跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/18 06:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林成財
研究生(外文):Cheng-Tsai Lin
論文名稱:對稱雙盤上的Schwarz引理
論文名稱(外文):Schwarz Lemma on Symmetrized Bidisc
指導教授:葉芳柏葉芳柏引用關係
指導教授(外文):Fang-Bo Yeh
學位類別:碩士
校院名稱:東海大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:37
中文關鍵詞:對稱雙盤spectral Nevanlinna-Pick問題Schwarz 引理Caratheodory 距離Caratheodory 距離Poincare 距離
外文關鍵詞:spectral Nevanlinna-Pick problemPoincare distanceCaratheodory distanceKobayashi distancessymmetrized bidiscSchwarz Lemma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
在此篇論文中吾人討論在對稱雙盤$\Gamma$上之Schwarz
引理及$\Gamma$上之特殊平的問題如下:
給定$\alpha_{2}\in\mathbb{D},~\alpha_{2}\neq0~$
且 $(s_{2},p_{2})\in\Gamma$, 找一個解析函數
$\varphi:\mathbb{D}\rightarrow\Gamma~~$使得
$\varphi(\lambda)=(s(\lambda),p(\lambda))~~~$ 且滿足
$$\varphi(0)=(0,0),~\varphi(\alpha_{2})=(s_{2},p_{2})$$
由Carath\'{e}odory與Kobayashi距離相等的條件下,
及Schur's定理吾人成功的建構出一個滿足此問題的解析函數$\varphi$.
\begin{flushleft}
關鍵字:Spectral Nevanlinna-Pick 插值, Poincar\'{e} 距離,
Carath\'{e}odory 距離, Kobayashi 距離,對稱雙盤, Schwarz 引理.

Let $\Gamma$ denote the set of symmetrized bidisc. In this thesis
we discuss the Schwarz lemma on $\Gamma$ also known as the special
flat problem on $\Gamma$ as:
Given
$\alpha_{2}\in\mathbb{D},~\alpha_{2}\neq0~$
and $(s_{2},p_{2})\in\Gamma$, find an analytic function
$\varphi:\mathbb{D}\rightarrow\Gamma$with
$\varphi(\lambda)=(s(\lambda),p(\lambda))$ satisfies
$$\varphi(0)=(0,0),~\varphi(\alpha_{2})=(s_{2},p_{2})$$
Based on the equality of Carath\'{e}odory and Kobayashi distances,
and the Schur's theorem, we construct an analytic function
$\varphi$ to solve this problem.
Keywords: Spectral Nevanlinna-Pick interpolation,
Poincar\'{e} distance, Carath\'{e}odory distance, Kobayashi
distance, Symmetrized bidisc, Schwarz lemma.

1 Introduction 1
1.1 Notation 1
1.2 Motivation 3
2.Mathematical Preliminaries 11
3.Main Results 14
3.1 Some properties of $\Gamma$ 14
3.2 The ideal to construct $\varphi$ 20
3.3 Realization of Symmetrized Bidisc $\Gamma$ 25
4 Concluding Remarks 33
Appendex 34
References 36

J. Agler and N.J. Young, A Schwarz lemma for the symmetrized
bidisc, {\it Bull. London Math.} Soc. {\bf33}, 2001,175--186.
J. Agler and N.J. Young, The two-point spectral Nevalinna-Pick
problem, {\it Integral Equations Operator Theory} {\bf 37}, 2000,
375--385.
J. Agler and N.J. Young, A commutant lifting theorem for a domain
in $\mathbb{C}^{2}~~$ and spectral interpolation, {\it Journal of Functional Analysis} {\bf 161} 1999, 452-477.
J. Agler, On the Representation of Certain Holomophic Functions
Deffined on a Polydisc, {\it Operator Theory: Advances and
Applications}, Vol. 48, pp. 47-66 1990.
S. Dineen, {\it The Schwarz Lemma}, Oxford University Press, Oxford, 1989.
J.C. Doyle, J.wall and G. Stein, Performance and
robustness analysis for structured uncertainty, in {\it Proc. of
the 21st IEEE Conf. Decision Contr.}, pp. 629-636, 1982.
S.G. Krantz, {\it Complex Analysis: The Geometric Viewpoint}, Washington
University in St. Louis, 1990.
K. Zhou, J.C. Doyle, and K. Glover, {\it Robust and Optimal Control},
Prentice-Hall, New Jersey 1996.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top