|
1. S. Khorasanizadeh. (2004). The nucleosome : from genomic organization to genomic regulation. Cell 116, 259-272. 2. C. L. Peterson and M. A. Laniel. (2004). Histones and histone modifications. Curr. Biol. 14, R546-R551. 3. G. J. Narlikar, H. Y. Fan and R. E. Kingston. (2002). Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475-487. 4. L. Mohrmann, C. P. Verrijzer. (2005). Composition and function specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochim. Biophys. Acta. 1681, 59-73. 5. A. Saha, J. Wittmeyer and B. R. Cairns. (2002). Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes & Dev. 16, 2120-2134. 6. M. L. Phelan, S. Sif, G. J. Narlikar and R. E. Kingston. (1999). Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol. Cell 3, 247-253. 7. A. Saha, J. Wittmeyer and B. R. Cairns. (2005). Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nature Struct. Mol. Biol. 12, 747-755. 8. C. R. Clapier, G. Langst, D. F. Corona, P. B. Becker and K. P. Nightingale. (2001). Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol. Cell. Biol. 21, 875-883. 9. I. Whitehouse, C. Stockdale, A. Flaus, M. D. Szczelkun and T. Owen-Hughes. (2003). Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. Mol. Cell. Biol. 23, 1935-1945. 10. M. Kasten, H. Szerlong, H. Erdjument-Bromage, P. Tempst, M. Werner and B. R. Cairns. (2004). Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J. 23, 1348-1359. 11. L. Breeden and K. Nasmyth. (1987). Cell cycle control of the yeast HO gene:Cis- and Trans-acting regulators. Cell 48, 389-397. 12. L. Neigeborn and M. Carlson. (1984). Genes affecting the regulation of SUC2 gene expression by glucose repression in Sacchromyces cerevisiae. Genetics 108, 845-858. 13. M. J. Stern, R. Jensen and I. Herskowitz. (1987). Five SWI genes are reguired for expression of the HO gene in yeast. J. Mol. Biol. 178, 853-868. 14. P. W. Sternberg, M. J. Stern, I. Clark and I. Herskowitz. (1987). Activation of the yeast HO gene by release from multiple negative controls. Cell 48, 567-577. 15. J. Recht and M.A. Osley. (1999). Mutations in both the structured domain and N-terminus of histone H2B bypass the requirement for Swi-Snf in yeast. EMBO J. 18, 229-240. 16. K. E. Neely and J. L. Workman. (2002). The complexity of chromatin remodeling and its links to cancer. Biochim. Biophys. Acta. 1603, 19-29. 17. C. L. Smith, R. Horowitz-Scherer, J. F. Flanagan, C. L. Woodcock and C. L. Peterson. (2003). Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nature Struct. Biol. 10, 141-145. 18. J. N. Hirschhorn, S. A. Brown, C. D. Clark-Adams and F. Winston. (1992). Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes & Dev. 6, 2288-2298. 19. P. Sudarsanam, V. R. Iyer, P. O. Brown and F. Winston. (2000). Whole-genome expression analysis of snf/swi mutants of Sacchromyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 97, 3364-3369. 20. B. Chai, J. Huang, B. R. Cairns and B. C. Laurent. (2005). Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes & Dev. 19, 1656-1661. 21. N. Yudkovsky, C. Logie, S. Hahn and C. L. Peterson. (1999). Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators. Genes & Dev. 13, 2369-2374. 22. Y. Zhang, C. L. Smith, A. Saha, S. W. Grill, S. Mihardja, S. B. Smith, B. R. Cairns, C. L. Peterson and C. Bustamante. (2006). DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol. Cell 24, 559-568. 23. B. R. Cairns, Y. Lorch, Y. Li, M. Zhang, L. Lacomis, H. Erdjument-Bromage, P. Tempst, J. Du, B. Laurent and R. D. Kornberg. (1996). RSC, an essential, abundant chromatin-remodeling complex. Cell 87, 1249-1260 24. J. Du, I. Nasir, B. K. Benton, M. P. Kladde and B. C. Laurent. (1998). Sth1, a Sacchromyces cerevisiae Snf2p/Swi2p homolog, is an essential ATPase in RSC and differs from Snf/Swi in its interactions with histones and chromatin-associated proteins. Genetics 150, 987-1005. 25. H. Szerlong, A. Saha and B. R. Cairns. (2003). The nuclear actin-related proteins Arp7 and Arp9:a dimeric module that cooperates with architectural proteins for chromatin remodeling. EMBO J. 22, 3175-3187. 26. Y. Cao, B. R. Cairns, R. D. Kornberg and B. C. Laurent. (1997). Sfh1p, a component of a novel chromatin-remodeling complex, is required for cell cycle progression. Mol. Cell. Biol. 17, 3323-3334. 27. B. R. Cairns, A. Schlichter, H. Erdjument-Bromage, P. Tempst, R. D. Kornberg and F. Winston. (1999). Two functionally distinct forms of the RSC chromatin-remodeling complex, containing essential AT hook, BAH and Bromo domains. Mol. Cell 4, 715-723. 28. H. H. Ng, F. Robert, R. A. Young and K. Struhl. (2002). Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex. Genes & Dev. 16, 806-819. 29. M. C. V. L. Wong, S. R. S. Scott-Drew, M. J. Hayes, P. J. Howard and J. A. H. Murray. (2002). RSC2, encoding a component of the RSC chromatin remodeling complex, is essential for 2μm plasmid maintenance in Sacchromyces cerevisiae. Mol. Cell. Biol. 22, 4218-4229. 30. M. L. Angus-Hill, A. Schlichter, D. Roberts, H. Erdjument-Bromage, P. Tempst and B. R. Cairns. (2001). A Rsc3/Rsc30 zinc cluster dimer reveals novel roles for the chromatin remodeler RSC in gene expression and cell control. Mol. Cell 7, 741-751. 31. M. Damelin, I. Simon, T. I. Moy, B. Wilson, S. Komili, P. Tempst, F. P. Roth, R. A. Young, B. R. Cairns and P. A. Silver. (2002). The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in response to stress. Mol. Cell 9, 563-573. 32. J. Huang and B. C. Laurent. (2004). A role for the RSC chromatin remodeler in regulating cohesion of sister chromatid arms. Cell cycle 3, 973-975. 33. E. Y. Shim, J. L. Ma, J. H. Oum, Y. Yanez and S. E. Lee. (2005). The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. Mol. Cell. Biol. 25, 3934-3944. 34. S. H. Askree, T. Yehuda, S. Smolikov, R. Gurevich, J. Hawk, C. Coker, A. Krauskopf, M. Kupiec and M. J. McEachern. (2004). A genome-wide screen for Sacchromyces cerevisiae deletion mutants that affect telomere length. Proc. Natl. Acad. Sci. U.S.A. 101, 8658-8663. 35. J. Huang, J. Hsu and B. C. Laurent. (2004). The RSC chromatin-remodeling complex is required for cohesin’s association with chromosome arms. Mol. Cell 13, 739-750. 36. J. Hsu, J. Huang, P. B. Meluh and B. C. Laurent. (2003). The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation. Mol. Cell. Biol. 23, 3202-3215. 37. C. Campsteijn, A. J. Wijnands-Collin and C. Logie. (2007). Reverse genetic analysis of the yeast RSC chromatin remodeler reveals a role for RSC3 and SNF5 homolog 1 in ploidy maintenance. PloS. Genet. 3, 947-957. 38. M. Yukawa, S. Katoh, T. Miyakawa and E. Tsuchiya. (1999). Nps1/Sth1p, a component of an essential chromatin-remodeling complex of Sacchromyces cerevisiae, is required for the maximal expression of early meiotic genes. Genes Cells 4, 99-110. 39. H. Koyama, T. Nagao, T. Inai, K. Miyahara, Y. Hayasida, K. Shirahige and E. Tsuchiya. (2004). RSC nucleosome-remodeling complex plays prominent roles in transcriptional regulation throughout budding yeast gametogenesis. Biosci. Biotechnol. Biochem. 68, 909-919. 40. I. Treich and M. Carlson. (1997). Interaction of a Swi3 homolog with Sth1 provides evidence for a Swi/Snf-related complex with an essential function in Sacchromyces cerevisiae. Mol. Cell. Biol. 17, 1768-1775. 41. R. Aasland, A. F. Stewart and T. Gibson. (1996). The SANT domain:a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends Biochem. Sci. 21, 87-88. 42. W. Wang, Y. Xue, S. Zhou, A. Kuo, B. R. Cairns and G. R. Crabtree. (1996). Diversity and speicialization of mammalian SWI/SNF complexes. Genes & Dev. 10, 2117-2130. 43. T. Grune, J. Brzeski, A. Eberharter, C. R. Clapier, D. F. V. Corona, P. B. Becker and C. W. Muller. (2003). Crystal structure and functional analysis of a nuclesome recognition module of the remodeling factor ISWI. Mol. Cell 12, 449-460. 44. L. Aravind and L. M. Iyer. (2002). The SWIRM domain:a conserved module found in chromosomal proteins points to novel chromatin-modifying activities. Genome Biol. 3, 0039.1-0039.7. 45. N. Tochio, T. Umehara, S. Koshiba, M. Inoue, T. Yabuki, M. Aoki, E. Seki, S. Watanabe, Y. Tomo, M. Hanada, M. Ikari, M. Sato, T. Terada, T. Nagase, O. Ohara, M. Shirouzu, A. Tanaka, T. Kigawa and S. Yokoyama. (2006). Solution structure of the SWIRM domain of human histone demethylase LSD1. Structure 14, 457-468. 46. C. Qian, Q. Zhang, S. Li, L. Zeng, M. J. Walsh and M. Zhou. (2005). Structure and chromosomal DNA binding of the SWIRM domain. Nature Struct. & Mol. Biol. 12, 1078-1085. 47. G. Da, J. Lenkart, K. Zhao, R. Shiekhattar, B. R. Cairns and R. Marmorstein. (2006). Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes. Proc. Natl. Acad. Sci. U.S.A. 103, 2057-2062. 48. J. D. Thompson, D. G. Higgins and T. J. Gibson. (1994). CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673-4680. 49. T. Inai, M. Yukawa and E. Tsuchiya. (2007). Interplay between chromatin and trans-acting factors on the IME2 promoter upon induction of the gene at the onset of meiosis. Mol. Cell. Biol. 27, 1254-1263. 50. Y. M. Lu, Y. R. Lin, A. Tsai, Y. S. Hsao, C. C. Li and M. Y. Cheng. (2003). Dissecting the pet18 mutation in Sacchromyces cerevisiae:HTL1 encodes a 7-kDa polypeptide that interacts with components of the RSC complex. Mol. Gen. Genomics 269, 321-330. 51. S. L. Wang and M. Y. Cheng. (2003). Study of the relationship between yeast Htl1p and RSC complex. Institute of Genetics, School of Life Sciences, National Yang-Ming University. 52. C. C. Lin and M. Y. Cheng. (2005). Analysis of yeast RSC8 mutations affecting Htl1p binding. Institute of Genetics, School of Life Sciences, National Yang-Ming University. 53. J. Y. Hsu. (2006). Study of the relationship between Htl1p and RSC complex in Sacchromyces cerevisiae. Institute of Genetics, School of Life Sciences, National Yang-Ming University. 54. C. Florio, M. Moscariello, S. Ederle, R. Fasano, C. Lanzuolo and J. F. Pulitzer. (2007). A study of biochemical and functional interactions of Htl1p, a putative component of the Sacchromyces cerevisiae, Rsc chromatin-remodeling complex. Gene 395, 72-85. 55. J. Chen and T. K. Archer. (2005). Regulating SWI/SNF subunit levels via protein-protein interactions and proteasomal degradation:BAF155 and BAF170 limit expression of BAF57. Mol. Cell. Biol. 25, 9016-9027. 56. G. Skiniotis, D. Moazed and T. Walz. (2007). Acetylated histone tail peptides induce structural rearrangements in the RSC chromatin remodeling complex. J. Biol. Chem. 282, 20804-20808. 57. H. Ferreira, A. Flaus and T. Owen-Hughes. (2007). Histone modifications influence the action of Snf2 family remodeling enzymes by different mechanisms. J. Mol. Biol. 374, 563-579. 58. A. Tsai and Y. M. Cheng. (2002). Study the relationship between yeast Htl1p and RSC complex. Institute of Genetics, School of Life Sciences, National Yang-Ming University.
|