跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/19 16:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯子權
研究生(外文):Tzu-Chuan Hou
論文名稱:酵母菌Rsc8p的SWIRMdomain在RSC染色質重塑複合物中所扮演的角色
論文名稱(外文):Roles of SWIRM domain of yeast Rsc8p in RSC chromatin remodeling complex
指導教授:鄭明媛
指導教授(外文):Ming-Yuan Cheng
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學暨基因體科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
中文關鍵詞:RSC染色質重塑SWIRMRsc8
外文關鍵詞:RSCchromatin remodelingSWIRMRsc8
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
蛋白質與纏繞成染色質絲的DNA的交互作用很可能會被核小體列或是更高級的結構所阻擋。為了解決此問題,在酵母菌Sacchromyces cerevisiae中的三磷酸腺苷依賴之染色質重塑複合物 (ATP-dependent chromatin remodeling complex),如SWI/SNF和其相似物RSC,被證實涉及干擾核小體的結構。RSC8譯碼出558個胺基酸的蛋白質並且與SWI/SNF複合物中的Swi3p有30%的相同性及52%的相似性。不同於Swi3p的是,Rsc8p對於細胞存活的進行是必需的 (essential)。Swi3p的SWIRM主域被證實是一個能與DNA結合並且有可能與蛋白質結合的主域。為了想找出是否Rsc8的SWIRM主域也能結合DNA及影響到複合物的完整性,在本篇論文中,利用位置導向突變技術 (site-directed mutagenesis),產生Rsc8p上分別相對於Swi3p SWIRM主域中K383及K387的A158及K162的置換突變,來觀察SWIRM主域對於Rsc8結合DNA的性質以及RSC複合物完整性的影響。並且透過觀察比較野生型菌株與突變株的表型,檢驗是否Rsc8p的A158及K162的置換突變在功能上有重要影響。在本篇論文中,結果指出與野生型菌株比較下,(1) A158D、A158K、K162A、K162D與A158/K162的雙重突變,皆沒有顯著的生長情形缺失,(2)與染色質絲的連結情形也沒有明顯改變,(3)RSC複合物完整性也不受影響。
The interaction of proteins with DNA packaged into chromatin may be blocked by the nucleosome arrays and the higher order structure of chromatin. To solve this problem, in yeast Sacchromyces cerevisiae, ATP-dependent chromatin remodeling complex, such as SWI/SNF and its homolog RSC, have been proven to be involved in the perturbation of nucleosome structure. RSC8 encodes a polypeptide of 558 amino acids residues and is 30% identical and 52% similar to that of Swi3p in the SWI/SNF complex. Unlike Swi3p, Rsc8p is essential for cell viability. The SWIRM domain of Swi3p has been shown to be a DNA- and possibly a protein-binding domain. To investigate if SWIRM domain of Rsc8 could bind DNA and affects complex integrity, the influence of SWIRM domain on DNA-binding property of Rsc8 and the RSC complex integrity are evaluated , using the site-directed mutagenesis to generate substitution mutations on Rsc8p A158 and K162 relative to Swi3p K383 and K387 on the SWIRM domain. To examine if the substitution mutations on A158 and K162 of Rsc8p affect its function, the phenotypes of the Rsc8p mutants are examined and were compared with that of the wild type cells. The results demonstrated that, (1) A158D, A158K, K162A, K162D and the double mutants on A158/K162 showed no significant growth defect, (2) the chromatin association have not changed and (3) the RSC complex integrity are not affected.
中文摘要 I
英文摘要 II

緒論 1
核小體 (nucleosome) 的組成及功能 1
三磷酸腺苷依賴之染色質重塑複合物 (ATP-dependent chromatin
remodeling complex) 2
SWI/SNF複合物與RSC複合物之關係 3
RSC複合物之組成及功能 4
RSC8與SWIRM domain 5

實驗材料 7
一、酵母菌品系 (Saccharomyces cerevisiae strains) 7
二、大腸桿菌品系 (Escherichia coli strains) 7
三、寡核甘酸引子 (Oligonucleotide primers) 7
四、質體 (Plasmids) 8
五、培養基及培養液 (Media and broth) 11

實驗方法 12
1. 大腸桿菌質體轉殖 (Escherichia coli transformation) 12
2. 小量製備質體DNA (Mini-preparation of plasmid DNA) 12
3. 聚合酶連鎖反應 (Polymerase chain reaction; PCR) 13
4. 位置導向突變技術 (Site-directed mutagenesis) 13
5. 酵母菌質體轉殖 (Yeast transformation) 13
6. Tet-Off技術 (Tet-Off technique) 14
7. 點菌分析 (Spot assay) 14
8. 染色質連結分析 (Chromatin association assay) 14
9. 成孢作用及四分體孢子分析 (Sporulation and tetrad analysis) 15
10. 共同免疫沉澱 (Co-immunoprecipitation) 15
11. SDS-PAGE電泳分析 (Sodium dodecyl-sulfate polyacrylamide
gel electrophoresis) 16
12. 西方漬墨法 (Western blotting) 17

實驗結果 18
1. rsc8胺基酸置換突變株相較於野生型菌株生長情形未改變 18
2. rsc8胺基酸置換突變株與染色質絲連結情形未改變 21
3. rsc8胺基酸置換突變株複合物完整性沒有被影響 22

討論 23
rsc8胺基酸置換突變株對於酵母菌生長情形的影響 23
rsc8胺基酸置換突變株與染色質絲的連結 25
rsc8胺基酸置換突變株中RSC複合物完整性 27
Rsc8p SWIRM主域在RSC複合物中可能扮演的角色 29

參考文獻 32

結果圖表 40
1. S. Khorasanizadeh. (2004). The nucleosome : from genomic organization to genomic regulation. Cell 116, 259-272.
2. C. L. Peterson and M. A. Laniel. (2004). Histones and histone modifications. Curr. Biol. 14, R546-R551.
3. G. J. Narlikar, H. Y. Fan and R. E. Kingston. (2002). Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475-487.
4. L. Mohrmann, C. P. Verrijzer. (2005). Composition and function specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochim. Biophys. Acta. 1681, 59-73.
5. A. Saha, J. Wittmeyer and B. R. Cairns. (2002). Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes & Dev. 16, 2120-2134.
6. M. L. Phelan, S. Sif, G. J. Narlikar and R. E. Kingston. (1999). Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol. Cell 3, 247-253.
7. A. Saha, J. Wittmeyer and B. R. Cairns. (2005). Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nature Struct. Mol. Biol. 12, 747-755.
8. C. R. Clapier, G. Langst, D. F. Corona, P. B. Becker and K. P. Nightingale. (2001). Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol. Cell. Biol. 21, 875-883.
9. I. Whitehouse, C. Stockdale, A. Flaus, M. D. Szczelkun and T. Owen-Hughes. (2003). Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. Mol. Cell. Biol. 23, 1935-1945.
10. M. Kasten, H. Szerlong, H. Erdjument-Bromage, P. Tempst, M. Werner and B. R. Cairns. (2004). Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J. 23, 1348-1359.
11. L. Breeden and K. Nasmyth. (1987). Cell cycle control of the yeast HO gene:Cis- and Trans-acting regulators. Cell 48, 389-397.
12. L. Neigeborn and M. Carlson. (1984). Genes affecting the regulation of SUC2 gene expression by glucose repression in Sacchromyces cerevisiae. Genetics 108, 845-858.
13. M. J. Stern, R. Jensen and I. Herskowitz. (1987). Five SWI genes are reguired for expression of the HO gene in yeast. J. Mol. Biol. 178, 853-868.
14. P. W. Sternberg, M. J. Stern, I. Clark and I. Herskowitz. (1987). Activation of the yeast HO gene by release from multiple negative controls. Cell 48, 567-577.
15. J. Recht and M.A. Osley. (1999). Mutations in both the structured domain and N-terminus of histone H2B bypass the requirement for Swi-Snf in yeast. EMBO J. 18, 229-240.
16. K. E. Neely and J. L. Workman. (2002). The complexity of chromatin remodeling and its links to cancer. Biochim. Biophys. Acta. 1603, 19-29.
17. C. L. Smith, R. Horowitz-Scherer, J. F. Flanagan, C. L. Woodcock and C. L. Peterson. (2003). Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nature Struct. Biol. 10, 141-145.
18. J. N. Hirschhorn, S. A. Brown, C. D. Clark-Adams and F. Winston. (1992). Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes & Dev. 6, 2288-2298.
19. P. Sudarsanam, V. R. Iyer, P. O. Brown and F. Winston. (2000). Whole-genome expression analysis of snf/swi mutants of Sacchromyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 97, 3364-3369.
20. B. Chai, J. Huang, B. R. Cairns and B. C. Laurent. (2005). Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes & Dev. 19, 1656-1661.
21. N. Yudkovsky, C. Logie, S. Hahn and C. L. Peterson. (1999). Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators. Genes & Dev. 13, 2369-2374.
22. Y. Zhang, C. L. Smith, A. Saha, S. W. Grill, S. Mihardja, S. B. Smith, B. R. Cairns, C. L. Peterson and C. Bustamante. (2006). DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol. Cell 24, 559-568.
23. B. R. Cairns, Y. Lorch, Y. Li, M. Zhang, L. Lacomis, H. Erdjument-Bromage, P. Tempst, J. Du, B. Laurent and R. D. Kornberg. (1996). RSC, an essential, abundant chromatin-remodeling complex. Cell 87, 1249-1260
24. J. Du, I. Nasir, B. K. Benton, M. P. Kladde and B. C. Laurent. (1998). Sth1, a Sacchromyces cerevisiae Snf2p/Swi2p homolog, is an essential ATPase in RSC and differs from Snf/Swi in its interactions with histones and chromatin-associated proteins. Genetics 150, 987-1005.
25. H. Szerlong, A. Saha and B. R. Cairns. (2003). The nuclear actin-related proteins Arp7 and Arp9:a dimeric module that cooperates with architectural proteins for chromatin remodeling. EMBO J. 22, 3175-3187.
26. Y. Cao, B. R. Cairns, R. D. Kornberg and B. C. Laurent. (1997). Sfh1p, a component of a novel chromatin-remodeling complex, is required for cell cycle progression. Mol. Cell. Biol. 17, 3323-3334.
27. B. R. Cairns, A. Schlichter, H. Erdjument-Bromage, P. Tempst, R. D. Kornberg and F. Winston. (1999). Two functionally distinct forms of the RSC chromatin-remodeling complex, containing essential AT hook, BAH and Bromo domains. Mol. Cell 4, 715-723.
28. H. H. Ng, F. Robert, R. A. Young and K. Struhl. (2002). Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex. Genes & Dev. 16, 806-819.
29. M. C. V. L. Wong, S. R. S. Scott-Drew, M. J. Hayes, P. J. Howard and J. A. H. Murray. (2002). RSC2, encoding a component of the RSC chromatin remodeling complex, is essential for 2μm plasmid maintenance in Sacchromyces cerevisiae. Mol. Cell. Biol. 22, 4218-4229.
30. M. L. Angus-Hill, A. Schlichter, D. Roberts, H. Erdjument-Bromage, P. Tempst and B. R. Cairns. (2001). A Rsc3/Rsc30 zinc cluster dimer reveals novel roles for the chromatin remodeler RSC in gene expression and cell control. Mol. Cell 7, 741-751.
31. M. Damelin, I. Simon, T. I. Moy, B. Wilson, S. Komili, P. Tempst, F. P. Roth, R. A. Young, B. R. Cairns and P. A. Silver. (2002). The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in response to stress. Mol. Cell 9, 563-573.
32. J. Huang and B. C. Laurent. (2004). A role for the RSC chromatin remodeler in regulating cohesion of sister chromatid arms. Cell cycle 3, 973-975.
33. E. Y. Shim, J. L. Ma, J. H. Oum, Y. Yanez and S. E. Lee. (2005). The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. Mol. Cell. Biol. 25, 3934-3944.
34. S. H. Askree, T. Yehuda, S. Smolikov, R. Gurevich, J. Hawk, C. Coker, A. Krauskopf, M. Kupiec and M. J. McEachern. (2004). A genome-wide screen for Sacchromyces cerevisiae deletion mutants that affect telomere length. Proc. Natl. Acad. Sci. U.S.A. 101, 8658-8663.
35. J. Huang, J. Hsu and B. C. Laurent. (2004). The RSC chromatin-remodeling complex is required for cohesin’s association with chromosome arms. Mol. Cell 13, 739-750.
36. J. Hsu, J. Huang, P. B. Meluh and B. C. Laurent. (2003). The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation. Mol. Cell. Biol. 23, 3202-3215.
37. C. Campsteijn, A. J. Wijnands-Collin and C. Logie. (2007). Reverse genetic analysis of the yeast RSC chromatin remodeler reveals a role for RSC3 and SNF5 homolog 1 in ploidy maintenance. PloS. Genet. 3, 947-957.
38. M. Yukawa, S. Katoh, T. Miyakawa and E. Tsuchiya. (1999). Nps1/Sth1p, a component of an essential chromatin-remodeling complex of Sacchromyces cerevisiae, is required for the maximal expression of early meiotic genes. Genes Cells 4, 99-110.
39. H. Koyama, T. Nagao, T. Inai, K. Miyahara, Y. Hayasida, K. Shirahige and E. Tsuchiya. (2004). RSC nucleosome-remodeling complex plays prominent roles in transcriptional regulation throughout budding yeast gametogenesis. Biosci. Biotechnol. Biochem. 68, 909-919.
40. I. Treich and M. Carlson. (1997). Interaction of a Swi3 homolog with Sth1 provides evidence for a Swi/Snf-related complex with an essential function in Sacchromyces cerevisiae. Mol. Cell. Biol. 17, 1768-1775.
41. R. Aasland, A. F. Stewart and T. Gibson. (1996). The SANT domain:a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends Biochem. Sci. 21, 87-88.
42. W. Wang, Y. Xue, S. Zhou, A. Kuo, B. R. Cairns and G. R. Crabtree. (1996). Diversity and speicialization of mammalian SWI/SNF complexes. Genes & Dev. 10, 2117-2130.
43. T. Grune, J. Brzeski, A. Eberharter, C. R. Clapier, D. F. V. Corona, P. B. Becker and C. W. Muller. (2003). Crystal structure and functional analysis of a nuclesome recognition module of the remodeling factor ISWI. Mol. Cell 12, 449-460.
44. L. Aravind and L. M. Iyer. (2002). The SWIRM domain:a conserved module found in chromosomal proteins points to novel chromatin-modifying activities. Genome Biol. 3, 0039.1-0039.7.
45. N. Tochio, T. Umehara, S. Koshiba, M. Inoue, T. Yabuki, M. Aoki, E. Seki, S. Watanabe, Y. Tomo, M. Hanada, M. Ikari, M. Sato, T. Terada, T. Nagase, O. Ohara, M. Shirouzu, A. Tanaka, T. Kigawa and S. Yokoyama. (2006). Solution structure of the SWIRM domain of human histone demethylase LSD1. Structure 14, 457-468.
46. C. Qian, Q. Zhang, S. Li, L. Zeng, M. J. Walsh and M. Zhou. (2005). Structure and chromosomal DNA binding of the SWIRM domain. Nature Struct. & Mol. Biol. 12, 1078-1085.
47. G. Da, J. Lenkart, K. Zhao, R. Shiekhattar, B. R. Cairns and R. Marmorstein. (2006). Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes. Proc. Natl. Acad. Sci. U.S.A. 103, 2057-2062.
48. J. D. Thompson, D. G. Higgins and T. J. Gibson. (1994). CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673-4680.
49. T. Inai, M. Yukawa and E. Tsuchiya. (2007). Interplay between chromatin and trans-acting factors on the IME2 promoter upon induction of the gene at the onset of meiosis. Mol. Cell. Biol. 27, 1254-1263.
50. Y. M. Lu, Y. R. Lin, A. Tsai, Y. S. Hsao, C. C. Li and M. Y. Cheng. (2003). Dissecting the pet18 mutation in Sacchromyces cerevisiae:HTL1 encodes a 7-kDa polypeptide that interacts with components of the RSC complex. Mol. Gen. Genomics 269, 321-330.
51. S. L. Wang and M. Y. Cheng. (2003). Study of the relationship between yeast Htl1p and RSC complex. Institute of Genetics, School of Life Sciences, National Yang-Ming University.
52. C. C. Lin and M. Y. Cheng. (2005). Analysis of yeast RSC8 mutations affecting Htl1p binding. Institute of Genetics, School of Life Sciences, National Yang-Ming University.
53. J. Y. Hsu. (2006). Study of the relationship between Htl1p and RSC complex in Sacchromyces cerevisiae. Institute of Genetics, School of Life Sciences, National Yang-Ming University.
54. C. Florio, M. Moscariello, S. Ederle, R. Fasano, C. Lanzuolo and J. F. Pulitzer. (2007). A study of biochemical and functional interactions of Htl1p, a putative component of the Sacchromyces cerevisiae, Rsc chromatin-remodeling complex. Gene 395, 72-85.
55. J. Chen and T. K. Archer. (2005). Regulating SWI/SNF subunit levels via protein-protein interactions and proteasomal degradation:BAF155 and BAF170 limit expression of BAF57. Mol. Cell. Biol. 25, 9016-9027.
56. G. Skiniotis, D. Moazed and T. Walz. (2007). Acetylated histone tail peptides induce structural rearrangements in the RSC chromatin remodeling complex. J. Biol. Chem. 282, 20804-20808.
57. H. Ferreira, A. Flaus and T. Owen-Hughes. (2007). Histone modifications influence the action of Snf2 family remodeling enzymes by different mechanisms. J. Mol. Biol. 374, 563-579.
58. A. Tsai and Y. M. Cheng. (2002). Study the relationship between yeast Htl1p and RSC complex. Institute of Genetics, School of Life Sciences, National Yang-Ming University.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top