field. Proceedings of the Royal Society London Series A, 280, (1964) [20] Gupta V. B., Kothari V. K.: Manufactured fiber technology. Chapman &; Hall, London (1997) [21] Khil M. S., Bhattarai S. R., Kim H. Y., Kim S. Z., Lee K. H.: Novel fabricated matrix via electrospinning for tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72, 24 (2005) [22] Matthews J. A., E.Wnek G., Simpson D. G., Bowlin G. L.: Electrospinning of Collagen Nanofibers. Biomacromolecules, 3, 232-238 (2002) [23] Tan E. P. S., Goh C. N., C.H Sow, Lim C. T.: Tensile test of a single nanofiber using an atomic force microscope tip. Applied Physics Letters, 86, 073115-073115-073113 (2005) [24] Pai C.-L., Boyce M. C., Rutledge G. C.: Mechanical properties of individual electrospun PA 6(3)T fibers and their variation with fiber diameter. Polymer, 52, 2295-2301 (2011) [25] Katta P., Alessandro M., D.Ramsier R., Chase G. G.: Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector. Nano letters, 4, 2215-2218 (2004) [26] Kim K. W., . K. H. L., Khil M. S., Ho Y. S., Kim H. Y.: The effect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly(ethylene terephthalate) nonwovens. Fiber and Polymers, 5, 6 (2004) [27] Wong S.-C., Baji A., Leng S.: Effect of fiber diameter on tensile properties of electrospun poly(ɛ-caprolactone). Polymer, 49, 4713-4722 (2008) [28] Hamza A. A., Sokkar T. Z. N., El-Farahaty K. A., El-Dessouky H. M.: Determination of the intrinsic birefringence of polymeric fibres. Polymer Testing, 23, 203-208 (2004) [29] Wang C., Hsu C.-H., Lin J.-H.: Scaling Laws in Electrospinning of Polystyrene Solutions. Macromolecules, 39, 7662-7672 (2006) [30] Muniz-Miranda M., Pergolese B., Bigotto A., Giusti A.: Stable and efficient silver substrates for SERS spectroscopy. Journal of Colloid and Interface Science, 314, 540-544 (2007) [31] Sancı R., Volkan M.: Surface-enhanced Raman scattering (SERS) studies on silver nanorod substrates. Sensors and Actuators B: Chemical, 139, 150-155 (2009) [32] Abdel-Mohsen A. M., Hrdina R., Burgert L., Abdel-Rahman R. M., Hašová M., Šmejkalová D., Kolář M., Pekar M., Aly A. S.: Antibacterial activity and cell viability of hyaluronan fiber with silver nanoparticles. Carbohydrate Polymers, 92, 1177-1187 (2013) [33] Zhong L., Gan S., Fu X., Li F., Han D., Guo L., Niu L.: Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H2O2 biosensor. Electrochimica Acta, 89, 222-228 (2013) [34] Jana N. R., Gearheart L., Murphy C. J.: Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chemical Communications, 0, 617-618 (2001) [35] 裘性天, 黃亭凱. 特殊形貌銅與銀奈米材料製備之簡介. The Chinese Chemical Society, 65, 9 (2007) [36] Tang X., Tsuji M., Jiang P., Nishio M., Jang S.-M., Yoon S.-H.: Rapid and high-yield synthesis of silver nanowires using air-assisted polyol method with chloride ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 338, 33-39 (2009) [37] Sulka G. D., Brzózka A., Liu L.: Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates. Electrochimica Acta, 56, 4972-4979 (2011) [38] Abdul kareem T., Anu kaliani A.: Synthesis and thermal study of octahedral silver nano-plates in polyvinyl alcohol (PVA). Arabian Journal of Chemistry, 4, 325-331 (2011) [39] Sun Y., Yin Y., Mayers B. T., Herricks T., Xia Y.: Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone). Chemistry of Materials, 14, 4736-4745 (2002) [40] Saquing C. D., Manasco J. L., Khan S. A.: Electrospun Nanoparticle–Nanofiber Composites via a One-Step Synthesis. Small, 5, 944-951 (2009) [41] Fritzsche W., Porwol H., Wiegand A., Bornmann S., Köhler J. M.: In-situ formation of Ag-containing nanoparticles in thin polymer films. Nanostructured Materials, 10, 89-97 (1998) [42] Muller O., Dengler S., Ritt G., Eberle B.: Size and shape effects on the nonlinear optical behavior of silver nanoparticles for power limiters. Appl Opt, 52, 139-149 (2013) [43] Yang F.-C., Wu K.-H., Liu M.-J., Lin W.-P., Hu M.-K.: Evaluation of the antibacterial efficacy of bamboo charcoal/silver biological protective material. Materials Chemistry and Physics, 113, 474-479 (2009) [44] Chae H. H., Kim B.-H., Yang K. S., Rhee J. I.: Synthesis and antibacterial performance of size-tunable silver nanoparticles with electrospun nanofiber composites. Synthetic Metals, 161, 2124-2128 (2011) [45] Niethammer P., Grabher C., Look A. T., Mitchison T. J.: A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature, 459, 996-999 (2009) [46] Chen J. P., Chen Y. C.: Preparations of immobilized lysozyme with reversibly soluble polymer for hydrolysis of microbial cells. Bioresource Technology, 60, 231-237 (1997) [47] Raman R. K., Shukla A. K.: A direct borohydride/hydrogen peroxide fuel cell with reduced alkali crossover. Fuel Cells, 7, 225-231 (2007) [48] Hu M., Gao J., Dong Y., Li K., Shan G., Yang S., Li R. K.-Y.: Flexible Transparent PES/Silver Nanowires/PET Sandwich-Structured Film for High-Efficiency Electromagnetic Interference Shielding. Langmuir, 28, 7101-7106 (2012) [49] Schatz G. C.: Theoretical studies of surface enhanced Raman scattering. Accounts of Chemical Research, 17, 370-376 (1984) [50] Nikoobakht B., El-Sayed M. A.: Surface-Enhanced Raman Scattering Studies on Aggregated Gold Nanorods†. The Journal of Physical Chemistry A, 107, 3372-3378 (2003) [51] Shanmukh S., Jones L., Driskell J., Zhao Y., Dluhy R., Tripp R. A.: Rapid and Sensitive Detection of Respiratory Virus Molecular Signatures Using a Silver Nanorod Array SERS Substrate. Nano Letters, 6, 2630-2636 (2006) [52] Yoon I., Kang T., Choi W., Kim J., Yoo Y., Joo S. W., Park Q. H., Ihee H., Kim B.: Single nanowire on a film as an efficient SERS-active platform. Journal of the American Chemical Society, 131, 758-762 (2009) [53] He D., Hu B., Yao Q. F., Wang K., Yu S. H.: Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: Electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano, 3, 3993-4002 (2009) [54] Guo B., Han G., Li M., Zhao S.: Deposition of the fractal-like gold particles onto electrospun polymethylmethacrylate fibrous mats and their application in surface-enhanced Raman scattering. Thin Solid Films, 518, 3228-3233 (2010) [55] Li X., Cao M., Zhang H., Zhou L., Cheng S., Yao J.-L., Fan L.-J.: Surface-enhanced Raman scattering-active substrates of electrospun polyvinyl alcohol/gold–silver nanofibers. Journal of Colloid and Interface Science, 382, 28-35 (2012) [56] Orendorff C. J., Gole A., Sau T. K., Murphy C. J.: Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers: Sandwich Architecture and Nanoparticle Shape Dependence. Analytical Chemistry, 77, 3261-3266 (2005) [57] Jana N. R., Gearheart L., Murphy C. J.: Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. The Royal Society of Chemistry (2001) [58] 吳昌謀, 邱浩耕, 林佛典, 吳瑋淳, 柯尚亨. 高壓靜電場方向轉換對於靜電紡絲行為之探討. 2010年中華民國高分子學會年會, 台中, 台灣 (2010) [59] Su P., Wang C., Yang X., Chen X., Gao C., Feng X.-X., Chen J.-Y., Ye J., Gou Z.: Electrospinning of chitosan nanofibers: The favorable effect of metal ions. Carbohydrate Polymers, 84, 239-246 (2011) [60] Zwick M. M.: Poly(vinyl alcohol)–iodine complexes. Journal of Applied Polymer Science, 9, 2393-2424 (1965) [61] Ma J., Ye X., Jin B.: Structure and application of polarizer film for thin-film-transistor liquid crystal displays. Displays, 32, 49-57 (2011) [62] Caswell K. K., Bender C. M., Murphy C. J.: Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires. Nano letters, 3, 667-669 (2003) [63] Michota A., Bukowska J.: Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. Journal of Raman Spectroscopy, 34, 21-25 (2003) [64] Lu Z., Gu Y., Yang J., Li Z., Ruan W., Xu W., Zhao C., Zhao B.: SERS-active Ag substrate from the photo-active decomposition of electrodeposited divalent silver oxide. Vibrational Spectroscopy, 47, 99-104 (2008) [65] He D., Hu B., Yao Q.-F., Wang K., Yu S.-H.: Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles. ACS Nano, 3, 3993-4002 (2009) [66] Wang J., Huang L., Zhai L., Yuan L., Zhao L., Zhang W., Shan D., Hao A., Feng X., Zhu J.: Hot spots engineering in hierarchical silver nanocap array for surface-enhanced Raman scattering. Applied Surface Science, 261, 605-609 (2012)
|