跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 05:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張豐年
研究生(外文):Feng-Nian Chang
論文名稱:以電化學沉積法披覆抗菌磷酸鹽在316L不銹鋼之研發
論文名稱(外文):A Study of Anti-septic Calcium Phosphate Coated on 316L Stainless Steel by Electordeposition
指導教授:楊木榮楊木榮引用關係林峰輝林峰輝引用關係
指導教授(外文):Mu-Rong YangFeng-Huei Lin
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:96
中文關鍵詞:電化學沉積法抗菌磷酸鹽316L不銹鋼
外文關鍵詞:ElectordepositionAnti-septicCalcium Phosphate316L Stainless Steel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前將具生物生物活性的陶瓷披覆在金屬上的方法廣為大家所研究主要是在解決生物相容性,離子釋放以及穩定的固定在金屬植入材上的問題。但以目前而言,這些問題仍未解決;如披覆膜薄、所需鍍膜時間較長且鍵結強度弱。另外植入材的表面不具有抗菌性,增加植入後細菌感染的機會。
因此在本研究中,將基材316L不銹鋼利用電化學在模擬體液中沉積的方式沉積氫氧基磷灰石(HAp)。適當控制化學參數-電流、溫度和pH 值, 找出最佳披覆在316L不銹鋼上鍍層條件。再以最佳條件用相同的方法於含鋅的電解液中電鍍,期望改質後的表面具有抑制微生物的感染及增生。
首先,在表面改質後的XRD, SEM, EDX結果知,當基材經鹼處理10 M NaOH在溫度60C 時間24小時之後再熱處理至溫度400℃,表面會有鈉鉻的氧化層相出現並穩定於316L不銹鋼上。鈉鉻氧化層的形成將會成為金屬基材與之後沉積的似骨的磷灰石的結合。而在電化學沉積過程中,由沉積在不同條件的XRD, FTIR, SEM, EDX, Potentiodynamic test 及Scratch test結果顯示,在提供10mA電鍍1小時 在80℃時為最佳的鍍膜條件。在此條件下,膜厚可達10~20μm而且均勻。另外鍍膜也具有很好的抗蝕性、抗刮性、所需的鍍膜時間較短。有效的改進sol-gel法的缺點。接著,使用最佳條件在含鋅的電解液中以相同的電鍍方式進行,可電解沉積出含鋅的磷酸鈣化合物。我們可以找出CaZn2(PO4)2*H2O、Zn3(PO4)2*H2O、Zn2P2O7及CaO 等成分在基材上,隨的鋅離子濃度的增加而增加。
由現在的結果暗示鋅與三鈣磷酸鹽結合會增加穩定的ZnTCP結晶結構的產生。這些含鋅的化合物將增加抑制細菌的效果。由agar plant、OD值及SEM 的抑菌活性測試結果,所有的結果顯示當基材在披覆沒有含鋅的HAp及有含鋅的磷酸鈣後分別浸入在含有金黃色葡萄球菌ATCC 29213及綠膿桿菌ATCC 27853的nutrient broth (NB) 的溶液中時,隨著鋅成分的增加,細菌的量會減少由agar plant、OD值及SEM 影像可知。由現今結果知含鋅的磷酸鈣會減少微生物的感染及增生。這似乎是試片表面吸附一些鋅離子,當浸泡在含有金黃色葡萄球菌ATCC 29213及綠膿桿菌ATCC 27853的nutrient broth (NB) 的溶液中時,導致鋅離子的釋放在nutrient broth (NB) 的溶液中,然後引起細菌的細胞壁及細胞膜的破壞,因此當增加鋅離子的濃度時,使表面改質後的316L不銹鋼具有明顯的抑菌性。
Coating bioactive ceramics onto metals was a popular method to resolves the problems of biocompatibility, ion released and fixation of metal implant. But at present, it should not solve the problems; as the coating layer was only a thin film, needed a long-term treatment, and have poor bonding strength. On the other hand, the surface of implant materials should not antibacterial, so that increasing ratio of infect with bacterial.
So in our research, 316L stainless steel was selected as the substrate and electrolytically deposition with hydroxyapatite (HAp) in an aqueous solution of simulated body fluid. By controlling the chemical parameters such as potential, temperature, pH value, find the best deposition condition with calcium phosphate –coated on 316L stainless steel substrate. Used the best deposition condition in the same method, electrolytically deposition with zinc-containing calcium phosphate in an aqueous solution of simulated body fluid that zinc containing. Wish the modified surface reducing the microbial-induced infections and degradations.
At first, the results of XRD, SEM, EDX for modified surface sample, after substrate treated with 10 M NaOH at 60C for 24h and heated to 400℃ temperatures. The sodium chromium oxide would be phased out and fixed on 316L stainless steel. So, a stable layer of sodium chromium oxide formed, which would be an inter-compound to bridge up metallic substrate and later deposited bone-like apatite.
At electrodeposition process, The results of XRD, FTIR, SEM, EDX, Potentiodynamic test, scratch test for deposition at different condition. All of results was showed that the best deposition condition of 10mA for 1hr at 80℃. In the operation conditions, the coating layer was above 10~20 μm and uniform. However, it also have good corrosion-resisting, scratch test and short time was compared with sol-gel method. As follows, used the best deposition condition in the same method, electrolytically deposition with zinc-containing calcium phosphate component. We can find the CaZn2(PO4)2*H2O、Zn3(PO4)2*H2O、Zn2P2O7及CaO were appeared on the surface when the concentration of Zn ion of electrolytic increased. The present results indicate that Zinc incorporated into tricalcium phosphate (TCP) increase the stability of the crystal structure of ZnTCP. Those components of zinc containing will improvement in bacteria responsible effect.
From the antibacterial activity test as shown in agar plant, OD value, and SEM. All of results showed that when the samples of HAp-coated with and without Zn-treatment were immersed into the nutrient broth (NB) solution which containing bacterial for Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 27853, respectively. The quantity of bacteria decreased with zinc content increased as shown in agar plant, OD value and SEM morphologies. The present results that zinc-containing of calcium phosphate was reducing the microbial-induced infection and degradations. It seem that the surface of sample was absorption some zinc ions. When immersed in nutrient broth (NB) solution which containing Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 27853, it lead to zinc ions release from nutrient broth (NB) solution, then cause to destroy for the bacterial wall and bacterial membrane. So that it have more antiseptic effect on 316L stainless steel as increasing of zinc concentration.
Chapter 1 Introduction……………………………………………………1
1.1 Introduction……………………………………………….………….1
1.2 Classification and treatment of fracture………………………1
1-2.1 Classification of fractures …………………………………1
1-2.2 General principles of facture treatment……………………2
1-2.3 The development of traditional fixation in broken bone……………………………………………………………………………3
1.3 Some methods for coating bioactive ceramics onto tough metals…………………………………………………………………………4
1.4 Material and method of antiseptic………………………………6
1.5 The aim of study………………………………………………………9
Chapter 2 Basic Theories…………………………………………………15
2.1Biomaterials……………………………………………………………15
2.1.1 Condition for biomaterials……………………………………15
2.1.2 Classification of biomaterials………………………………16
2.2 316L stainless steel ………………………………………………17
2.3 Apatite………………………………………………………………………18
2.4 Substituted apatites………………………………………………20
2.5 Electrochemical deposition………………………………………21
2.6 Implant caused infections…………………………………………23
Chapter 3 Materials and Methods………………………………………35
3.1 Flow chart……………………………………………………………35
3.2 Specimen and surface treatment preparation…………………36
3.3 The electrodeposition of calcium phosphate coating…………37
3.4 Specimen analysis….……………………..…………………………38
3.5 Corrosion test………………………………………………………38
3.6 Scratch-test…………………………………………………………40
3.7 The electrodeposition of Zn-HAp coating………………………40
3.8 Antibacterial activity test………………………………………41
Chapter 4 Result and Discussion………………………………………43
4.1 Analysis surface of substrate after the alkali and heat treatments…………………………………………………………………43
4.1.1 Analysis of XRD………………………………………………43
4.1.2 Analysis of SEM………………………………………………43
4.1.3 Analysis of EDX…………………………………………………44
4.2 Analysis surface of substrate after electrodeposition…………………49
4.2.1 Analysis of XRD…………………………………………………49
4.2.2 Analysis of Micro-FTIR…………………………………………54
4.2.3 Analysis of SEM…………………………………………………59
4.2.4 Analysis of EDX………………………………………………..63
4.3 Analysis surface of substrate after electrodeposition on zn-containing solution …………………………………………………….79
4.3.1 Analysis of XRD…………………………………………………79
4.2.2 Analysis of Micro-FTIR….……………………………………79
4.2.3 Analysis of SEM…………………………………………………80
4.2.3 Analysis of EDX……………………………………………………81
4.4 Antibacterial activity test………………………………………81
4.4.1 The antibacterial activity influence of different zinc
concentration……………………………………………………………81
Chapter 5 Conclusions…………………………………………………95
References…………………………………………………………………96
1. H. M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, “Bonding strength of bonelike apatite layer to Ti Metal substrate”, J. Biomed. Mater. Res., 38: (1997) 121-127.
2. Edgar Lee, Handbook of Fracture, The C. V. Mosdy Company, Saint Louis,(1967).
3. 陳順清著, 實用骨折治療學, 南山堂出版社, (1986).
4. D.F. Williams and R. Roaf, Implant in Surgery, Chapter 1, Saunders, Pliladelphia, (1973).
5. D.C. Mars, Materials and orthopedic surgery, Chapter 1, Williams & Wilkins, Baltimore,(1979).
6. H. Kato, T. Nakamura, S. Nishiguchi, Y. Matsusue, M. Kobayashi, T. Miyazaki, H. M. Kim, T. Kokubo, “Bonding of Alkali- and Heat-Treated Tantalum Implants to Bone”, J. Biomed. Mater. Res., 53: (20002) 8-35.
7. T. Kokubo, F. Miyaji, H. M. Kim, “Spontaneous Formation of Bonelike Apatite Layer on Chemically Treated Titanium Metals”, J. Am. Ceram. Soc., 79: (1999) 1127-1129.
8. H. M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, “Preparation of bioactive Ti and its alloys via simple chemical surface treatment”, J. Biomed. Mater. Res., 32:(1996) 409-417.
9. H. M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, “Bonding strength of bonelike apatite layer to Ti Metal substrate”, J. Biomed. Mater. Res., 38: (1997) 121-127.
10. D. D. Deligianni, N. D. Katsala, P. G. Koutsoukos, Y. F. Missirlis, “Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength”, Biomaterials, 22: (2001) 87-96.
11. Jie Weng, Qing Lin, J.G.C. Wolke, Xingdong Zhang and K. de Groot, “Formation abd characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid”, Biomaterials., 18:(1997) 1027-1035.
12. K.A. Khor, Z.L. Dong , C.H. Quek , P. Cheang, “Microstructure investigation of plasma sprayed HA/Ti6Al4V composites by TEM”, Materials Science and Engineering., A281: (2000) 221-228.
13. S.W.K. Kweh, K.A. Khor, P. Cheang, “High temperature in-situ XRD of plasma sprayed HA coatings”, Biomaterials., 23: (2002) 381-387.
14. K. A. Tomas, J. F. Kay, S. D. Cook, and M. Jarcho, “The effect of surface macrotexture and hydroxyapatite coating on the mechanical strength and historogical profiles of titanium implant material”, J. Biomed. Mater. Res., 21: (1987) 1395-1406.
15. W. R. Lacefield, ”Hydroxyapatite coatings”, in Bioceramics: Material Characteristics versus in vitro Behavior, P. Ducheyne and J. Lemons (eds.), Academy of Sciences, NEW YORK, (1998) 72-80.
16. M. J. Filiaggi and R. M. Pilliar, ”Interfacial characterization of plasma sprayed hydroxyapatite/Ti-6Al-4V implant system”, in Transactions of ABCS. Annual Conference of the Canadian Biomaterial Society, (1989) 23-25.
17. S. Radin and P. Ducheyne, ”The effect of plasma sprayed induced changes in the characteristics on the in vitro stability of calcium phosphate ceramic”, J. Biomed. Mater. Res., 28: (1994) 961-967.
18. C. P. A. T. Klein, J. G. C Wolke, J. M. A. de Blieck-Hogewrst, and K. de Groot, ”Features of calcium phosphate plasma-sprayed coatings: An in vitro study “, J. Biomed. Mater. Res., 28: (1994) 961-967.
19. K. A. Gross and C. C. Berndt, “In vitro testing of plasma sprayed hydroxyapatite coating”, J. Matter. Sci. Mater. Med., 5: (1994) 219-224.
20. K. A. Mann, A. A. Edidin, R. K. Kinoshita, and M. T. Manley, “Mixed mode fracture characterization of hydroxyapatite-titanium alloy interface“, J. Appl. Biomater., 5: (1994) 285-291.
21. A. Ravaglioli, and A. Krajewski, “Bioceramics: Materials, Properties, Applications”, Chapman& Hall Press, London, (1992) 44-45.
22. H. -M. F. Miyaji, T. Kokubo, T. Nakamura, “Bonding strength of bonelike apatite layer to Ti Metal substrate”, J. Biomed. Mater. Rese., Vol.38: (1997) 121-127.
23. H.-M. Kim,Fumiaki Miyaji,Tadashi Kokubo, and Takashi Nakamura. “Preparation of bioactive Ti and its alloys via simple chemical surface treatment”, Journal of Biomedical Materials Research., Vol.32: (1996) 409-417.
24. H.-M. Kim, F.Miyaji, T.Kokubo, S.Nishiguchi, T.Nakamura, “Graded surface structure of bioactive titanium prepared by chemical treatment”, Journal of Biomedical Materials Research., Vol.45: (1999) 100-107.
25. Q.L. Feng, H. W.ang , F.Z. Cui, T.N. Kim, “Controlled crystal growth of calcium phosphate on titanium surface by NaOH-treatment”, Journal of Crystal Growth., 200: (1999) 550-557.
26. Q.L. Feng, H. W.ang , F.Z. Cui, T.N. Kim, “Influence of solution conditions on deposition of calcium phosphate on titanium by NaOH-treatment”, Journal of Crystal Growth., 210: (2000) 735-740.
27. Feng-Huei Lin, Yao-Shan Hsu, Shih-Hsun Lin, The effect of Ca/P concentration and temperature of simulated body fluid on the growth of hydroxyapatite coating on alkali treated 316L stainless steel, Biomaterials., 23, (2002) 4029-4038.
28. J.M. Zhang, C.J. Lin, Z.D. Feng, Z.W. Tian. “Mechanistic studies of electrodeposition for bioceramic coatings of clcium phosphate by an in sutu pH-microsensor technique ”. Journal of Electroanalytical Chemistry 452 (1998) 235-240.
29. R. Chaim, I. Zhitomirsky, L.Gal-Or, Electrochemical Al2O3-Zr2O3 composite coatings on non-oxide ceramic substrates, J. Mater. Sci. 32 (1997) 389-400.
30. S.K. Yen, Characterization of electrolytic ZrO2 coating on AISI 316L stainless steel, J. Electrochem. Soc. 146 (1999) 1392-1396.
31. 林永豐, 林東毅著: 抗菌不銹鋼之簡介,工業材料 119期,2002年11月,P.121-126.
32. Tiller JC, Liao CJ, Lewis K, Klibanov AM. Designing surfaces that kill bacteria on contact. Natl Acad Sci U S A 2001 May 22;(1998/11):5981-5.
33. 林昭憲著: 抗菌表面處哩,工業材料 119期,2002年11月,P.128-134.
34. 中村定性,大久保值人,山本正人,宮楠克久,長谷川守弘,“フェライト系抗菌ステンレス鋼” NSSAM-1 “の抗菌性おとび材料特性”,日新製鋼技術, No.76 (1977)p.48.
35. J. O. Hollinger and G. C. Battistone, “Biodegradable bone repair materials synthetic polymers and ceramics”, Clin. Orthop. Rel. Res., (1986) , 207.
36. S. F. Hulbert, L. L. Hench, D. Forbers, and L. S. Bowman, “History of Bioceramics”, Ceram. Internat., 8 (1982)P131-140.
37. K. Soballe, “Hydroxyapatite Ceramic Coating for Bone Implant Fixation”, ACTA Orthopaed. Scandin. Supplem., 64(1993) P.1-58.
38. J. B. Park, “Biomaterials Science and Engineering”, Plenum Press, New York and London, (1985).
39. David F. Williams, biocompatibility of clinical implant materials, Vol. 1: (1981)46-53.
40. H.S. Dobbs, J.T. Scales, ASTM STP 684, (1978).
41. E.J. Sutow, S.R. Pollack, in: D.F. William (Ed.), Biocompatibility of Clinical Implant Materials, I, CRC Press, Boca Raton, FL, (1981) 45–48.
42. T.P. Hoar, D.C. Mears, Proc. R. Soc. London (1996) A 294 - 486.
43. J.L. Lemons, Surf. Coat. Technol. 103y104 (1998) 135.
44. I. Gurrappa, Corr. Prev. Control 48 (2001) 23.
45. J.L. Gonzalez-Carrasco, M.L. Escudero, J. Chao, M.C. Garcia-Alonso, Mater. Manuf. Processes 13 (1998) 431.
46. T. Sonoda, M. Kato, Br. Ceram. Proc. 60 (1999) 231.
47. J. Hendry, R.M. Pilliar, Sixth World Biomater. Congress Trans. III(2000) 1538.
48. A. Montenero, G. Gnappi, F. Ferrari, et al., J. Mater. Sci. 35 (2000) 2791.
49. B. Feng, J.Y. Chen, X.D. Zhang, Key Eng. Mater. 192–195 (2001) 167.
50. W. Gao, Z. Liu, Z. Li, Adv. Mater. A 13 (2001) 1001.
51. D. Maiward, K. Bordji, J.Y. Jouzeau, E. Payan, J.P. Delagoutte, P. Netter, Biomaterials 17 (1996) 491.
52. B. D. Kattthagen, “Bone regeneration with bone substitutes”, CRC Press Inc., Boca Ration, Florida, (1983).
53. R. Z. LeGeros, “Apatites in biological systems,” Prog. Crystal Growth Charact., 4(1981) 1-45.
54. Hideki Aoki “Medical Applications of Hydroxyapatite” (1994) 6-7.
55. H.Aoki, “Medical application of hydroxyapatite”, Ishiyaku Euro America, Inc. Tokyo, St. Louis, Takayama Press, (1994).
56. E. C. Moreno and K. Varughese, “Crystal growth of calcium apatites from dilute solution”, J. Cryst. Growth, 53 (1981) 20.
57. N. C. Blumenthal, F. Bettts and A. S. Posner, “Effect of carbonate and biological macromolecules on formation and properties of hydroxyapatite”, Calc. Tiss. Res., 18 (1975) 81.
58. G.DacuIsi, “Biphasic calcium phosphate concept applied to articial bone, implant coating and injectable bone substitute,” Biomaterials, 19(1998) 1473-1478.
59. J.M. Zhang, C.J. Lin, Z.D. Feng, Z.D. Feng, Z.W. Tian, “Mechanistic studies of electrodeposition for bioceramic coatings of calcium phosphates by an in situ pH-microsensor technique,” Journal of Electroanalytical Chemistry, 452 (1998) 235-240.
60. Ducheyne P.Van Raemdonck W,Heughbaert J.C.,Heughbaert M., “Structural analysis of hydroxyapatite coatings on titanium,” Biomaterials ,7(1986), pp.97-103.
61. Damodam,Moudgil B.M., “Electrophoretic deposition of calcium phosphates for non-aqueous media,” Colloids Surf. A:Physicochem. Eng.Aspects ,80(1993), pp.191-195.
62. X.Ding,K.Yamasshita and T.Umegaki, “Coating of calcium phosphate on alumina ceramics by electrophoretic deposition,” Journal of the Ceramic Society of Japan .Vol. 103,8(1995) ,pp.867-869.
63. R.Damoddaran.B.M.Moudgil, “Electrophoretic deposition of calcium phosphates from non-aqueous media,” Colloids and Surfaces A : Physicochemical and Engineering Aspects ,80 (1993),pp.191-195.
64. H.Monma, “Electrolytic depositions of calcium phosphates on substrate” .Journal of Materials Science 29(1994),pp.949-953.
65. S.N.Heavens, “Electrophoretic deposition as a processing route for ceramics,” Advanced Ceramic Processing and Technology Vol.1,edited by J.G.P.Binner, Noyes publication,U.S.A.(1993) pp.255-283.
66. J.S.Reed,Introductiort to the principle of' ceramic processing,John Wiley & Sons (SEM)Pte.Ltd.,(1988) pp. 139-141.
67. Z.Wang,P.Xiao,J.Shemilt, “Fabrication of composite coatings using a combihation of electrochemical methods and reaction bonding process,” Journal of the European Ceramic Society ,20 (2000) pp. 1469-1473.
68. Yong Han Jewei, Xu. Jian Lu, “Morphology and composition ofhydroxyapatite coatings prepared by hydrothermal treat on electrodeposited brushite coatings,” Journal of Materials Scielzce: aterials in Medicine ,10 (1999) pp.243-248.
69. Miguel Manso, Carmen Jimenez, Carmen Morant,PilarHerrero, J.M.Martinez-Duart, “Electrodeposition ofhydroxyapatite coatings in basic conditions,” Biomaterials, 21 (2000) pp.l755-1761.
70. M.Euvrard,C.Filiatre,E,Crausaz, “A cell to study in situ electrocrystallization of calcium carbonate,” Journal of Crystal Growth, 216 (2000) pp.466-474.
71. Jim-shone Chen,Horng-Yih Juang,Min-Hsiung Hon, “Calcium phosphate coating on titanium substrste by a modified electrocrystallization process,” J. Mater. Si.: Materials in Medicine,9 (1998) pp.297-300.
72. D.Schamwedber,H.Bersch,H.Worch, “Process for producing a gradient coating made of calcium phosphates and metal oxide phase on metallic implants,” United States Patent, No.5 (1998) 723,038.
73. P.J.Mitchell and G.D.Wilcox, “The production of shaped ceramic precursors and coatings through an electrochemical process route,” Institute of Materials,carlton house terrance, London(l 995).
74. Slavica Lazic, “Microcrystalline hydroxyapatite formation from alkaline solutions,” Journal of Crystal Growth, 147 (1995) pp.147-154.
75. Donald L. Wise, Debra J. Trantolo, David E. Altobelli, Michael J. Yaszemski, Human biomaterials applications, (1992) p19-24.
76. Jonathan Black, Biological performance of materials, (1992) 137-138.
77. Donald L. Wise, Debra J. Trantolo, David E. Altobelli, Michael J. Yaszemski, Human biomaterials applications, (1992) p. 20.
78. H. W. Buchholz, R. A. Elson, E. Englbrecht, H. Lodenkamper, L. Rottger, A. Siegel, Management of dep infection of total hip replacement, J. Bone Joint Surgery VOL. 63-B, No.3 (1981) 342-353.
79. NEIL E. GREEN, Pseudomonas infections of the foot following puncture wounds, p. 43-45.
80. JOHN N.INSALL, Lnfection in total knee arthroplasty, p. 42-48.
81. Rogers, H. J., Bacterial cell structure-Microbial Flora in Health and Disease, (1983) p78-83.
82. Rogers, H. J., Bacterial cell structure-Microbial Flora in Health and Disease, (1983) p166-179.
83. Rogers, H. J., Bacterial cell structure-Microbial Flora in Health and Disease (1983) 253-259.
84. H.-M. Kim,Fumiaki Miyaji,Tadashi Kokubo, and Takashi Nakamura. “Preparation of bioactive Ti and its alloys via simple chemical surface treatment”, Journal of Biomedical Materials Research., Vol.32: (1996) 409-417.
85. H.-M. Kim, F.Miyaji, T.Kokubo, S.Nishiguchi, T.Nakamura, “Graded surface structure of bioactive titanium prepared by chemical treatment”, Journal of Biomedical Materials Research.,Vol.45: (1999) 100-107.
86. Feng, Q.L.; Cui, F.Z.; Wang, H.; Kim, T.N.; Kim, J.O., “Controlled crystal growth of calcium phosphate on titanium surface by NaOH-treatment”, Journal of Crystal Growth., 200: (1999) 550-557.
87. Feng, Q.L.; Cui, F.Z.; Wang, H.; Kim, T.N.; Kim, J.O., “Influence of solution conditions on deposition of calcium phosphate on titanium by NaOH-treatment”, Journal of Crystal Growth., 210: (2000) 735-740.
88. Yang CY, Wang BC, Chang E, Wu BC. J Mater Sci: Mater Med 1995;6: 258-265.
89. Kay JF. Dent Clin North Am 1992;36:1-18.
90. Yong Han, Tao Fu, Jian Lu, Kewei Xu: J. Biomed. Mater. Res. 2001;54:96-101.
91. B. O. Fowler, E. C. Moreno and W. E. Brown: Arch. Oral Biol., 11 (1966) 477.
92. C. Rey, B. Collins, T. Goehl, I. R. Dickson and M. J. Glimcher: Calcif. Tissue Int. 45 (1989) 157.
93. Seiji Ban and Shigeo Maruno: Biomaterials. 16 (1995) 977-981.
94. J. L. MAYER and B. O. FOWLER, lnorg. Chem.. 21 (1982) 3029.
95. Gordon M. Barrow, Physical Chemistry, sixth edition., McGraw-Hill, 1996.
96. Ban S, Maruno S. Jap J Appl Phys 1993;32:L 1577-1580.
97. Yong-Ri Y, Kano S, Ohgaki M, Nakamura S, Aoki H. 15th Annu. Meet. Japan Soc. Biomat., Kobe, abstr No P-07, 89, 1993 (in Japanese).
98. Monma H. Tokyo: Kodansha, 1989:79–103.
99. A. Bigi, E. Foresti, M. Gandolfi, M. Gazzano, and N. Roveri, “Inhibiting Effect of Zinc on Hydroxylapatite Crystallization”, Journal of Inorganic Biochemistry, 58, (1995) 49-58.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top