跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 15:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王偉州
研究生(外文):Wei-Chou Wang
論文名稱:砷化銦鎵(鋁)/磷化銦異質接面雙極性電晶體與負微分電阻交換元件之研究
論文名稱(外文):Investigation of InGa(Al)As/InP Heterojunction Bipolar Transistors and Negative-Differential-Resistance Switching Devices
指導教授:劉文超劉文超引用關係
指導教授(外文):Wen-Chau Liu
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:61
中文關鍵詞:異質接面雙極性電晶體負微分電阻共振穿透現象超晶格單原子摻雜層位能尖峰單位電流增益截止頻率最大振盪頻率
外文關鍵詞:HBTNDRresonant tunneling effectsuperlatticedelta-doped sheetpotential spikeftfmax
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們成功地以低壓有機金屬化學汽相沉基法(LP-MOCVD)研製以磷化銦(InP)為基礎之異質接面雙極性電晶體。吾人將量測並討論砷化銦鎵/磷化銦(InGaAs/InP)超晶格共振穿透式射極雙極性電晶體及單原子層摻雜砷化銦鎵鋁/磷化銦(InGaAlAs/InP)異質接面雙極性電晶體的特性。
雙晶格X射線繞射儀(DCXRD)、光激光譜儀(PL)、能量分散X射線光譜儀(EDS)及歐傑電子光譜儀(AES)將被用來分析各磊晶層及絕緣層(二氧化矽)的特性,掃描式電子顯微鏡(SEM)將用來觀察元件的俯視及橫截面圖。此外,直流及高頻的製程亦將於文中有所敘述,各金屬接觸層的電阻將由TLM方法測得。
吾人提出兩種不同結構的超晶格共振穿透式射極雙極性電晶體,元件A是由5週期的超晶格及800&A射極層所組成,元件B則是由3週期的超晶格及150A射極層所組成。交流電流增益分別為170及54,當溫度由300K降至77K時,元件電流增益亦分別下降6% 及7.4%,吾人於低溫時亦發現元件A有共振穿透的現象,由於超晶格層的加入及射極層的設計,改善了直流表現並得到一較穩定的溫度特性,電流增益藉由磷化銦射極薄化的應用亦被有效的提高,此外,元件A及B的截止頻率 ( fT ) 分別為12GHz及15GHz,元件的功率特性及雜訊表現於文中亦將有所討論。
本文亦提出一窄基極層寬度具負微分電阻特性的單原子層摻雜砷化銦鎵鋁/磷化銦(InGaAlAs/InP)異質接面雙極性電晶體。其交流電流增益在高集極電流區時為22,藉由不同之基極控制電流(IB=2uA/step, 10uA/step, 100uA/step),吾人發現一具遮陽帽型(topee-shaped)、N型及一般特性之雙極性電晶體特性,其峰對谷比值(PVCR)為11,此一負微分電阻特性被認為是因基極電阻造成位能尖峰的調變,進而影響射極注入效率所造成,此外,在反向偏壓操作時,吾人亦發現S型負微分電阻現象,這是由於累增崩潰及二次位能障降低所造成,光特性顯示元件擁有1.01毫安的光電流。
另一方面,一以單原子層摻雜砷化銦鎵鋁/磷化銦(InGaAlAs/InP)異質接面雙極性電晶體為基礎結構之多態及光控開關將被提出。當元件在順向操作時,其交流電流增益為25,然而,第二路徑之負微分現象可經由光源控制其出現與否,吾人亦在低溫觀察到多路徑負微分電阻之現象,此一新奇的多重負微分電阻現象是由於累增崩潰、二次位能障降低及載子在砷化銦鎵(InGaAs)量子井層堆積所造成,實驗結果亦顯示所提出之元件擁有較寬的溫度操作範圍。

In this dissertation, we have successfully fabricated and demonstrated InP-based heterojunction bipolar transistors (HBT's). The characteristics of InGaAs/InP superlattice emitter resonant tunneling bipolar transistors (SE-RTBT's) and InGaAlAs/InP d-doped HBT's are measured and discussed.
The characteristics of epitaxial layers and SiO2 film will be analyzed by double-crystal x-ray diffraction (DCXRD), photoluminescence (PL), energy dispersive x-ray spectrometer (EDS), and Auger electron spectroscopy (AES). The scanning electron microscope (SEM) technique shows the top view and cross section of the studied devices. In addition, DC and RF heterojunction bipolar transistor (HBT) fabrication process are illustrated. The transfer length method (TLM) measurement is used to calculate the resistance of each ohmic contact layers.
Two different SE-RTBT's are reported. The device A contains a 5-period superlattice and 800A emitter layer. In addition, a 3-period superlattice and 150A emitter are included for device B. AC common emitter current gain up to 170 and 54 are obtained for device A and B, respectively. The current gains are reduced about 6% and 7.4% for both devices as the temperature is decreased from 300K to 77K. The resonant tunneling effect is observed at 77K for device A. Due to the use of superlattice and critical-designed emitter, the DC performance is improved and more stable temperature-dependent characteristics is achieved. By using InP emitter ledge, DC current gain of the devices can be enhanced. The unit current gain cutoff frequency fT of 12GHz and 15GHz for device A and B are obtained, respectively. Power characteristics and noise performance are also illustrated.
A narrow base d-doped InGaAlAs/InP negative-differential-resistance (NDR) HBT is proposed in this thesis. The AC common-emitter current gain up to 22 is obtained. For the different controlled base current ( IB=2uA/step, 10uA/step, 100uA/step ), the different topee-shaped, N-shaped, and conventional characteristics of HBT's are observed. The peak-to-valley-current ratio (PVCR) up to 11 is obtained. The mechanism is considered to be the modulation of potential spike due to the base resistance effect on the emitter injection efficiency. Besides, multiple S-shaped NDR phenomena are also observed under the inverted operation mode. This is due to the avalanche multiplication and two-stage barrier lowering effect. Optical characteristics of the studied NDR-HBT show that a photocurrent up to 1.01mA is obtained.
On the other hand, a new multiple-state and optically controllable optoelectronic switch based on an InGaAlAs/InP -doped HBT structure is demonstrated. Common-emitter current gain up to 25 is obtained as the device is operated under forward operation mode. However, a significant S-shaped NDR phenomenon is found under the applied reverse-biased voltage. The second-route S-shaped NDR phenomenon is observed under illumination without changing the bias condition. The multiple-route and multiple-step current-voltage (I-V) characteristics at 77K are also observed. The novel MNDR I-V characteristics are attributed to the avalanche multiplication, successive two-stage barrier lowering process and electron confinement effect in the InGaAs quantum well. Experimental results reveal that the studied device can be operated among a wide temperature range.
Table Captions
Figure Captions
Chapter 1. Introduction
1.1. Brief history of heterojunction bipolar transistors
(HBT's)
1.2. Advantages of InGa(Al)As/InP over AlGaAs/GaAs or
InGaP/GaAs
1.3. Dissertation objective
Chapter 2. Material Growth and Device Fabrication
2.1. Introduction
2.2. MOCVD system
2.3. Growth conditions and characteristics of InP and
InGa(Al)As
2.4. A.C. sputtering system and characteristics of SiO2 film
2.5. HBT fabrication process
2.5.1. D.C. and R.F. layout design
2.5.2. Emitter, base, and collector definition
2.5.3. Selective etching and device isolation
2.5.4. SiO2 growth and interconnection
2.5.5. Transfer length method (TLM) ohmic contact
measurement
2.6. Summary
Chapter 3.InGaAs/InP Superlattice Emitter Resonant Tunneling Bipolar Transistors (SE-RTBT's)
3.1. Introduction
3.2. Layer structures of 54 and 32 SE-RTBT's
3.3. Theoretical analyses of emitter thickness and
superlattice layers
3.4. Theoretical analyses of high frequency performance
3.5. Experimental results and discussion
3.5.1. Advantages of superlattice and InP emitter layers
3.5.2. D.C. and temperature dependent characteristics of
SE-RTBT's
3.5.3. Performance of InP emitter ledge
3.5.4. Influence of SiO2 on the device characteristics
3.5.5. RF characteristics of SE-RTBT's
3.6. Summary
Chapter 4. InGaAlAs/InP Delta-Doped Negative-Differential-Resistance Heterojunction Bipolar Transistor (NDR-HBT)
4.1. Introduction
4.2. Layer structure of NDR-HBT
4.3. Experimental results and discussion
4.3.1. Influence of delta-doped sheet on the potential
spike
4.3.2. D.C. characteristics and photonic-sensitive
performance of NDR-HBT
4.3.3. Mechanism of NDR-HBT
4.3.4. Circuit applications of NDR-HBT
4.4. Summary
Chapter 5. InGaAlAs/InP Multiple-Negative-Differential-Resistance (MNDR) Switching Device with HBT Structure
5.1. Introduction
5.2. Layer structure of MNDR switching device
5.3. Experimental results and discussion
5.3.1. D.C. and temperature characteristics of MNDR device
5.3.2. Mechanism of MNDR switching device
5.3.3. Circuit applications of MNDR switching device
5.4. Summary
Chapter 6. Conclusion and Prospect
6.1. Achievement
6.2. Future work
References
Publication List
Vita

封面
Abstract
Table Captions
Figure Captions
Chapter 1. Introduction
1.1 Brief history of heterojunction bipolar transistors (HBT's)
1.2 Advantages of InGa(A1)As/InP over AlGaAs/GaAs or InGaP/GaAs
1.3 Dissertation objective
Chapter 2. Material Growth and Device Fabrication
2.1 Introduction
2.2 MOCVD system
2.3 growth conditions and characteristics of InP and InGa(A1)As
2.4 A.C. sputtering system and characteristics of SiO2 film
2.5 HBT fabrication process
2.5.1 D.C. and R.F. lyaout design
"2.5.2 Emitter, base, and collector definition"
2.5.3 Selective etching and device isolation
2.5.4 SiO2 growth and interconnection
2.5.5 Transfer length method (TLM) ohmic contact measurement
2.6 Summary
Chapter 3. InGaAs/InP Superlattice Emitter Resonant Tunneling Bipolar Transistors(SE-RTBT's)
3.1 Introduction
3.2 Layer structures of 5X4 and 3x2 SE-RTBT's
3.3 Theoretical analyses of emitter thickness and superlattice layers
3.4 Theoretical analyses of high frequency performance
3.5 Experimental results and discussion
3.5.1 Advantages of superlattice and InP emitter layers
3.5.2 D.C. and temperature dependent characteristics of SE-RTBT's
3.5.3 Performance of InP emitter ledge
3.5.4 Influence of SiO2 on the device characteristics
3.5.5 RF characteristics of SE-RTB's
3.6 Summary
Chapter 4 InGaA;As/InP -Doped Negative-Differential-Resistance Hererojunction Bipolar Transister (NDR-HBT)
4.1 Introduction
4.2 Layer structure of NDR-HBT
4.3 Experimental results and discussion
4.3.1 Influence of -doped sheet on the potential spike
4.3.2 D.C. characteristics and photonic-sensitive performance of NDR-HBT
4.3.3 Mechanism of NDR-HBT
4.3.4 Circuit applications of NDR-HBT
4.4 Summary
Chapter 5 InGaAlAs/InP Multiple-Negative-Differential-Resistance (MNDR)Switching Device with HBT Structure
5.1 Introduction
5.2 Layer structure of MNDR switching device
5.3 Experimental results and discussion
5.3.1 D.C. and temperature characteristics of MNDR device
5.3.2 Mechanism of MNDR switching device
5.3.3 Circuit applications of MNDR switching device
5.4 Summary
Chapter 6 Conclusion and Prospect
6.1 Achievement
6.2 Future work
References
Publication List
Vita

[1] W. Schockley , " Circuit elements utilizing semiconductive material ", U. S. Patent, N. 2569, p. 347, 1951.
[2] H. Kroemer, " Heterostructure bipolar transistors and integrated circuits ", IEEE Proc. Vol. 70, p.13, 1982.
[3] U. Eriksson, P. Evaldsson, and K. Streubel, “ Fabrication of a 1.55 VCSEL and an InGaAsP-InP HBT from a common epitaxial structure ”, IEEE Photon. Technol. Lett., Vol. 11, pp. 403-405, 1999.
[4] H. Wang, K. W. Chang, L.T. Tran, J.C. Cowles, T.R. Block, E.W. Lin, G.S. Dow, A.K. Oki, D.C. Streit, B.R Allen, “ Low phase noise millimeter wave frequency sources using InP-based HBT MMIC technology ”, IEEE J. Solid State Circuits, Vol. 31, pp. 1419 -1425, 1996.
[5] P. Freeman, Z. Xiangkun, I. Vurgaftman, J. Singh, P. Bhattacharya, “ Optical control of 14GHz MMIC oscillators based on InAlAs/InGaAs HBTs with monolithically integrated optical waveguides ”, IEEE Trans. Electron Devices, Vol. 43, pp. 373 -379, 1996.
[6] B. Agarwal, D. Mensa, R. Pullela, Q. Lee, U. Bhattacharya, L. Samoska, J. Guthrie, and M. J. W. Rodwell, “ A 277 GHz fmax transferred-substrate heterojunction bipolar transistor ”, IEEE Electron Device Lett., Vol. 18, pp. 228-231, 1997.
[7] M. T. Fresina, “ Design and fabrication of high-performance Indium Gallium Phosphide/Gallium Arsenide heterojunction bipolar transistors ”, P.H.D. Thesis, University of Illinois, 1996.
[8] C. R. Bolognesi, N. Matine, X. Xu, J. Hu, M. W. Dvorak, S. P. Watkins, and M. L. W. Thewalt, “ Low-offset NpN InP/GaAsSb/InP double heterojunction bipolar transistors with abrupt interfaces and ballistically launched collector electrons ”, IEEE Device Research Conference, Charlotteville, VA June 22-24, 1998.
[9] E. Alekseev, and D. Pavlidis, “ DC and high frequency performance of AlGaN/GaN heterojunction bipolar transistors ”, Solid-State Electronics, Vol. 44, pp. 245-252, 2000.
[10] Wen-Chau Liu and Wen-Shiung Lour, “ An improved heterostructure-emitter bipolar transistor (HEBT) ”, IEEE. Electron Device Lett., Vol. 12, No. 9, pp. 474-476, 1991.
[11] Wen-Chau Liu, Wen-Shiung Lour, and Der-Feng Guo, “ A new AlGaAs/GaAs double heterostructure-emitter bipolar transistor prepared by molecular beam epitaxy ”, Appl. Phys. Lett., Vol. 60, No. 3, pp. 362-364, 1992.
[12] H. H. Lin, and S. C. Lee, “ Super-gain AlGaAs/GaAs heterojunction bipolar transistors using an emitter edge-thinning design ”, Appl. Phys. Lett., Vol. 47, p.839, 1985.
[13] W. C. Liu, D. F. Guo, and W. S. Lour, “ AlGaAs/GaAs double heterostructure-emitter bipolar transistor (DHEBT) ”, IEEE Trans. Electron Devices, Vol. 39, p. 2740, 1992.
[14] S. Chandrasekhar, L. M. Lunardi, A. H. Gnauck, D. Ritter, R. A. Hamm, M. B. Panish, and G. J. Qua, “ A 10Gbit/s OEIC photo-receiver using InP/InGaAs heterojunction bipolar transistors ”, IEE Electron. Lett., Vol. 28, pp. 466-468, 1992.
[15] S. Chandrasekhar, L. M. Lunardi, A. H. Gnauck, R. A. Hamm, and G. J. Qua, “ High-speed monolithic p-i-n/HBT and HPT/HBT photoreceivers implemented with simple phototransistor structure ”, IEEE Photon. Technol. Lett., Vol. 5, pp. 1316-1318, 1993.
[16] Y. Bester, D. Ritter, C. P. Liu, A. J. Seeds, and A. Madjar, “ A single-stage three-terminal heterojunction bipolar transistor optoelectronic mixer ”, J. Lightwave Technol., Vol. 16, pp. 605-609, 1998.
[17] Y. K. Chen, R. N. Nottenburg, M. B. Panish, R. A. Hamm, D. A. Humphrey, “ Subpicosecond InP/InGaAs heterostructure bipolar transistors ”, IEEE. Electron Device Lett., Vol. 10, pp. 267-269, 1989.
[18] M. T. Fresina, “ High-frequency indium phosphide/indium gallium arsenide heterojunction bipolar transistors ”, M. S. Thesis, University of Illinois, 1992.
[19] K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “ Fabrication and characterization of high-performance InP/InGaAs double-heterojunction bipolar transistors ”, IEEE Trans. Electron Devices, Vol. 41, pp. 1319-1326, 1994.
[20] U. Bhattacharya, “ Transferred substrate heterojunction bipolar transistors”, P.H.D. Thesis, University of California Santa Barbara, 1996.
[21] M. Hafizi, “ Submicron, fully self-aligned HBT with an emitter geometry of 0.3m2 ”, IEEE. Electron Device Lett., Vol. 18, pp. 358-360, 1997.
[22] M. Sokolish, C. H. Fields, M. Madhav, “ Submicron AlInAs/InGaAs HBT with 160GHz ft at 1mA collector current ”, IEEE. Electron Device Lett., Vol. 22, pp. 8-10, 2001.
[23] Y. Bester, D. Scott, D. Mensa, S. Jaganthana, T. Mathew, M. J. Rodwell, “ InAlAs/InGaAs HBTs with simultaneously high values of Ft and Fmax for mixed analog/digital applications ”, IEEE Trans. Electron Devices, Vol. 22, pp. 56-58, 2001.
[24] L. Y. Leu, J. T. Gardner, and S. R. Forrest, “ A high-gain, high-bandwidth In0.53Ga0.47As/InP heterojunction phototransistor for optical communications ”, J. Appl. Phys., Vol. 69, pp. 1052-1062, 1991.
[25] P. Prakash, B. Jalali, Y. M. Xie, H. R. Fetterman, D. A. Humphrey, R. R. Kapre, and W. T. Tsang, “ Integrated waveguide/HBT technology for mm-wave optoelectronic applications ”, Device Research Conference, University of Colorado, pp. 20-22, 1994.
[26] T. F. Carrythers and I. N. Duling III, “ Responses of InP/In0.53Ga0.47As/InP heterojunction bipolar transistors to 1530 and 620nm ultrafast optical pulses ”, Appl. Phys. Lett., Vol. 59, pp. 327-329, 1991.
[27] B. Jalali and S. J. Pearton, InP HBT’s: Growth, Processing, and Applications, Artech House, 1995.
[28] W. Liu, Handbook of III-V heterojunction bipolar transistors, Wiley Interscience.
[29] M. Allovon, and M. Quillec, “ Interest in AlGaInAs on InP for optoelectronic applications”, IEE Proc.-J, Vol. 139, No. 2, pp. 148-152, 1992.
[30] S. Luryi, and F. Capasso, " Resonant tunneling of two dimensional electrons through a quantum wire: A negative transconductance device ", Appl. Phys. Lett., Vol. 47, pp. 1347, 1985.
[31] G. Neofotistos, H. Guo, K. Diff, and J. D. Gunton, " Resonant tunneling in double-barrier parabolic well structures ", IEEE Trans. Electron Devices, Vol. 36, pp. 745-749, 1989.
[32] C. Seabaugh, W. R. Frensley, J. N. Randall, M. A. Reed, D. L. Farrington, and R. J. Matyi, " Pseudomorphic bipolar quantum resonant-tunneling transistor ", IEEE Trans. Electron Devices, Vol. 36, pp. 2328-2334, 1989.
[33] W. Liu, A. C. Seabaugh, T. S. Henderson, A. Yuksel, E. A. Beam III, and S. K. Fan," Observation of resonant tunneling at room temperature in GaInP/GaAs/GaInP double heterojunction bipolar transistor ", IEEE Trans. Electron Devices, Vol. 40, pp. 1384-1389, 1993.
[34] L. Y. Leu, J. T. Gardner, and S. R. Forrest, “ A high-gain, high-bandwidth In0.53Ga0.47As/InP heterojunction phototransistor for optical communications ”, J. Appl. Phys., Vol. 69, pp. 1052-1062, 1991.
[35] D. P. Prakash, B. Jalali, Y. M. Xie, H. R. Fetterman, D. A. Humphrey, R. R. Kapre, and W. T. Tsang, “ Integrated waveguide/HBT technology for mm-wave optoelectronic applications ”, Device Research Conference, University of Colorado, pp. 20-22, 1994.
[36] T. F. Carrythers and I. N. Duling III, “ Responses of InP/In0.53Ga0.47As/InP heterojunction bipolar transistors to 1530 and 620nm ultrafast optical pulses ”, Appl. Phys. Lett., Vol. 59, pp. 327-329, 1991.
[37] F. Chau, and E. A. Beam, III, “ High-speed InP/InGaAs heterojunction bipolar transistors ”, IEEE Electron Device Lett., Vol. 14, No. 8, pp. 388-390, 1993.
[38] F. Capasso and R. A. Kiehl, “ Resonant tunneling transistor with quantum well base and high-energy injection: A new negative differential resistance device ”, J. Appl. Phys., Vol. 58, pp. 1366-1368, 1985.
[39] W. C. Liu, J. H. Tsai, W. S. Lour, L. W. Laih, S. Y. Cheng, K. B. Thei, and C. Z. Wu, “ A novel InGaP/GaAs S-shaped negative-differential-resistance (NDR) switch for multiple-valued logic applications ”, IEEE Trans. Electron Devices, Vol. 44, pp. 520-525, 1997.
[40] F. Capasso, S. Sen, F. Beltram, L. M. Lunaardi, A. S. Vengurlekar, P. R. Smith, N. J. Shah, R. J. Malik, and A. Y. Cho, " Quantum functional devices: resonant-tunneling transistors, circuits with reduced complexity and multiple-valued logic ", IEEE Trans. Electron Devices, Vol. 36, pp. 2065-2082, 1989.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 邱貴發(民87)。網路世界中的學習理念與發展。教育研究資訊,6(1),20-27。國立師範大學教育研究中心。
2. 蔡錫濤、楊美雪(民85)。情境式學習的教學設計。教學科技與媒體,30,48-53。
3. 熊召弟(民87)。下一代的學習環境。國民教育,38(6)。國立台北師範學院。
4. 熊召弟(民85)。真實的科學認知環境。教學科技與媒體,29,3-12。
5. 岳修平(民88)。網路教學於學校教育之應用。課程與教學季刊,2(4),61-76。
6. 林生傳(民87)。建構主義的教學評析。課程與教學季刊,1(3),1-14。中華民國課程與教學學會。
7. 朱則剛(民85)。建構主義對教學設計的意義。教學科技與媒體,26,3-12。
8. 田耐青(民88a)。由「電腦樂高」談新世紀的學習:一個「科技支援之建構學習環境」實例。教學科技與媒體雙月刊,44,24-35。
9. 張基成(民87)。教師專業成長網路學習社群之規劃及其預期效益與挑戰。教學科技與媒體,40,31-42。
10. 陳慧娟(民87)。情境學習理論的理想與現實。教育資料與研究,25,47-55。
11. 陳裕隆(民89)。電腦融入教學面臨的困難與挑戰。資訊與教育,77,29-35。
12. 施郁芬、陳如琇(民85)。情境脈絡與學習遷移。教學科技與媒體,29,23-31。
13. 田耐青(民85)。由知識論的角度分析教學科技的趨勢。國民教育,37(1),45-48。國立台北師範學院。
14. 王全世(民89)。對資訊科技融入各科教學之資訊情境的評估標準。資訊與教育,77,36-47。