跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/30 18:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭裕德
研究生(外文):Yu-te Cheng
論文名稱:多元置換對直接冷卻RFeTiMB合金棒材之相變化及磁性之影響
論文名稱(外文):The effect of multi-element substitution on the magnetic properties of directly quenched RFeTiMB alloy rods (R = Nd and Pr; M=Nb and Zr)
指導教授:張文成張文成引用關係
指導教授(外文):Wen-Cheng Chang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:142
中文關鍵詞:硬磁棒材
外文關鍵詞:roddirect quenchbulkNd-Fe-B
相關次數:
  • 被引用被引用:3
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗選用銅模鑄造法製作直徑為0.9 mm、長度為16 mm之Nd9.5Febal.Ti3-xMxB15(M=Nb及Zr)多元合金棒材為出發點,冀望透過耐火元素之添加,達到提升磁性之目的。隨耐火元素Nb及Zr之適量添加,具有晶粒細化之作用,並使晶粒間交換藕合作用提升,進而提高其磁性。於適量之置換量下,添加Zr之磁性值皆優於添加Nb之合金棒材。最佳之磁能積出現於成分Nd9.5Febal.Ti2.5Zr0.5B15,其Br=6.6 kG、iHc=9.6 kOe及(BH)max=8.2 MGOe。為進一步瞭解耐火元素Zr於Nd-Fe-Ti-B合金系統中之效用,於固定成分之Nd9.5Febal.Ti3-xZrxB15(x=0及0.5)中改變合金製程,證實適量添加耐火元素Zr於合金棒材及薄帶中均可有效提升其磁性能,因Zr已進入2:14:1相之結構中,提升了該相之磁異方性場,達到提升矯頑磁力及磁能積之目的。
其次,探討改變稀土元素於RyFebal.Ti2.5Zr0.5B15(R=Nd及Pr;y=7-11.5)合金棒材中之影響,並改變B含量找出最佳之成分配比。結果顯示,隨稀土含量增加,其軟磁相及非晶相遞減,而硬磁相隨之遞增,使iHc提升而σ12kOe下降;隨B含量增加,晶粒細化,至高B含量下出現非晶相,使iHc提升而Br降低。
最後,添加C、Co及Cr於Nd9.5-zFebal.-yTi2.5Zr0.5B15-xM (M=Cx、Coy及Crz;x=0.5、y=2.5及z=1)之合金棒材中,晶粒皆有細化之現象,進而提高其iHc。而添加Co之2:14:1相居禮溫度有所提高,顯示Co已進入該相之結構中,並進而提升磁石之熱穩定性。
In order to simplify the manufacturing process for making isotropic magnet and also improving the magnetic properties, we adopt the copper mold casting method to fabricate permanent magnetic Nd9.5Febal.Ti3-xMxB15(M=Nb and Zr) alloy rods (a diameter of 0.9 mm and 16 mm in length). The cosubstitution of sufficient Ti/Nb and Ti/Zr, respectively, not only led to the finer microstructure, but also improved the exchange coupling effect between the grains of the cast magnet significantly. The optimal magnetic properties of Br=6.6 kG, iHc=9.6 kOe and (BH)max=8.2 MGOe could be achieved in Nd9.5Febal.Ti2.5Zr0.5B15 alloy rod. On the other hand, to understand the effect of Zr substitution in NdFeTiB system, different manufacturing processes, direct casting and melt spinning, were employed in Nd9.5Febal.Ti3-xZrxB15(x=0 and 0.5) alloys. The results showed that the whole magnetic properties were improved not only in the magnets made by direct casting but also in those by melt spinning technique. It is presumed that the anisotropy field HA of 2:14:1 phase is increased by the entrance of Zr atoms in the lattice, resulting in the improvement of the iHc and (BH)max simultaneously.
In RyFebal.Ti2.5Zr0.5B15(R=Nd and Pr; y=7-11.5) alloys, the iHc increased and σ12kOe decreased with the increase of the rare earth element content, arisen from the increase of the volume fraction of magnetically hard 2:14:1 phase. While in Nd9.5Febal.Ti2.5Zr0.5Bx(x=14-20), the iHc increased and Br decreased, due to the finer grain and the appearance of amorphous phase, with increasing B content in the magnets.
Finally, the influences of various elements (C, Co and Cr) on magnetic properties of Nd9.5-zFebal.-yTi2.5Zr0.5B15-xM (M=Cx, Coy and Crz;x=0.5, y=2.5 and z=1) alloy rods has also been investigated. The coercivity was increased due to the finer grain with substituting the C, Co and Cr element. Besides, the curie temperature of Nd2Fe14B phase was increased by proper Co substitution, leading to the improvement of the thermal stability of the magnets.
中文摘要 Ⅰ
英文摘要 Ⅱ
致謝 Ⅳ
目錄 Ⅴ
表目錄 Ⅷ
圖目錄 Ⅹ
第一章 緒論 1
1-1 磁性材料簡介 1
1-2 稀土永磁材料簡介 7
1-3 R-F-eB系磁石之微觀結構簡介 13
1-4 R-Fe-B複合奈米晶永磁材料 17
1-5 磁性棒材之發展與文獻簡介 25
1-6 研究動機與目的 31
第二章 理論基礎 33
2-1基本磁學理論 33
2-1-1磁性的來源 33
2-1-2磁性的分類 34
2-1-3磁的交互作用與磁異向性 37
2-1-4磁石之矯頑機制簡介 39
2-2 磁滯曲線 43
2-3消磁場 45
2-4交換藕合作用 48
第三章 實驗方法 54
3-1 實驗流程 54
3-2 棒材製備 55
3-2-1合金熔煉 55
3-2-2銅模鑄造法 56
3-2-3孔徑選擇 57
3-2-4熔融旋淬 59
3-3量測分析 61
3-3合金成分 64
第四章 實驗結果與討論 67
4-1耐火元素(Nb及Zr)的置換對NdFeTiB合金棒材之影響 67
4-1-1 Nb含量的變化對Nd9.5Febal.Ti3-xNbxB15合金棒材之磁性、相變化及顯微結構探討 69
4-1-2 Zr含量的變化對Nd9.5Febal.Ti3-xZrxB15合金棒材之磁性、相變化及顯微結構探討 77
4-1-3耐火元素置換對NdFeTiMB(M=Nb及Zr)合金棒材之綜合分析 88
4-2耐火元素Zr於Nd-Fe-Ti-B合金系統中之影響 92
4-3稀土含量的變化對RyFebal.Ti2.5Zr0.5B15(R=Nd及Pr)合金棒材之磁性及相變化研究 99
4-3-1 Nd含量的變化對NdyFebal.Ti2.5Zr0.5B15合金棒材之磁性及相變化研究 100
4-3-2 Pr含量的變化對PryFebal.Ti2.5Zr0.5B15合金棒材之磁性及相變化研究 107
4-3-3改變稀土元素於RyFebal.Ti2.5Zr0.5B15(R=Nd及Pr)合金棒材之綜合分析 114

4-4 B含量的變化對Nd9.5Febal.Ti2.5Zr0.5Bx合金棒材之磁性及相變化研究 115
4-5多元置換於NdFeTiZrBM (M=C、Co及Cr)合金棒材之研究 123
第五章 結論 132
參考文獻 134
























表目錄
表1-1-1 永磁材料的成分與性能 6
表1-2-1 Co基稀土永磁材料之發展 8
表1-2-2 Fe基稀土永磁材料之發展 11
表1-3-1 R2Fe14B永磁相晶格常數與異方性場 14
表1-3-2 R2Fe14B相之自旋再取向溫度TSR(K)與居里溫度TC(K) 16
表1-4-1 Fe3B/Nd2Fe14B型複合奈米晶永磁材料之磁性一覽表 21
表1-4-2
[1] 何開元。精密合金材料科學。北京:冶金工業出版社(1991)85.
[2] W. M. Hubbard, E. Adams and J. V. Gilfrich, J. Appl. Phys. 31, 368 (1960).
[3] G. Hoffer and K. Strnat, IEEE Trans. Magn. 2, 487(1996).
[4] K. J. Strnat, Cobalt 36, 133 (1967).
[5] K. J. Strnat, G. Hoffer, J. Olson, W. Ostertag and J. J. Becker, J. Appl. Phys. 38, 1001 (1967).
[6] E. A. Nesbitt et al., Appl. Phys. Lett. 12, 361 (1968).
[7] Velge, W. A. J. T. et al., J. Appl. Phys. 39, 336 (1968).
[8] Buschow, K. H. J. et al., Philips Tech Rew 29, 1717 (1968).
[9] Das, D. K., IEEE. Trans. On magn., MAG-5, No. 3, 214 (1969).
[10] Benz M. G. et al., Cobalt No. 50, 11 (1971).
[11] D. L. Martin et al., Cobalt, 11 (1971).
[12] A. C. Epmopehko et al., IEEE Trans. Magn. 17, 499 (1973).
[13] T. Ojima et al., J. Appl. Phys. 4, 671 (1977).
[14] A. E. Clark et al., Appl. Phys. Lett. 42, 160 (1972).
[15] A. E. Clark, Appl. Phys. Lett. 23, 642 (1973).
[16] J. J. Croat, Appl. Phys. Lett. 37, 1096 (1980).
[17] J. J. Croat, J. Appl. Phys. 52, 2509 (1981).
[18] J. J. Croat, Appl. Phys. Lett. 39, 357 (1981).
[19] N. C. Koon and B. N. Das, Appl. Phys. Lett. 39, 840 (1981).
[20] J. J. Becker, J. Appl. Phys. 55, 2067 (1984).
[21] M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto and Y. Matsaura, J. Appl. Phys. 55, 2083 (1984).
[22] Y. Kaneko, R&D Section of NEOMAX Div., Sumitomo Special Metals Co., Ltd., “Development of Super High Performance Magnet Having 444 kJ/m3 (55.8MGOe)”,日本應用磁氣學會誌,vol. 24, No. 1, 13 (2000).
[23] W. Rodewald, B. Wall, M. Katter, and K. Uestuener, IEEE Trans. Magn. 39, 2932 (2003).
[24] A. Sakamoto, T. Hidaka, C. Ishizaka, N. Uchida, and A. Fukuno, Trans. Mater. Res. Soc. Jap.
[25] Yutaka Matsuura, J. Magn. Magn. Mater. (In press).
[26] M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, S. Hirosawa, J. Appl. Phys. 57, 4094 (1985).
[27] H. H. Stadcimaer and H. K. Park, Z. Metallkde 72, 417 (1981).
[28] G. C. Hadjipanayis, R. C. Hazelton and K. R. Lawless, J. Appl. Phys. 55, 2073 (1984).
[29] J. J. Croat, J. F. Herbst, R. W. Lee and F. E. Pinkerton, J. Appl. Phys. 55, 2073 (1981).
[30] D. J. Sellmyer, A. Ahmed, G. Muench and G. Hadjipanayis, J. Appl. Phys. 55, 2078 (1984).
[31] J. M. D. Coey and Hong Sun, J. Magn. Magn. Mater. 97, 251 (1990).
[32] 日本產經新聞四月十六日報 (1991)。
[33] S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa, and H. Yamauchi, J. Αppl. Phys. 59, 873 (1986).
[34] C. Abache and H. Oesterreicher, J. Αppl. Phys. 57, 4112 (1985).
[35] S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa, and H. Yamauchi, J. Αppl. Phys. 59, 873 (1986).
[36] E. B. Boltich, E. Oswald, M. Q. Huang, S. Hirosawa, W. E. Wallace, and E. Burzo, J. Αppl. Phys. 57, 4106 (1985).
[37] E. C. Stoner, E. P. Wohlfarther, Phil. Trans. Roy. Soc. A-240, 599 (1948).
[38] 周壽增, 稀土永磁材料及其應用, 北京機械工業出版社, 111 (1990).
[39] A. Manaf, R. A. Buckley, H. A. Davis and M. Leonowicz, J. Magn. Magn. Mater., 101, 360 (1991).
[40] J. Bauer, M. Seeger, A. Zern and H. Kronmüller, J. Appl. Phys., 80, 1667 (1996).
[41] R. Coehoorn, D.B. DeMooij, and C. DeWaard, J. Magn. Magn. Mater., 80, 101, (1989).
[42] H. Kanekiyo, M. Uehara, and S. Hirosawa, IEEE Trans. Magn., 29, 2863 (1993).
[43] R. Coehoorn, D. B. Mooij, J. P. W. Duchateau, and K. H. Buschow, J. J. de Phys., 49, C8, 669 (1988).
[44] E. F. Kneller, and R. Hawig, IEEE Trans. Magn., 27, 3588 (1991).
[45] Z. H. Cheng, B. G. Shen, and F. W. Wang, Phys. Rev. B, 51, 12433(1995).
[46] Z. H. Cheng, B. G. Shen, and M. X. Mao, and J. J. Sun, Phys. Rev. B, 52, 9247 (1995).
[47] B. G. Shen, J. X. Zhang, and L. Y. Yang, J. Magn. Magn. Mater., 96, 335, (1991).
[48] B. G. Shen, J. X. Zhang, and L. Y. Yang, J. Magn. Magn. Mater., 89, 195, (1990)
[49] S. Hirosawa, H. Kanekiyo, and M. Uehara, J. Αppl. Phys. 73, 6488 (1993).
[50] S. Hirosawa,
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top