跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 12:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳妍寧
研究生(外文):Chen, Yen-Ning
論文名稱:熱帶念珠菌藉由在FCY2基因上的無意義突變伴隨異質性缺失的發生獲得抗氟胞嘧啶的能力
論文名稱(外文):Development of flucytosine resistance in Candida tropicalis is caused by nonsense mutations in FCY2, followed by loss of heterozygosity
指導教授:楊昀良
指導教授(外文):Yang, Yun-Liang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:分子醫學與生物工程研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:99
中文關鍵詞:熱帶念珠菌FCY2無意義突變異質性缺失氟胞嘧啶
外文關鍵詞:Candida tropicalisFCY2nonsense mutationsloss of heterozygosityflucytosine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
熱帶念珠菌(Candida tropicalis)是一種雙倍體的病原真菌。在念珠菌屬中,熱帶念珠菌極具侵略性且是最常見的非白色念珠菌之一。先前的實驗中發現31.25%對flucytosine (5FC)敏感的臨床菌株具有產生抗藥性子代的能力,並進一步證實所觀察到的5FC抗藥性與帶有特定一群多型性核苷酸(SNP)的FCY2基因(會產生運輸cytosine的蛋白質)處在同質二倍體的狀態(homozygous state)有關。本研究將針對熱帶念珠菌對5FC的抗藥機制做更深入的探討。首先,利用另一個關係較遠的臨床菌株建構FCY2同質二倍體的突變株,在5FC藥物敏感性測試實驗中顯示,只有跟上述帶有同樣一群多型性核苷酸的同質二倍體突變株具有抗此藥物的能力。接著分析對5FC極為敏感的臨床菌株在FCY2基因上的各個多型性核苷酸,發現有三個多型性核苷酸只有在具有抗5FC能力的菌株中才存在,經建構這三個多型性核苷酸的點突變株,顯示G145T的點突變加上FCY2基因處在同質二倍體的狀態(145 T/T)與衍生株的抗藥性有關。這個G145T的點突變會造成無意義突變(nonsense mutation)使得FCY2不會合成具有功能的運輸蛋白產物(purine-cytosine permease)。最後,分析全部具有產生抗藥性子代能力的臨床菌株的基因型,發現大部分的親代菌株都帶有145 T/G這種基因型。除了分析FCY2基因與抗5FC藥物之間的關係,本研究也針對兩隻臨床菌株和它們的衍生株之間所發生的異質性缺失(loss of heterozygosity; LOH)做探討。藉由基因多型性圖譜觀察到多數的LOH涵蓋了大部分染色體的區域,甚至延伸到其端粒,這些LOH可能是由於allelic recombination或者break-induced replication所造成。另外有一個小範圍的LOH則可能是由gene conversion所產生。總結,在FCY2基因中產生的無意義突變伴隨大範圍LOH的發生是造成本實驗中熱帶念珠菌衍生株產生抗5FC的主要原因。
Candida tropicalis, a diploid yeast, has been regarded as one of the most invasive and prevalent species of non-albicans Candida. Previous work has shown that 31.25% (30/96) of flucytosine (5FC) susceptible clinical isolates could generate drug resistant progeny. It has revealed that there was an association between a set of polymorphic nucleotides in FCY2 (encoding a cytosine transporter) and the observed drug resistant phenotype. In this study, the molecular mechanisms of 5FC resistance in these C. tropicalis have been further investigated. First of all, homozygous mutants carrying the same set of SNPs in FCY2 under different genetic background displayed similar levels of resistance to 5FC. Second, nucleotide sequences of the FCY2 alleles in hyper-susceptible strains indicated three SNPs in FCY2 were unique to those resistant strains. Subsequently, a homozygous SNP at position 145 (T/T) in the FCY2 gene was proven to be fully accounted for the 5FC resistance observed in the drug resistant derivatives. Since the G145T mutation resulted in a nonsense mutation, it might lead to the loss of purine-cytosine permease. Finally, two types of nonsense mutations (G145T and G201A) were found in FCY2 of the clinical isolates that had potential to produce 5FC resistant derivatives, where the majority was 145 T/G genotype. Meanwhile, the nature and the extent of loss of heterozygosity (LOH) events have been examined by SNP mapping. The results showed that most of the LOH events covered large chromosomal regions, which even extended to the telomere, suggesting allelic recombination or break-induced replication, whereas one was a localized LOH event, caused by gene conversion. All in all, nonsense mutations in FCY2 coupled with LOH events are responsible for 5FC resistance in those C. tropicalis strains.
Chapter 1. Introduction
1.1 Clinical significance of Candida tropicalis 1
1.2 Mechanisms of action of antifungal agents 2
1.3 Molecular mechanisms of flucytosine resistance in yeasts 3
1.4 The association between loss of heterozygosity and antifungal drug resistance 4
1.5 Previous works 5
1.6 Purpose of this study 7

Chapter 2. Materials and Methods
2.1 Materialsts 8
2.1.1 Strains 8
2.1.2 Plasmids and primers 8
2.1.3 Chemicals and reagents 8
2.1.4 Buffers 9
2.1.5 Medium 9
2.1.6 Equipments 9
2.1.7 Strains and media 10
2.2 Methods 10
2.2.1 DNA methods 11
2.2.2 Polymerase chain reaction (PCR) 11
2.2.3 Transformations 12
2.2.4 Constructions of plasmids 13
2.2.5 Sequence analysis 15
2.2.6 Susceptibility testing 15
2.2.7 Quantitative analysis of the mRNA level by real-time PCR 16
2.2.8 Identification of the boundary of loss of heterozygosity (LOH) events 18

Chapter 3. Results
3.1 Phenotypic analysis of the clinical isolates and their homozygous mutants 19
3.2 Sequence analysis of the 5’ and 3’ untranslated regions of the FCY2 locus in hyper- susceltible strains 20
3.3 Construction of plasmids carrying a single mutation at the FCY2 locus 21
3.4 Construction of G-69T (G145T), T-69G (T145G), G273T (G486T), T273G (T486G), C1518T (C1731T) or T1518C (T1731C) single mutation strain 22
3.5 Phenotypic analysis of the single mutation strains 23
3.6 Contribution of the polymorphic nucelotide in the promoter region of the FCY2 gene 25
3.7 Nucleotide sequence analysis of the FCY2 gene 26
3.8 Genotypic characterization of clinical isolates 27
3.9 Characterization of loss of heterozygosity events in clinical isolate-derivative pairs 28
3.10 Characterization of the loss of heterozygosity boundaries 30

Chapter 4. Discussion
4.1 The redefinition of FCY2 open reading frame in C. tropicalis 32
4.2 Contribution of the FCY2 gene to flucytosine susceptibility in C.tropicalis 33
4.2.1 LOH at the FCY2 locus was associated with 5FC resistance 33
4.2.2 The nonsense mutation in the FCY2 gene, accompanied by LOH, contributed to 5FC resistance in C. tropicali 33
4.2.3 Isolates exhibiting 145 T/G genotype might represent a subgroup associated with the generation of 5FC resistant derivatives 35
4.3 Other possibilities that might involve in flucytosine resistance in C. tropicalis 36
4.4 The cause of differential mRNA levels of FCY2 of yeasts carrying a nonsense mutation 37
4.5 Characterization of the loss of heterozygosity events 38

Chapter 5. Future work
5.1 Evaluation of the mechanism of 5FC resistance in C. tropicalis 41
5.2 Examination of the feature of the boundaries that might be related to recombination event 41

References 43

Abi-Said, D., Anaissie, E., Uzun, O., Raad, I., Pinzcowski, H., and Vartivarian, S. (1997) The epidemiology of hematogenous candidiasis caused by different Candida species. Clin Infect Dis 24: 1122-1128.
Andersen, M.P., Nelson, Z.W., Hetrick, E.D., and Gottschling, D.E. (2008) A genetic screen for increased loss of heterozygosity in Saccharomyces cerevisiae. Genetics 179: 1179-1195.
Arendrup, M., Horn, T., and Frimodt-Moller, N. (2002) In vivo pathogenicity of eight medically relevant Candida species in an animal model. Infection 30: 286-291.
Baudat, F., and Nicolas, A. (1997) Clustering of meiotic double-strand breaks on yeast chromosome III. Proc Natl Acad Sci U S A 94: 5213-5218.
Beck-Sague, C., and Jarvis, W.R. (1993) Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980-1990. National Nosocomial Infections Surveillance System. J Infect Dis 167: 1247-1251.
Blondel, M.O., Morvan, J., Dupre, S., Urban-Grimal, D., Haguenauer-Tsapis, R., and Volland, C. (2004) Direct sorting of the yeast uracil permease to the endosomal system is controlled by uracil binding and Rsp5p-dependent ubiquitylation. Mol Biol Cell 15: 883-895.
Brandstrom, M., Bagshaw, A.T., Gemmell, N.J., and Ellegren, H. (2008) The relationship between microsatellite polymorphism and recombination hot spots in the human genome. Mol Biol Evol 25: 2579-2587.
Butler, G., Rasmussen, M.D., Lin, M.F., Santos, M.A., Sakthikumar, S., Munro, C.A., Rheinbay, E., Grabherr, M., Forche, A., Reedy, J.L., Agrafioti, I., Arnaud, M.B., Bates, S., Brown, A.J., Brunke, S., Costanzo, M.C., Fitzpatrick, D.A., de Groot, P.W., Harris, D., Hoyer, L.L., Hube, B., Klis, F.M., Kodira, C., Lennard, N., Logue, M.E., Martin, R., Neiman, A.M., Nikolaou, E., Quail, M.A., Quinn, J., Santos, M.C., Schmitzberger, F.F., Sherlock, G., Shah, P., Silverstein, K.A., Skrzypek, M.S., Soll, D., Staggs, R., Stansfield, I., Stumpf, M.P., Sudbery, P.E., Srikantha, T., Zeng, Q., Berman, J., Berriman, M., Heitman, J., Gow, N.A., Lorenz, M.C., Birren, B.W., Kellis, M., and Cuomo, C.A. (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459: 657-662.
Chapeland-Leclerc, F., Bouchoux, J., Goumar, A., Chastin, C., Villard, J., and Noel, T. (2005) Inactivation of the FCY2 gene encoding purine-cytosine permease promotes cross-resistance to flucytosine and fluconazole in Candida lusitaniae. Antimicrob Agents Chemother 49: 3101-3108.
Chen, K.W., Chen, Y.C., Lin, Y.H., Chou, H.H., and Li, S.Y. (2009) The molecular epidemiology of serial Candida tropicalis isolates from ICU patients as revealed by multilocus sequence typing and pulsed-field gel electrophoresis. Infect Genet Evol 9: 912-920.
Chen, Y.C., Chang, S.C., Sun, C.C., Yang, L.S., Hsieh, W.C., and Luh, K.T. (1997) Secular trends in the epidemiology of nosocomial fungal infections at a teaching hospital in Taiwan, 1981 to 1993. Infect Control Hosp Epidemiol 18: 369-375.
Chou, H.H., Lo, H.J., Chen, K.W., Liao, M.H., and Li, S.Y. (2007) Multilocus sequence typing of Candida tropicalis shows clonal cluster enriched in isolates with resistance or trailing growth of fluconazole. Diagn Microbiol Infect Dis 58: 427-433.
Coste, A., Turner, V., Ischer, F., Morschhauser, J., Forche, A., Selmecki, A., Berman, J., Bille, J., and Sanglard, D. (2006) A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172: 2139-2156.
Coste, A., Selmecki, A., Forche, A., Diogo, D., Bougnoux, M.E., d'Enfert, C., Berman, J., and Sanglard, D. (2007) Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot Cell 6: 1889-1904.
Cullen, J.K., Hussey, S.P., Walker, C., Prudden, J., Wee, B.Y., Dave, A., Findlay, J.S., Savory, A.P., and Humphrey, T.C. (2007) Break-induced loss of heterozygosity in fission yeast: dual roles for homologous recombination in promoting translocations and preventing de novo telomere addition. Mol Cell Biol 27: 7745-7757.
Desnos-Ollivier, M., Bretagne, S., Bernede, C., Robert, V., Raoux, D., Chachaty, E., Forget, E., Lacroix, C., and Dromer, F. (2008) Clonal population of flucytosine- resistant Candida tropicalis from blood cultures, Paris, France. Emerg Infect Dis 14: 557-565.
Diasio, R.B., Bennett, J.E., and Myers, C.E. (1978) Mode of action of 5-fluorocytosine. Biochem Pharmacol 27: 703-707.
Diogo, D., Bouchier, C., d'Enfert, C., and Bougnoux, M.E. (2009) Loss of heterozygosity in commensal isolates of the asexual diploid yeast Candida albicans. Fungal Genet Biol 46: 159-168.
Dunham, M.J., Badrane, H., Ferea, T., Adams, J., Brown, P.O., Rosenzweig, F., and Botstein, D. (2002) Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 99: 16144 -16149.
Dunkel, N., Blass, J., Rogers, P.D., and Morschhauser, J. (2008) Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains. Mol Microbiol 69: 827-840.
Dunn, B., Levine, R.P., and Sherlock, G. (2005) Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. BMC Genomics 6: 53.
Fasoli, M., and Kerridge, D. (1988) Isolation and characterization of fluoropyrimidine-resistant mutants in two Candida species. Ann N Y Acad Sci 544: 260-263.
Franz, R., Kelly, S.L., Lamb, D.C., Kelly, D.E., Ruhnke, M., and Morschhauser, J. (1998) Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains. Antimicrob Agents Chemother 42: 3065-3072.
Fridkin, S.K., and Jarvis, W.R. (1996) Epidemiology of nosocomial fungal infections. Clin Microbiol Rev 9: 499-511.
Hagan, K.W., Ruiz-Echevarria, M.J., Quan, Y., and Peltz, S.W. (1995) Characterization of cis-acting sequences and decay intermediates involved in nonsense-mediated mRNA turnover. Mol Cell Biol 15: 809-823.
Hamilton, R., Watanabe, C.K., and de Boer, H.A. (1987) Compilation and comparison of the sequence context around the AUG startcodons in Saccharomyces cerevisiae mRNAs. Nucleic Acids Res 15: 3581-3593.
Hitchcock, C.A. (1991) Cytochrome P-450-dependent 14 alpha-sterol demethylase of Candida albicans and its interaction with azole antifungals. Biochem Soc Trans 19: 782-787.
Hope, W.W., Tabernero, L., Denning, D.W., and Anderson, M.J. (2004) Molecular mechanisms of primary resistance to flucytosine in Candida albicans. Antimicrob Agents Chemother 48: 4377-4386.
Jacobson, A., and Peltz, S.W. (1996) Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem 65: 693-739.
Jund, R., and Lacroute, F. (1970) Genetic and physiological aspects of resistance to 5-fluoropyrimidines in Saccharomyces cerevisiae. J Bacteriol 102: 607-615.
Kauffman, C.A., and Carver, P.L. (1997) Antifungal agents in the 1990s. Current status and future developments. Drugs 53: 539-549.
Kelly, S.L., Lamb, D.C., Kelly, D.E., Manning, N.J., Loeffler, J., Hebart, H., Schumacher, U., and Einsele, H. (1997) Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta5,6-desaturation. FEBS Lett 400: 80-82.
Kern, L., de Montigny, J., Lacroute, F., and Jund, R. (1991) Regulation of the pyrimidine salvage pathway by the FUR1 gene product of Saccharomyces cerevisiae. Curr Genet 19: 333-337.
Kohler, G.A., White, T.C., and Agabian, N. (1997) Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol 179: 2331-2338.
Kontoyiannis, D.P., Vaziri, I., Hanna, H.A., Boktour, M., Thornby, J., Hachem, R., Bodey, G.P., and Raad, II (2001) Risk Factors for Candida tropicalis fungemia in patients with cancer. Clin Infect Dis 33: 1676-1681.
Kothavade, R.J., Kura, M.M., Arvind, V.G., and Panthaki, M.H. (2010) Candida tropicalis: its competitive prevalence, pathogenicity versus host defense and increasing resistance to fluconazole. J Med Microbiol.
Kozak, M. (1984) Selection of initiation sites by eucaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence for preproinsulin. Nucleic Acids Res 12: 3873-3893.
Law, D., Moore, C.B., Joseph, L.A., Keaney, M.G., and Denning, D.W. (1996) High incidence of antifungal drug resistance in Candida tropicalis. Int J Antimicrob Agents 7: 241-245.
Li, S.Y., Yang, Y.L., Lin, Y.H., Ko, H.C., Wang, A.H., Chen, K.W., Wang, C.W., Chi, H., and Lo, H.J. (2009) Two closely related fluconazole-resistant Candida tropicalis clones circulating in Taiwan from 1999 to 2006. Microb Drug Resist 15: 205-210.
Liu, C.C., Simonsen, C.C., and Levinson, A.D. (1984) Initiation of translation at internal AUG codons in mammalian cells. Nature 309: 82-85.
Louie, A., Kaw, P., Banerjee, P., Liu, W., Chen, G., and Miller, M.H. (2001) Impact of the order of initiation of fluconazole and amphotericin B in sequential or combination therapy on killing of Candida albicans in vitro and in a rabbit model of endocarditis and pyelonephritis. Antimicrob Agents Chemother 45: 485-494.
Maquat, L.E. (1995) When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. Rna 1: 453-465.
Marr, K.A., Seidel, K., White, T.C., and Bowden, R.A. (2000) Candidemia in allogeneic blood and marrow transplant recipients: evolution of risk factors after the adoption of prophylactic fluconazole. J Infect Dis 181: 309-316.
Marsolier-Kergoat, M.C., and Yeramian, E. (2009) GC content and recombination: reassessing the causal effects for the Saccharomyces cerevisiae genome. Genetics 183: 31-38.
Natalini, P., Ruggieri, S., Santarelli, I., Vita, A., and Magni, G. (1979) Baker's yeast UMP:pyrophosphate phosphoribosyltransferase. Purification, enzymatic and kinetic properties. J Biol Chem 254: 1558-1563.
Niimi, K., Monk, B.C., Hirai, A., Hatakenaka, K., Umeyama, T., Lamping, E., Maki, K., Tanabe, K., Kamimura, T., Ikeda, F., Uehara, Y., Kano, R., Hasegawa, A., Cannon, R.D., and Niimi, M. (2010) Clinically significant micafungin resistance in Candida albicans involves modification of a glucan synthase catalytic subunit GSC1 (FKS1) allele followed by loss of heterozygosity. J Antimicrob Chemother 65: 842-852.
Paluszynski, J.P., Klassen, R., Rohe, M., and Meinhardt, F. (2006) Various cytosine/adenine permease homologues are involved in the toxicity of 5-fluorocytosine in Saccharomyces cerevisiae. Yeast 23: 707-715.
Papon, N., Noel, T., Florent, M., Gibot-Leclerc, S., Jean, D., Chastin, C., Villard, J., and Chapeland-Leclerc, F. (2007) Molecular mechanism of flucytosine resistance in Candida lusitaniae: contribution of the FCY2, FCY1, and FUR1 genes to 5-fluorouracil and fluconazole cross-resistance. Antimicrob Agents Chemother 51: 369-371.
Peltz, S.W., He, F., Welch, E., and Jacobson, A. (1994) Nonsense-mediated mRNA decay in yeast. Prog Nucleic Acid Res Mol Biol 47: 271-298.
Pozzoli, U., Menozzi, G., Fumagalli, M., Cereda, M., Comi, G.P., Cagliani, R., Bresolin, N., and Sironi, M. (2008) Both selective and neutral processes drive GC content evolution in the human genome. BMC Evol Biol 8: 99.
Radding, J.A., Heidler, S.A., and Turner, W.W. (1998) Photoaffinity analog of the semisynthetic echinocandin LY303366: identification of echinocandin targets in Candida albicans. Antimicrob Agents Chemother 42: 1187-1194.
Reuss, O., Vik, A., Kolter, R., and Morschhauser, J. (2004) The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341: 119-127.
Ruan, S.Y., and Hsueh, P.R. (2009) Invasive candidiasis: an overview from Taiwan. J Formos Med Assoc 108: 443-451.
Ryder, N.S. (1992) Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol 126 Suppl 39: 2-7.
Schmidt, R., Manolson, M.F., and Chevallier, M.R. (1984) Photoaffinity labeling and characterization of the cloned purine-cytosine transport system in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 81: 6276-6280.
Seron, K., Blondel, M.O., Haguenauer-Tsapis, R., and Volland, C. (1999) Uracil-induced down-regulation of the yeast uracil permease. J Bacteriol 181: 1793-1800.
Sheehan, D.J., Hitchcock, C.A., and Sibley, C.M. (1999) Current and emerging azole antifungal agents. Clin Microbiol Rev 12: 40-79.
Takagi, Y., Akada, R., Kumagai, H., Yamamoto, K., and Tamaki, H. (2008) Loss of heterozygosity is induced in Candida albicans by ultraviolet irradiation. Appl Microbiol Biotechnol 77: 1073-1082.
Tavanti, A., Davidson, A.D., Johnson, E.M., Maiden, M.C., Shaw, D.J., Gow, N.A., and Odds, F.C. (2005) Multilocus sequence typing for differentiation of strains of Candida tropicalis. J Clin Microbiol 43: 5593-5600.
Tsang, P.W., Cao, B., Siu, P.Y., and Wang, J. (1999) Loss of heterozygosity, by mitotic gene conversion and crossing over, causes strain-specific adenine mutants in constitutive diploid Candida albicans. Microbiology 145 ( Pt 7): 1623-1629.
Vanden Bossche, H., Marichal, P., and Odds, F.C. (1994) Molecular mechanisms of drug resistance in fungi. Trends Microbiol 2: 393-400.
Vermes, A., Guchelaar, H.J., and Dankert, J. (2000) Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 46: 171-179.
Viviani, M.A. (1995) Flucytosine--what is its future? J Antimicrob Chemother 35: 241-244.
Waldorf, A.R., and Polak, A. (1983) Mechanisms of action of 5-fluorocytosine. Antimicrob Agents Chemother 23: 79-85.
Weber, E., Rodriguez, C., Chevallier, M.R., and Jund, R. (1990) The purine-cytosine permease gene of Saccharomyces cerevisiae: primary structure and deduced protein sequence of the FCY2 gene product. Mol Microbiol 4: 585-596.
White, T.C., Marr, K.A., and Bowden, R.A. (1998) Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11: 382-402.
Wingard, J.R. (1995) Importance of Candida species other than C. albicans as pathogens in oncology patients. Clin Infect Dis 20: 115-125.
Yang, Y.L., Li, S.Y., Cheng, H.H., and Lo, H.J. (2005) Susceptibilities to amphotericin B and fluconazole of Candida species in TSARY 2002. Diagn Microbiol Infect Dis 51: 179-183.
Yang, Y.L., Wang, A.H., Wang, C.W., Cheng, W.T., Li, S.Y., and Lo, H.J. (2008) Susceptibilities to amphotericin B and fluconazole of Candida species in Taiwan Surveillance of Antimicrobial Resistance of Yeasts 2006. Diagn Microbiol Infect Dis 61: 175-180.
Yun, D.F., and Sherman, F. (1995) Initiation of translation can occur only in a restricted region of the CYC1 mRNA of Saccharomyces cerevisiae. Mol Cell Biol 15: 1021-1033.
吳佳真 (2009) 熱帶念珠菌失去異質合子性導致5-Flucytosine抗藥性及鑑別 CaNDT80活化區重要胺基酸之研究 Loss of heterozygosity contributes to the resistance to 5-flucytosine in Candida tropicalis and the study of identifying the crucial amino acids in the activation domain of CaNDT80



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top