跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 21:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周尚毅
研究生(外文):Shang-Yi, Chou
論文名稱:碘氧化鉍複合氧化石墨烯或石墨相氮化碳之特性分析及其光催化降解有機汙染物之研究
論文名稱(外文):The Characterization of Bismuth Oxyiodide/Graphene Oxide (or Graphitic Carbon Nitride) Composites and their Photocatalytic Degradation of the Organic Pollutants
指導教授:陳錦章陳錦章引用關係
指導教授(外文):Chiing-Chang, Chen
口試委員:張嘉麟曾惠馨
口試委員(外文):Jia-Lin, ChangHui-Hsin, Tseng
口試日期:2015-01-08
學位類別:碩士
校院名稱:國立臺中教育大學
系所名稱:科學教育與應用學系科學教育碩士班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:186
中文關鍵詞:碘氧化鉍可見光觸媒石墨相氮化碳氧化石墨烯結晶紫
外文關鍵詞:Bismuth oxyiodideVisible-light-responsive photocatalystg-C3N4Graphene OxideCrystal Violet
相關次數:
  • 被引用被引用:2
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以高壓水熱法合成碘氧化鉍複合石墨相氮化碳(graphitic carbon nitride, g-C3N4)及氧化石墨烯 (Graphene Oxide, GO),g-C3N4是以三聚氰胺在馬弗爐(Muffle Furnace)內鍛燒540℃合成,GO則是使用修改後Hummer 法來進行合成,g-C3N4及石墨烯皆具有單層sp2結構,能增加電子電洞轉移的面積,能降低光觸媒的重組率。碘氧化鉍在不同pH值會有不同的晶形,如BiOI、Bi4O5I2、Bi7O9I3、Bi5O7I等,藉由在不同pH值下跟g-C3N4及GO複合,合成出不同晶形的複合光觸媒,觸媒樣品以X射線粉末繞射圖(XRD)、場發掃描式電子顯微鏡(FE-SEM )、場發穿透式電子顯微鏡(FE-TEM)、X射線光電子能譜圖(XPS )、光激發螢光光譜(PL)、紫外光-可見光漫反射光譜(DRS)、氮氣吸脫附曲線圖及比表面積測定(BET)、傅立葉轉換紅外線光譜(FT -IR)、電子順磁共振圖譜(EPR)等儀器分析產物的組成,並探討不同晶形碘氧化鉍複合g-C3N4及石墨烯對於光催化效率的影響。結晶紫(Crystal Violet, CV)及水楊酸(Salicylic Acid, SA)為常見環境有機汙染物,本研究利用光催化反應降解有機物,再利用HPLC-PDA- MS技術分離、鑑定其降解中間物,研究在未來可將此複合觸媒用於環境中有機汙染物處理和控制。
In this study, a series of the bismuth oxyiodide composite graphene oxide (GO) or graphitic carbon nitride (g-C3N4) are prepared using autoclave hydrothermal methods. In the preparation procedure, g-C3N4 is synthesized by calcinations at 540℃ in muffle furnace , and graphene oxide is synthesized by Hummer method modified. Graphene and g-C3N4 are the two-dimensional atomic crystal available for enhancing electron-hole transfer surface and reduce the recombination rate of photocatalyst. Bismuth oxyiodide, with different crystalline in different pH vm alue, can synthesize different bismuth oxyiodide composite graphene or g-C3N4 photocatalysts. The structures and morphologies of BiOxIy/g-C3N4 or graphene oxide photocatalysts are characterized by XRD, FE-TEM, SEM-EDS, HR-XPS, DR-UV, BET, EPR and PL. Discuss different crystalline bismuth oxyiodide composite graphene or g-C3N4 affect the photocatalytic efficiency. Crystal Violet and Salicylic acid is a common organic pollutants in the environment. The study is useful for photocatalytic degradation of organic samples and use HPLC-PDA-MS for separation and identification of degradation intermediates. The study is useful for degrading the organic compounds in the future applications of environmental pollution and control.
摘要 ......................................................................................................... I
英文摘要 ................................................................................................... II
第一章 緒論 ............................................................................................ 1
1.1 研究動機 ...................................................................................... 1
1.2 研究目的 ...................................................................................... 2
第二章 文獻回顧 ..................................................................................... 3
2.1 染料及染整廢水之特性與危害 .................................................. 3
2.1.1染料之特性及三苯甲烷類染料 ............................................ 3
2.1.2染整廢水之特性與危害 ........................................................ 4
2.2染料廢水處理技術 ......................................................................... 5
2.2.1 高級氧化程序 ...................................................................... 6
2.2.2 光催化氧化法 ........................................................................ 7
2.3水楊酸工業應用及汙染 ................................................................. 7
2.4碘氧化鉍 ....................................................................................... 8
2.5石墨烯及氧化石墨烯 ..................................................................... 9
2.6石墨相碳氮化合物(g-C3N4) ......................................................... 10
第三章 實驗材料與方法 ........................................................................ 12
3.1實驗材料與設備 ............................................................................. 13
3.1.1 有機物 ...................................................................................... 13
3.1.2 實驗藥品 ................................................................................ 14
3.1.2.1碘氧化鉍的製備藥品 ........................................................ 14
3.1.2.2氧化石墨烯和g-C3N4的製備藥品 ................................. 14
3.1.2.3測試染料廢水藥品 ............................................................ 14
3.1.2.4高效能液相層析電灑質譜儀(HPLC-ESI-MS)分析藥
品 ...................................................................................... 15
3.1.3 實驗設備 .................................................................................. 15
3.2實驗步驟 ....................................................................................... 16
3.2.1氧化石墨烯的製備 ................................................................ 16
3.2.2複合石墨烯光觸媒的製備 ...................................................... 17
3.2.3石墨相氮化碳的製備 .............................................................. 17
3.2.2複合g-C3N4光觸媒的製備 ..................................................... 18
IV
3.2.3 照光程序 ................................................................................ 19
3.3儀器與分析方法 ............................................................................. 20
3.3.1材料特性分析 ........................................................................... 20
3.3.2分離與鑑定 ............................................................................... 21
第四章 結果與討論 ................................................................................ 22
4.1 BiOxIy/ GO之表面特性分析 ......................................................... 22
4.1.1 BiOxIy/GO改變不同GO克數 (pH值=1) ............................ 23
4.1.1.1 X射線粉末繞射圖 ........................................................ 23
4.1.1.2 場發穿透式電子顯微鏡及場發掃描式電子顯微鏡 ..... 24
4.1.1.3紫外光-可見光漫反射光譜 ............................................. 26
4.1.1.4傅立葉轉換紅外線光譜 .................................................. 27
4.1.1.5氮氣吸脫附曲線圖及比表面積、孔隙測定 .................. 29
4.1.1.6光激發螢光光譜 .............................................................. 31
4.1.1.7光降解效率圖 .................................................................. 32
4.1.2 BiOxIy/GO改變不同GO克數 (pH值=4) ............................ 35
4.1.2.1 X射線粉末繞射圖 ........................................................ 35
4.1.2.2 場發穿透式電子顯微鏡及場發掃描式電子顯微鏡 ..... 36
4.1.2.3紫外光-可見光漫反射光譜 ............................................. 38
4.1.2.4傅立葉轉換紅外線光譜 .................................................. 39
4.1.2.5氮氣吸脫附曲線圖及比表面積、孔隙測定 .................. 41
4.1.2.6光激發螢光光譜 .............................................................. 43
4.1.2.7光降解效率圖 .................................................................. 44
4.1.3 BiOxIy/GO改變不同GO克數 (pH值=7) ............................ 48
4.1.3.1 X射線粉末繞射圖 ........................................................ 48
4.1.3.2 場發穿透式電子顯微鏡及場發掃描式電子顯微鏡 ..... 49
4.1.3.3紫外光-可見光漫反射光譜 ............................................. 51
4.1.3.4傅立葉轉換紅外線光譜 .................................................. 52
4.1.3.5 X射線光電子能譜圖 ....................................................... 54
4.1.3.6氮氣吸脫附曲線圖及比表面積、孔隙測定 .................. 59
4.1.3.7光激發螢光光譜 .............................................................. 61
4.1.3.8光降解效率圖 .................................................................. 62
4.1.4 BiOxIy/GO改變不同GO克數 (pH值=10) .......................... 66
4.1.4.1 X射線粉末繞射圖 ........................................................ 66
V
4.1.4.2 場發穿透式電子顯微鏡及場發掃描式電子顯微鏡 ..... 67
4.1.4.3紫外光-可見光漫反射光譜 ............................................. 69
4.1.4.4傅立葉轉換紅外線光譜 .................................................. 70
4.1.4.5氮氣吸脫附曲線圖及比表面積、孔隙測定 .................. 72
4.1.4.6光激發螢光光譜 .............................................................. 74
4.1.4.7光降解效率圖 .................................................................. 75
4.1.5 BiOxIy/GO改變不同GO克數 (pH值=13) ........................ 79
4.1.5.1 X射線粉末繞射圖 ........................................................ 79
4.1.5.2 場發穿透式電子顯微鏡及場發掃描式電子顯微鏡 ..... 80
4.1.5.3紫外光-可見光漫反射光譜 ............................................. 82
4.1.5.4傅立葉轉換紅外線光譜 .................................................. 83
4.1.5.5氮氣吸脫附曲線圖及比表面積、孔隙測定 .................. 85
4.1.5.6光激發螢光光譜 .............................................................. 87
4.1.5.7光降解效率圖 .................................................................. 88
4.2 BiOxIy/ g-C3N4之表面特性分析 92
4.2.1 BiOxIy/ g-C3N4改變重量比(pH值=1) .................................... 92
4.2.1.1 X射線粉末繞射圖 ........................................................ 92
4.2.1.2 場發穿透式電子顯微鏡及場發掃描式電子顯微鏡 ..... 93
4.2.1.3紫外光-可見光漫反射光譜 ............................................. 96
4.2.1.4傅立葉轉換紅外線光譜 .................................................. 98
4.2.1.5氮氣吸脫附曲線圖及比表面積、孔隙測定 .................. 99
4.2.1.6光激發螢光光譜 .............................................................. 101
4.2.1.7光降解效率圖 .................................................................. 102
4.2.2 BiOxIy/ g-C3N4改變重量比(pH值=4) .................................... 104
4.2.2.1 X射線粉末繞射圖 ........................................................ 104
4.2.2.2 場發穿透式電子顯微鏡及場發掃描式電子顯微鏡 ..... 105
4.2.2.3紫外光-可見光漫反射光譜 ............................................. 107
4.2.2.4傅立葉轉換紅外線光譜 .................................................. 109
4.2.2.5氮氣吸脫附曲線圖及比表面積、孔隙測定 .................. 110
4.2.2.6光激發螢光光譜 .............................................................. 112
4.2.2.7光降解效率圖 .................................................................. 113
4.2.3 BiOxIy/ g-C3N4改變不同g-C3N4克數 (pH值=7) ................. 115
4.2.3.1 X射線粉末繞射圖 ........................................................ 115
VI
4.2.3.2 場發穿透式電子顯微鏡及場發掃描式電子顯微鏡 ..... 116
4.2.3.3紫外光-可見光漫反射光譜 ............................................. 118
4.2.3.4傅立葉轉換紅外線光譜 .................................................. 119
4.2.3.5 X射線光電子能譜圖 ....................................................... 120
4.2.3.6氮氣吸脫附曲線圖及比表面積、孔隙測定 .................. 125
4.2.3.7光激發螢光光譜 .............................................................. 126
4.2.3.8光降解效率圖 .................................................................. 128
4.2.4 BiOxIy/ g-C3N4改變重量比(pH值=10) .................................. 132
4.2.4.1 X射線粉末繞射圖 ........................................................ 132
4.2.4.2 場發穿透式電子顯微鏡及場發掃描式電子顯微鏡 ..... 133
4.2.4.3紫外光-可見光漫反射光譜 ............................................. 135
4.2.4.4傅立葉轉換紅外線光譜 .................................................. 137
4.2.4.5氮氣吸脫附曲線圖及比表面積、孔隙測定 .................. 138
4.2.4.6光激發螢光光譜 .............................................................. 140
4.2.4.7光降解效率圖 .................................................................. 141
4.2.5 BiOxIy/ g-C3N4改變重量比(pH值=13) .................................. 143
4.2.5.1 X射線粉末繞射圖 ........................................................ 143
4.2.5.2 場發穿透式電子顯微鏡及場發掃描式電子顯微鏡 ..... 144
4.2.5.3紫外光-可見光漫反射光譜 ............................................. 146
4.2.5.4傅立葉轉換紅外線光譜 .................................................. 148
4.2.5.5氮氣吸脫附曲線圖及比表面積、孔隙測定 .................. 149
4.2.5.6光激發螢光光譜 .............................................................. 151
4.2.5.7光降解效率圖 .................................................................. 152
4.3 光催化實驗 ................................................................................. 155
4.3.1回收觸媒降解效率變化 ......................................................... 155
4.3.1.1 BiOxIy/GO回收降解效率 ................................................ 155
4.3.1.2 BiOxIy/ g-C3N4回收降解效率 .......................................... 157
4.3.2光催化反應之活性物種測定 ................................................. 158
4.3.3電子順磁共振圖譜 ................................................................. 161
4.3.4光催化過程中結晶紫溶液的UV-Vis PDA光譜 ................. 164
4.3.5光催化過程中改變結晶紫溶液的pH 值 ............................. 165
4.3.6光催化反應機制圖 ................................................................. 166
4.3.7結晶紫染料光催化過程中間產物之分析 ............................. 167
VII
4.4 實驗分析總整理 ........................................................................... 172
4.4.1 BiOxIy/GO材料分析及降解速率比較 ................................... 172
4.4.2 BiOxIy/ g-C3N4 材料分析及降解速率比較 ............................ 173
第五章 結論與建議 .............................................................................. 175
5.1 結論.............................................................................................. 175
5.2 未來方向與建議 ......................................................................... 176
參考文獻 ................................................................................................... 177
【1】 S. Norman. A Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments (2nd Edition) : By H. Zollinger, published by VCH, Cambridge. Journal of Photochemistry and Photobiology A-chemistry, 1992, 67, 385-386.
【2】 D. Chatterjee, S. Dasgupta. Visible light induced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2005, 6, 186–205.
【3】 X. Xiao, C. Liu, R. Hu, X. Zuo, J. Nan, L. Lia, L. Wang. Oxygen-rich bismuth oxyhalides: generalized one-pot synthesis, band structures and visible-light photocatalytic properties. Journal of Materials Chemistry, 2012, 22, 22840-22843.
【4】 X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. Carlsson, K. Domen, M.Antonietti. A metal-free polymeric photocatalyst for hydrogen production fromwater under visible light, Nature Materials, 2008, 8, 76-80.
【5】 Z. Zhao, Y. Sun, F. Dong .Graphitic carbon nitride based nano composites: A review. Nanoscale, 2015, 7, 15-37.
【6】 Hou Wang, X. Yuan, Y. Wu, H. Huang, X. Peng, G. Zeng, H. Zhong, J. Liang, M.M. Ren. Graphene-based materials: Fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation. Advances in Colloid and Interface Science, 2013, 195-196, 19-40.
【7】 W. Zhu, Z. Yang, L. Wang. Application of ferrous-hydrogen peroxide for the treatment of H-acid manufacturing process wastewater. Water Research, 1996, 30, 2949-2954.
【8】 Y.F. Sasaki, S. Kawaguchi, A. Kamaya, M. Ohshita, K. Kabasawa, K.
178
Iwama, K. Taniguchi, S. Tsuda. The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutation Research, 2002, 519, 103-119.
【9】 S. Srivastava, R. Sinha, D. Roy. Toxicological effects of malachite green. Aquatic Toxicology, 2004, 66, 319-329.
【10】 W. Azmi, R.K. Sani, U.C. Banerjee. Biodegradation of triphenylmethane dyes. Enzyme and Microbial Technology, 1998, 22, 185-191.
【11】 T. Gessner, U. Mayer. Triarylmethane and Diarylmethane Dyes. Encyclopedia of Industrial Chemistry. 2000.
【12】 H. Selcuk. Decolorization and detoxification of textile wastewater by ozonation and coagulation processes. Dyes and Pigments, 2005, 64, 217-222.
【13】 A. Huren, Q. Yi, G. Xiasheng, Z.T. Walter. Biological treatment of dye wastewaters using an anaerobic-oxic system. Chemosphere, 1996, 33, 2533-2542.
【14】 G.M. Walker, L.R. Weatherley. Adsorption of acid dyes on to granular activated carbon in fixed beds. Water Research, 1997, 31, 2093-2101.
【15】 C. Namasivayam, D.J.S.E. Arasi. Removal of congo red from wastewater by adsorption onto red mud. Chemosphere, 1997, 34, 401-417.
【16】 J.M. Wang, C.P. Huang, H.E. Allen, O.K. Cha, D.W. Kim. Adsorption characteristics of dye onto sludge particulates. Journal of Colloid and Interface Science, 1998, 208, 518-528.
【17】 A. Mittal, V.J.M. Gajbe. Removal and recovery of hazardous triphenylmethane dye, Methyl Violet through adsorption over granulated waste materials. Journal of Hazardous Materials, 2008, 150,
179
364-375.
【18】 L. Li, W. Zhu, P. Zhang, Z. Chen, W. Han. Photocatalytic oxidation and ozonation of catechol over carbon-black-modifiednano -TiO2 thin films upported on Al sheet. Water Research, 2003, 37, 3646-3651.
【19】 C. Tang, V. Chen. The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor. Water Research, 2004, 38, 2775-2781.
【20】 I. Gultekin, N.H. Ince. Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes. Journal of Environmental Management, 2007, 85, 816-832.
【21】 S. Malato, J. Blanco, J. Caeres, A.R. Fernadez-Alba, A. Agura, A. Rodrı´uez. Photocatalytic treatment of water-soluble pesticides by
photo-Fenton and TiO2 using solar energy. Catalyst Today, 2002, 76, 209-220.
【22】 K. Honda, A. Fujishima. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238, 230845.
【23】 J.H. Carey, J. Lawrence, H.M. Tosine. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. Bulletin of Environmental Contamination and Toxicology, 1976, 16, 697-701.
【24】 F. Han, V. Subba, R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Applied Catalysis A: General, 2009, 359, 25-40.
【25】 X. Chang, J. Huang, C. Cheng, Q. Sui , W. Sha , G. Ji , S. Deng , Gang Yu. BiOX (X = Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: Characterization and catalytic performance. Catalysis Communications, 2010,11, 460-464.
180
【26】 J. Zeng, J. Zhong, J. Li, Z. Xiang, X. Liu, J. Chen. Improvement of photocatalytic activity under solar light of BiVO4 microcrystals synthesized by surfactant-assisted hydrothermal method. Materials Science in Semiconductor Processing, 2014,27, 41-46.
【27】 Transparency Market Research, 2013. Salicylic Acid Market for Pharmaceutical, Skin care, Hair care and Other Applications-Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2013-2019.
【28】 Y. Lin , X. Sun, Q. Yuan, Y. Yan. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli. Metabolic Engineering, 2014, 23, 62–69.
【29】 M. Tian, B. Adams, J. Wen, R. M. Asmussen, A. Chen. Photoelectrochemical oxidation of salicylic acid and salicylaldehyde on titanium dioxide nanotube arrays. Electrochimica Acta, 2009, 54, 3799-3805. 【30】 M.D. González, E. Moreno, J. Quevedo-Sarmiento, A. Ramos-Cormenzana. Studies on antibacterial activity of waste waters from olive oil mills (alpechin): Inhibitory activity of phenolic and fatty acids. Chemosphere, 1990, 20, 423-432.
【31】 D. Ma, S. Huang, W. Chen, S. Hu, F. Shi, K. Fan. Self-Assembled Three-Dimensional Hierarchical Umbilicate Bi2WO6 Microspheres from Nanoplates: Controlled Synthesis, Photocatalytic Activities, and Wettability. Journal of Physical Chemistry C, 2009, 113, 4369-4374.
【32】 P. Pawinrat, O. Mekasuwandumrong, J. Panpranot. Synthesis of Au–ZnO and Pt–ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes.
181
Catalysis Communications, 2009, 10, 1380-1385.
【33】 X. Lin, T. Huang, F. Huang, W. Wang, J. Shi. Photocatalytic activity of a Bi-based oxychloride Bi4NbO8Cl. Journal of Materials Chemistry, 2007, 17, 2145-2150.
【34】 W.L. Huang, Q. Zhu. Structural and electronic properties of BiOX (X=F, Cl, Br, I) considering Bi 5f states. Computational Materials Science, 2009, 46, 1076-1084.
【35】 X. Xiao, W.D. Zhang. Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity. Journal of Materials Chemistry, 2010, 20, 5866-5870
【36】 J. Cao, X. Li, H. Lin, B. Xu, B. Luo, S. Chen. Low temperature synthesis of novel rodlike Bi5O7I with visible light photocatalytic performance. Materials Letters, 2012, 76, 181-183.
【37】 X. Xiao, C. Xing, G. He, X. Zuo, J. Nan, L. Wang. Solvothermal synthesis of novel hierarchical Bi4O5I2 nanoflakes with highly visible light photocatalytic performance for the degradation of 4-tert-butylphenol. Applied Catalysis B: Environmental, 2014, 148-149, 154-163.
【38】 C. Yu, J.C. Yu, C. Fan, H. Wen, Shengjie Hu. Synthesis and characterization of Pt/BiOI nanoplate catalyst with enhancedactivity under visible light irradiation. Materials Science and Engineering B, 2010, 166, 213-219.
【39】 Z. Liu, J. Fangn, W. Xu, X. Xu, S. Wu, X. Zhu. Low temperature hydrothermal synthesis of Bi2S3 nanorods using BiOI nanosheets as self-sacrificing templates. Materials Letters, 2012, 88, 82-85.
【40】 Xi. Zhang, L. Zhang, T. Xie, D. Wang. Low-Temperature Synthesis and High Visible-Light-Induced Photocatalytic Activity of BiOI/TiO2
182
Heterostructures. Journal of Physical Chemistry C, 2009, 113, 7371-7378.
【41】 H. Wang, X. Yuan, Y. Wu, H. Huang, X. Peng, G. Zeng, H. Zhong, J. Liang, M.M. Ren. Graphene-based materials: Fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation. Advances in Colloid and Interface Science, 2013, 195-196, 19-40.
【42】 Y. Jiang, H. Lina, W. Chung, Y. Dai, W. Lin, C. Chen. Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible-light photocatalytic degradation of crystal violet. Journal of Hazardous Materials, 2015, 28, 787-805.
【43】 Department of Science Application and Dissemination, NationaK.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim. A roadmap for graphene. Nature, 2012, 490, 192-200.
【44】 X. Zhoua, T.J. Shia, J. Wua, H. Zhoua. (001) Facet-exposed anatase-phase TiO2 nanotube hybrid reducedgraphene oxide composite: Synthesis, characterization andapplication in photocatalytic degradation. Applied Surface Science, 2013, 287, 359-368.
【45】 S.Y. Dong, Y.R. Cui , Y.F. Wang, Y.K. Li, L.M. Hu, J.Y. Sun, J.H. Sun. Designing three-dimensional acicular sheaf shaped BiVO4/reduced graphene oxide composites for efficient sunlight-driven photocatalytic degradation of dye wastewater. Chemical Engineering Journal, 2014, 249, 102-110.
【46】 W.S. Hummers, R.E. Offerman. Preparation of Graphitic Oxides. Journal of the American Chemical Society, 1958, 80, 1339.
【47】 J. Chen, J. Zhu, Z. Da, H. Xu, , J. Yan, H. Ji, H. Shu, H. Li. Improving the photocatalytic activity and stability of graphene-like BN/AgBr
183
composites. Applied Surface Science, 2014, 313, 1-9. 【48】 C. Cui, Y. Wang, D. Liang, W. Cui, H. Hu, B. Lu, S. Xu,X. Li, C. Wang, Yu Yang. Photo-assisted synthesis of Ag3PO4/reduced graphene oxide/Agheterostructure photocatalyst with enhanced photocatalytic activityand stability under visible light. Applied Catalysis B: Environmental, 2014, 158-159, 150-160
【49】 Z. Zhao, Y. Sun, F. Dong .Graphitic carbon nitride based nano composites: A review. Nanoscale, 2015, 7, 15-37.
【50】 J. Fu, Y. Tian, B. Chang, F. Xi, X. Dong. BiOBr–carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism. Journal of Materials Chemistry, 2012, 22, 21159-21166.
【51】 Y. Tian, B. Chang, J. Lu, J. Fu, F. Xi, X. Dong. Hydrothermal Synthesis of Graphitic Carbon Nitride–Bi2WO6 Heterojunctions with Enhanced Visible Light Photocatalytic Activities. ACS Applied Materials & Interfaces, 2013, 5, 7079-7085.
【52】 H. Li, J. Liu, W. Hou, N. Du, R. Zhang, X. Tao. Synthesis and characterization of g-C3N4/Bi2MoO6 heterojunctionswith enhanced visible light photocatalytic activity. Applied Catalysis B: Environmental, 2014, 160-161, 89-97.
【53】 B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, W. Schnick Melem (2,5,8-Triamino-tri-s-triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride: Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies. Journal of the American Chemical Society, 2003, 125,10288-10300.
【54】 C.C. Chen, S.L. Chung, D.M. Fu, S.W. Chyan. Photooxidative
184
N-de-ethylation of anionic triarylmethane dye (sulfan blue) in titanium dioxide dispersions under UV irradiation. The Journal of Hazardous Materials, 2006, 137, 1600-1607.
【55】 H. Liu, Y. Su, Z. Chen, Z. Jin, Y. Wang. Bi7O9I3/reduced graphene oxide composite as an efficient visible-light-driven photocatalyst for degradation oforganic contaminants. Journal of Molecular Catalysis A: Chemical, 2014, 391, 175-182.
【56】 X. Zhang, Z.H. Ai, F.L. Jia, L.Z. Zhang. Generalized One-Pot Synthesis, Characterization, and Photocatalytic Activity of Hierarchical BiOX (X = Cl, Br, I) Nanoplate Microspheres. Journal of Physical Chemistry C, 2008, 112, 747-753.
【57】 Y.J. Wang, R. Shi, J. Lin, Y.F. Zhu. Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization. Applied Catalysis B: Environmental, 2010, 100, 179-183.
【58】 C. Nethravathi, M. Rajamathi. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon, 2008, 46, 1994-1998.
【59】 Y.X. Xu, H. Bai, G.W. Lu, C. Li, G.Q. Shi. Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. Journal of the American Chemical Society, 2008, 130,5856-5857.
【60】 L. Song, S. Zhang, Q. Wei. Porous BiOI Sonocatalysts: Hydrothermal Synthesis, Characterization,Sonocatalytic, and Kinetic Properties. Industrial & Engineering Chemistry Research, 2012, 51, 1193-1197.
【61】 X. Xiao, C. Liu, R. Hu, X. Zuo, J. Nan, L. Lia and L. Wang.
185
Oxygen-rich bismuth oxyhalides: generalized one-pot synthesis, bandstructures and visible-light photocatalytic properties. Journal of Materials Chemistry, 2012, 22, 22840-22843.
【62】 T.B. Li, G. Chen, C. Zhou, Z.Y. Shen, R.C. Jin , J.X. Sun. New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances. Dalton Transactions, 2011, 40, 6751-6758.
【63】 S. Huang, Y. Jiang, S. Chou, Y. Dai, C. Chen. Synthesis, characterization, photocatalytic activity of visible-light-responsive photocatalysts BiOxCly/BiOmBrn by controlled hydrothermal method. Journal of Molecular Catalysis A: Chemical, 2011,391, 105-120.
【64】 F. Wang, K. Zhang. Reduced graphene oxide-TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. Journal of Molecular Catalysis A: Chemical, 2011, 345, 101-107.
【65】 J.M. Song, C.J. Mao, H.L. Niu, Y.H. Shen, S.Y. Zhang. Hierarchical structured bismuth oxychlorides: self-assembly from nanoplates to nanoflowers via a solvothermal route and their photocatalytic properties. CrystEngComm, 2010, 12, 3875-3881.
【66】 S. Kumar, T. Surendar, A. Baruah, V. Shanker. Synthesis of a novel and stable g-C3N4-Ag3PO4 hybrid nanocomposite photocatalyst and study of the pho-tocatalytic activity under visible light irradiation. Journal of Molecular Catalysis A: Chemical, 2013, 1, 5333-5340.
【67】 S.C. Yan, Z.S. Li, Z.G. Zou. Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine. Langmuir, 2009, 25, 10397–10401.
【68】 M. S. Silverstein, Y. Najary, Y. Lumelsky, I.V. Lampe, G.S. Grader,
186
G.E. Shter. Complex formation and degradation in poly (acrylonitrile- co-vinyl acetate) containing metal nitrates. Polymer, 2004, 45, 937-947
【69】 G. Zhang, J. Zhang, M. Zhang, X. Wang. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. Journal of Materials Chemistry, 2012,22, 8083-8091.
【70】 J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. Journal of Materials Chemistry, 2011, 21, 14398-14401.
【71】 Li. Ye, J. Liu, Z. Jiang, T. Peng, L. Zan. Facets coupling of BiOBr- g-C3N4 composite photocatalyst forenhanced visible-light-driven photocatalytic activity. Applied Catalysis B: Environmental, 2013, 142- 143, 1-7.
【72】 G.T. Li, K.H. Wong, X.W. Zhang, C. Hu, J.C. Yu, R.C.Y. Chan, P.K. Wong. Degradation of acid orange 7 using magnetic AgBr under visible light: the roles of oxidizing species. Chemosphere, 2009, 76, 1185-1191.
【73】 N. Zhang, S.Q. Liu, X.Z. Fu, Y.J. Xu. Synthesis of M@TiO2 (M = Au, Pd, Pt) core–shell nanocomposites with tunable photoreactivity. Journal of Physical Chemistry C, 2011, 115, 9136-9145.
【74】 X. Yang, J. Qin, Y. Li, R. Zhang, R. Zhang. Graphene-spindle shaped TiO2 mesocrystal composites: Facile synthesis and enhanced visible light photocatalytic performance. Journal of Hazardous Materials, 2013, 261, 342-350.
【75】 H.J. Fan, S.T. Huang, W.H. Chung, J.L. Jan, W.Y. Lin, C.C. Chen. Degradation pathways of crystal violet by Fenton and Fenton-like
187
systems: Condition optimization and intermediate separation and identification. Journal of Hazardous Materials, 2009, 171, 1032-1044.
【76】 S.T. Huang, W.W. Lee, J.L. Chang, W.S. Huang, S.Y. Chou, C.C. Chen. Hydrothermal synthesis of SrTiO3 nanocubes: Characterization, photocatalytic activities, and degradation pathway. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1927-1936.
【77】 H.J. Fan, C.S. Lu, W.W. Lee, M.R Chiou, C.C. Chen. Mechanistic pathways differences between P25-TiO2 and Pt-TiO2 mediated CV photodegradation. Journal of Hazardous Materials, 2011, 185, 227-235.
【78】 W.W. Lee, S.T. Huang, J.L. Chang, J.Y. Chen, M.C. Cheng, C.C. Chen. Photodegradation of CV over nanocrystalline bismuth tungstate prepared by hydrothermal synthesis. Journal of Molecular Catalysis A: Chemical, 2012, 361-362, 80-90.
【79】 Y.H. Liao, J.X. Wang, J.S. Lin, W.H. Chung, W.Y. Lin, C.C. Chen. Synthesis, photocatalytic activities and degradation mechanism of Bi2WO6 toward crystal violet dye. Catalysis Today, 2011, 174, 148-159.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊