|
[1] W. Schockley , " Circuit elements utilizing semiconductive material ", U. S. Patent, N. 2569, p. 347, 1951. [2] H. Kroemer, " Heterostructure bipolar transistors and integrated circuits ", IEEE Proc. Vol. 70, p.13, 1982. [3] U. Eriksson, P. Evaldsson, and K. Streubel, “ Fabrication of a 1.55 VCSEL and an InGaAsP-InP HBT from a common epitaxial structure ”, IEEE Photon. Technol. Lett., Vol. 11, pp. 403-405, 1999. [4] H. Wang, K. W. Chang, L.T. Tran, J.C. Cowles, T.R. Block, E.W. Lin, G.S. Dow, A.K. Oki, D.C. Streit, B.R Allen, “ Low phase noise millimeter wave frequency sources using InP-based HBT MMIC technology ”, IEEE J. Solid State Circuits, Vol. 31, pp. 1419 -1425, 1996. [5] P. Freeman, Z. Xiangkun, I. Vurgaftman, J. Singh, P. Bhattacharya, “ Optical control of 14GHz MMIC oscillators based on InAlAs/InGaAs HBTs with monolithically integrated optical waveguides ”, IEEE Trans. Electron Devices, Vol. 43, pp. 373 -379, 1996. [6] B. Agarwal, D. Mensa, R. Pullela, Q. Lee, U. Bhattacharya, L. Samoska, J. Guthrie, and M. J. W. Rodwell, “ A 277 GHz fmax transferred-substrate heterojunction bipolar transistor ”, IEEE Electron Device Lett., Vol. 18, pp. 228-231, 1997. [7] M. T. Fresina, “ Design and fabrication of high-performance Indium Gallium Phosphide/Gallium Arsenide heterojunction bipolar transistors ”, P.H.D. Thesis, University of Illinois, 1996. [8] C. R. Bolognesi, N. Matine, X. Xu, J. Hu, M. W. Dvorak, S. P. Watkins, and M. L. W. Thewalt, “ Low-offset NpN InP/GaAsSb/InP double heterojunction bipolar transistors with abrupt interfaces and ballistically launched collector electrons ”, IEEE Device Research Conference, Charlotteville, VA June 22-24, 1998. [9] E. Alekseev, and D. Pavlidis, “ DC and high frequency performance of AlGaN/GaN heterojunction bipolar transistors ”, Solid-State Electronics, Vol. 44, pp. 245-252, 2000. [10] Wen-Chau Liu and Wen-Shiung Lour, “ An improved heterostructure-emitter bipolar transistor (HEBT) ”, IEEE. Electron Device Lett., Vol. 12, No. 9, pp. 474-476, 1991. [11] Wen-Chau Liu, Wen-Shiung Lour, and Der-Feng Guo, “ A new AlGaAs/GaAs double heterostructure-emitter bipolar transistor prepared by molecular beam epitaxy ”, Appl. Phys. Lett., Vol. 60, No. 3, pp. 362-364, 1992. [12] H. H. Lin, and S. C. Lee, “ Super-gain AlGaAs/GaAs heterojunction bipolar transistors using an emitter edge-thinning design ”, Appl. Phys. Lett., Vol. 47, p.839, 1985. [13] W. C. Liu, D. F. Guo, and W. S. Lour, “ AlGaAs/GaAs double heterostructure-emitter bipolar transistor (DHEBT) ”, IEEE Trans. Electron Devices, Vol. 39, p. 2740, 1992. [14] S. Chandrasekhar, L. M. Lunardi, A. H. Gnauck, D. Ritter, R. A. Hamm, M. B. Panish, and G. J. Qua, “ A 10Gbit/s OEIC photo-receiver using InP/InGaAs heterojunction bipolar transistors ”, IEE Electron. Lett., Vol. 28, pp. 466-468, 1992. [15] S. Chandrasekhar, L. M. Lunardi, A. H. Gnauck, R. A. Hamm, and G. J. Qua, “ High-speed monolithic p-i-n/HBT and HPT/HBT photoreceivers implemented with simple phototransistor structure ”, IEEE Photon. Technol. Lett., Vol. 5, pp. 1316-1318, 1993. [16] Y. Bester, D. Ritter, C. P. Liu, A. J. Seeds, and A. Madjar, “ A single-stage three-terminal heterojunction bipolar transistor optoelectronic mixer ”, J. Lightwave Technol., Vol. 16, pp. 605-609, 1998. [17] Y. K. Chen, R. N. Nottenburg, M. B. Panish, R. A. Hamm, D. A. Humphrey, “ Subpicosecond InP/InGaAs heterostructure bipolar transistors ”, IEEE. Electron Device Lett., Vol. 10, pp. 267-269, 1989. [18] M. T. Fresina, “ High-frequency indium phosphide/indium gallium arsenide heterojunction bipolar transistors ”, M. S. Thesis, University of Illinois, 1992. [19] K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “ Fabrication and characterization of high-performance InP/InGaAs double-heterojunction bipolar transistors ”, IEEE Trans. Electron Devices, Vol. 41, pp. 1319-1326, 1994. [20] U. Bhattacharya, “ Transferred substrate heterojunction bipolar transistors”, P.H.D. Thesis, University of California Santa Barbara, 1996. [21] M. Hafizi, “ Submicron, fully self-aligned HBT with an emitter geometry of 0.3m2 ”, IEEE. Electron Device Lett., Vol. 18, pp. 358-360, 1997. [22] M. Sokolish, C. H. Fields, M. Madhav, “ Submicron AlInAs/InGaAs HBT with 160GHz ft at 1mA collector current ”, IEEE. Electron Device Lett., Vol. 22, pp. 8-10, 2001. [23] Y. Bester, D. Scott, D. Mensa, S. Jaganthana, T. Mathew, M. J. Rodwell, “ InAlAs/InGaAs HBTs with simultaneously high values of Ft and Fmax for mixed analog/digital applications ”, IEEE Trans. Electron Devices, Vol. 22, pp. 56-58, 2001. [24] L. Y. Leu, J. T. Gardner, and S. R. Forrest, “ A high-gain, high-bandwidth In0.53Ga0.47As/InP heterojunction phototransistor for optical communications ”, J. Appl. Phys., Vol. 69, pp. 1052-1062, 1991. [25] P. Prakash, B. Jalali, Y. M. Xie, H. R. Fetterman, D. A. Humphrey, R. R. Kapre, and W. T. Tsang, “ Integrated waveguide/HBT technology for mm-wave optoelectronic applications ”, Device Research Conference, University of Colorado, pp. 20-22, 1994. [26] T. F. Carrythers and I. N. Duling III, “ Responses of InP/In0.53Ga0.47As/InP heterojunction bipolar transistors to 1530 and 620nm ultrafast optical pulses ”, Appl. Phys. Lett., Vol. 59, pp. 327-329, 1991. [27] B. Jalali and S. J. Pearton, InP HBT’s: Growth, Processing, and Applications, Artech House, 1995. [28] W. Liu, Handbook of III-V heterojunction bipolar transistors, Wiley Interscience. [29] M. Allovon, and M. Quillec, “ Interest in AlGaInAs on InP for optoelectronic applications”, IEE Proc.-J, Vol. 139, No. 2, pp. 148-152, 1992. [30] S. Luryi, and F. Capasso, " Resonant tunneling of two dimensional electrons through a quantum wire: A negative transconductance device ", Appl. Phys. Lett., Vol. 47, pp. 1347, 1985. [31] G. Neofotistos, H. Guo, K. Diff, and J. D. Gunton, " Resonant tunneling in double-barrier parabolic well structures ", IEEE Trans. Electron Devices, Vol. 36, pp. 745-749, 1989. [32] C. Seabaugh, W. R. Frensley, J. N. Randall, M. A. Reed, D. L. Farrington, and R. J. Matyi, " Pseudomorphic bipolar quantum resonant-tunneling transistor ", IEEE Trans. Electron Devices, Vol. 36, pp. 2328-2334, 1989. [33] W. Liu, A. C. Seabaugh, T. S. Henderson, A. Yuksel, E. A. Beam III, and S. K. Fan," Observation of resonant tunneling at room temperature in GaInP/GaAs/GaInP double heterojunction bipolar transistor ", IEEE Trans. Electron Devices, Vol. 40, pp. 1384-1389, 1993. [34] L. Y. Leu, J. T. Gardner, and S. R. Forrest, “ A high-gain, high-bandwidth In0.53Ga0.47As/InP heterojunction phototransistor for optical communications ”, J. Appl. Phys., Vol. 69, pp. 1052-1062, 1991. [35] D. P. Prakash, B. Jalali, Y. M. Xie, H. R. Fetterman, D. A. Humphrey, R. R. Kapre, and W. T. Tsang, “ Integrated waveguide/HBT technology for mm-wave optoelectronic applications ”, Device Research Conference, University of Colorado, pp. 20-22, 1994. [36] T. F. Carrythers and I. N. Duling III, “ Responses of InP/In0.53Ga0.47As/InP heterojunction bipolar transistors to 1530 and 620nm ultrafast optical pulses ”, Appl. Phys. Lett., Vol. 59, pp. 327-329, 1991. [37] F. Chau, and E. A. Beam, III, “ High-speed InP/InGaAs heterojunction bipolar transistors ”, IEEE Electron Device Lett., Vol. 14, No. 8, pp. 388-390, 1993. [38] F. Capasso and R. A. Kiehl, “ Resonant tunneling transistor with quantum well base and high-energy injection: A new negative differential resistance device ”, J. Appl. Phys., Vol. 58, pp. 1366-1368, 1985. [39] W. C. Liu, J. H. Tsai, W. S. Lour, L. W. Laih, S. Y. Cheng, K. B. Thei, and C. Z. Wu, “ A novel InGaP/GaAs S-shaped negative-differential-resistance (NDR) switch for multiple-valued logic applications ”, IEEE Trans. Electron Devices, Vol. 44, pp. 520-525, 1997. [40] F. Capasso, S. Sen, F. Beltram, L. M. Lunaardi, A. S. Vengurlekar, P. R. Smith, N. J. Shah, R. J. Malik, and A. Y. Cho, " Quantum functional devices: resonant-tunneling transistors, circuits with reduced complexity and multiple-valued logic ", IEEE Trans. Electron Devices, Vol. 36, pp. 2065-2082, 1989.
|