跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/13 16:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳柏元
研究生(外文):Po-Yuan Chen
論文名稱:應用網路攝影機和可拓理論設計一套低成本之手部辨識系統
論文名稱(外文):Using WebCam and Extension Theory to Design a Low-Cost Hand Recognition System
指導教授:王孟輝王孟輝引用關係
指導教授(外文):Meng-Hui Wang
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:85
中文關鍵詞:掌紋感光耦合元件可拓方法
外文關鍵詞:palmprintscharge-coupled deviceextension method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:423
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用一般低成本的網路攝影機和可拓理論設計一套生物辨識系統,並期望能達到與市售高成本之生物辨識系統一樣之辨識效能。生物辨識系統中,可以擷取的特徵有很多種,在經濟成本考量和較能讓大眾所接受的是手部特徵;手部特徵可以分成三種,手部幾何、掌紋和指紋,不過每一個類型特徵都有它的優缺點。因此,本研究擷取兩種手部特徵-幾何和掌紋來辨識人的身分,兩種特徵可以相互補足彼此的缺點。文中手部幾何主要擷取手指的長度、寬度和輪廓特徵,掌紋主要擷取主線的長度、斜率和位置距離等特徵。本研究的辨識演算法利用可拓演算法來進行手部辨識,並與其他傳統演算法和辨識系統相互做比較,最後經由實驗結果得知,本研究所運用的方法擁有勝過傳統演算法的識別率,並進一步證實本文所設計之辨識系統性能並不亞於一般傳統示售的生物辨識系統。
This study used a low-cost webcam and extension theory to design a biometric system; it had a high recognition accuracy that is equivalent in high cost biometric system. There are many types of biological features that can be captured for biometric systems, the most economical and acceptable feature is hand feature. Features of hands can be divided into three categories, such as hand geometry, palm prints and fingerprints, and there are advantages and disadvantages in every single feature. Therefore, this paper used palm print and palm geometry. These two features can mutually complement each other's shortcomings. Hand geometry is to retrieve the finger length, width and profile characteristics, the palm print main captured length, slope and location of the main line distance. The recognition algorithm of this study used extension algorithm for the hand recognition, and was compared with other traditional algorithms and recognition systems. Finally, the experimental results show that the proposed method has higher recognition accuracy than traditional algorithms, and prove that low-cost biometric system has a high recognized accuracy, better than the traditional biometric system.
中文摘要 -------------------------------------------- I
英文摘要 ------------------------------------------- II
誌謝 --------------------------------------------- III
目錄 ----------------------------------------------- V
表目錄 --------------------------------------------- VII
圖目錄 -------------------------------------------- VIII
符號說明 ------------------------------------------- X
第一章 緒論---------------------------------------- 1
1.1 生物辨識技術簡介------------------------------ 1
1.2 研究動機-------------------------------------- 1
1.3 文獻回顧--------------------------------------- 2
1.4 論文大綱--------------------------------------- 4
第二章 影像擷取系統之架構------------------------ 6
2.1 影像擷取工具----------------------------------- 6
2.2 網路攝影機之優缺點------------------------------ 7
2.3 系統架構-------------------------------------- 7
第三章 手部影像特徵擷取之方法-------------------- 11
3.1 影像前處理階段--------------------------------- 11
3.2 手部的幾何部分--------------------------------- 11
3.2.1 最大類間發差法------------------------------- 11
3.2.2 手掌邊緣偵測--------------------------------- 13
3.2.3 手指端點定位--------------------------------- 15
3.3 手部的掌紋部分--------------------------------- 18
3.3.1 掌紋區域定位-------------------------------- 18
3.3.2 強化邊緣方法-------------------------------- 20
3.3.3 二值化方法---------------------------------- 21
3.3.4 去除雜訊方法--------------------------------- 21
3.3.5 線段化方法----------------------------------- 22
3.4 手部特徵擷取----------------------------------- 24
3.4.1 幾何特徵------------------------------------- 24
3.4.2 掌紋特徵------------------------------------ 26
第四章 手部辨識之方法------------------------------ 29
4.1 簡介----------------------------------------- 29
4.2 可拓理論-------------------------------------- 29
4.2.1 可拓集合-------------------------------- 30
4.2.2 物元理論------------------------------------ 32
4.2.3 可拓關聯函數-------------------------------- 33
4.3 可拓理論之評價方法----------------------------- 35
第五章 實驗結果和討論----------------------------- 42
5.1 實驗條件與數據-------------------------------- 42
5.1.1 實驗條件------------------------------------ 42
5.1.2 實驗數據------------------------------------ 42
5.2 實驗方法-------------------------------------- 53
5.3 實驗結果-------------------------------------- 56
5.4 實驗比較與探討--------------------------------- 60
第六章 結論與未來展望------------------------------ 63
6.1 結論------------------------------------ 63
6.2 未來展望--------------------------------- 64
參考文獻 ------------------------------------------ 65
作者簡介 ----------------------------------------- 71

[1] D. Zhang, and A. Biometrics: Technologies &; Systems. Kluwer Academic, 2000.
[2] http://www.ithome.com.tw/itadm/article.php?c=17962.
[3] R. W. Ives, Y. Du, D. M. Etter, and T. B. Welch, “A Multidisciplinary Approach to Biometrics,” IEEE Transactions on Education, Vol. 48, No. 3, pp. 462-471, 2005.
[4] S. Z. Li, C. RuFeng, L. ShengCai, and Z. Lun, “Illumination Invariant Face Recognition Using Near-Infrared Images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, No. 4, pp. 627-639, 2007.
[5] C. T. Chou, S. W. Shih, W. S. Chen, W. Cheng, and D. Y. Chen, “Non-Orthogonal View Iris Recognition System,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 20, No. 3, pp. 417-430, 2010.
[6] D. Zhang, F. Liu, Q. Zhao, G. Lu, and N. Luo, “Selecting a Reference High Resolution for Fingerprint Recognition Using Minutiae and Pores,” IEEE Transactions on Instrumentation and Measurement, Vol. 60, No. 3, pp. 863-871, 2011.
[7] D. Zhang, G. Lu, W. Li, L. Zhang, and N. Luo, “Palmprint Recogni-tion Using 3-D Information,” IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews, Vol. 39, No. 5, pp. 505-519, 2009.
[8] G. Zheng, C. J. Wang, and T. E. Boult, “Application of Projective Invariants in Hand Geometry Biometrics,” IEEE Transactions on Information Forensics and Security, Vol. 2, No. 4, pp. 758-768, 2007.
[9] N. Wang, P. C. Ching, N. Zheng, and T. Lee, “Robust Speaker Recognition Using Denoised Vocal Source and Vocal Tract Features,” IEEE Transactions on Audio, Speech, and Language Processing, Vol. 19, No. 1, pp. 196-205, 2011.
[10] A. L. Koerich, R. Sabourin, and C. Y. Suen, “Recognition and Verification of Unconstrained Handwritten Words,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 10, pp. 1509-1522, 2005.
[11] J. Doi, and M. Yamanaka, “Discrete Finger and Palmar Feature Ex-traction for Personal Authentication,” IEEE Transactions on Instru-mentation and Measurement, Vol. 54, No. 6, pp. 2213-2219, 2005.
[12] A. Kumar, and D. Zhang, “Hand-Geometry Recognition Using Entropy-Based Discretization,” IEEE Transactions on Information Forensics and Security, Vol. 2, No. 2, pp. 181-187, 2007.
[13] J. Feng, and A. K. Jain, “Fingerprint Reconstruction:From Minutiae to Phase,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, No. 2, pp. 209-223, 2011.
[14] J. Dai, and J. Zhou, “Multifeature-BasedHigh-Resolution Palmprint Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, No. 5, pp. 945-957, 2011.
[15] O. D. Richard, E. H. Peter, and G. S. David,“Pattern Classification,” John Wiley &; Sons, 2001.
[16] 劉家村,生物特徵辨識-手指紋路辨識,國立中央大學,碩士論文,2005。
[17] D. Zhang, W-K. Kong, J. You, and M. Wong, “Online Palmprint Identification,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No. 9, pp. 1041-1050, 2003.
[18] Y. Yoshitomi, T. Miyaura, S. Tomita, and S. Kimura, “Face Identification Using Thermal Image Processing,” Proceedings 6th IEEE International Workshop on Robot and Human Communication, Tohoku University, Sendai, Japan, pp. 374-379, 1997.
[19] Y. Morimoto, Y. Ueno, W. Takeuchi, S. Kojima, K. Matsuzaki, T. Ishitsu, K. Umegaki, Y. Kiyanagi, N. Kubo, C. Katoh, T. Shiga, H. Shirato, and N. Tamaki, “Development of a 3D Brain PET Scanner Using CdTe Semiconductor Detectors and Its First Clinical Application,” IEEE Transactions on Nuclear Science, Vol. 58, No. 5, pp. 2181-2189, 2011.
[20] Y. Jane, L. Wenxin, and Z. David, “Hierarchical Palmprint Identification Via Multiple Feature Extraction,” Pattern Recognition, Vol. 35, No. 4, pp. 847-859, 2002.
[21] K. Jun, L. Yinghua, W. Shuhua, Q. Miao, and L. Hongzhi, “A Two Stage Neural Network-Based Personal Identification System Using Handprint,” Neurocomputing, Vol. 71, pp. 641-647, 2008.
[22] N. Otsu, “A Threshold Selection Method from Gray-Level Histo-grams,” IEEE Transactions on System, Man and Cybernetics, Vol. 9, No. 1, pp. 62-66, 1979.
[23] A. Kumar, D. C. M. Wong, H. C. Shen, and A. K. Jain, “Personal authentication using hand images,” Pattern Recognition Letters, Vol. 27, No. 13, pp. 1478-1486, 2006.
[24] M. Sonka, V. Hlavac, and R. Boyle, “Image Processing,” Analysis and Machine Vision. PWS Publisher, 1999.
[25] K. Y. E. Wong, G. Sainarayanan, and A. Chekima, “Palmprint Identification Using wavelet Energy,” International Conference on Intelligent and Advanced Systems, 2007.
[26] 莊宏祥、莊英俊,數位影像處理,新文京開發出版股份有限公司,2010。
[27] Y. Wang, Q. Ruan, and X. Pan, “An improved square-based palmprint segmentation method,” Proceedings of 2007 International Symposium on Intelligent Signal Processing and Communication Systems, 2007.
[28] 廖建鈞,應用機器視覺技術於戶外交通標誌之自動化偵測與辨識,國立台灣科技大學,碩士論文,2006。
[29] M. Lei, D. Lefloch, P. Gouton, and K. Madani, “A video-based re-al-time vehicle counting system using adaptive background method,” IEEE International Conference on Signal Image Technology and Internet Based Systems, 2008.
[30] 彭曉薇,基於範例法與非負矩陣分解法之人臉影像預測,國立雲林科技大學,碩士論文,2011。
[31] 李佳勳,以間單線性迴歸分析實作掌紋辨識系統,大同大學,碩士論文,2007。
[32] 孫冬梅、裘正定、何冰,一種基於手形特徵點匹配的身分辨識方法,北方交通大學,北京,第25卷第三期,2003。
[33] 王文俊,認識Fuzzy,全華科技圖書,2001。
[34] B. Kerezsi,“Vibration Fault Detection of Large Turbine Generators Using Neural Networks,”IEEE International Conference on Neural Networks, University of Western Australia, Perth, Western Australia, Vol. 1, pp.121-126, 1995.
[35] 汪惠健,類神經網路設計,湯姆生出版社,2007。
[36] 張斐章、張麗秋、邱昱禎,類神經網路理論與實務,東華書局,2004。
[37] Tovar, “Fuzzy Neural Modeling via Clustering and Support Vector Machines,” IEEE 22nd International Symposium on Intelligent Con-trol, University of Singapore, Singapore, pp. 24-29, 2007.
[38] E. Styvaktakis, “Expert System for Power Quality Disturbance Classifier,” IEEE Transactions on Power Delivery, Vol. 22, No. 3, pp. 1979-1989, 2007.
[39] W. Cai, “Extension Set and Incompatible Problems,” Science Exploration, Vol. 3, No. 1, pp. 83-97, 1983.
[40] Y. C. Chang, S. M. Chen, and C. J. Liau, “Fuzzy Interpolative Rea-soning for Sparse Fuzzy-Rule-Based Systems Based on the Areas of Fuzzy Sets,” IEEE Transactions on Fuzzy Systems, Vol. 16, No. 5, pp. 1285-1301, 2008.
[41] M. H. Wang, “Extension Neural Network-type 2 and Its Applica-tions,” IEEE Transactions on Neural Networks, Vol. 16, No. 6, pp. 1352-1361, 2005.
[42] M. H. Wang, and C. Y. Ho, “Application of Extension Theory to PD Pattern Recognition of High Voltage Current Transformers,” IEEE Transactions on Power Delivery, Vol. 20, No. 3, pp. 1939-1946, 2005.
[43] M. H. Wang, “Partial Discharge Pattern Recognition of Current Transformers Using an ENN,” IEEE Transactions on Power Deliv-ery, Vol. 20, No. 3, pp. 1984-1990, 2005.
[44] 何志勇,可拓理論於電力系統負載預測與局部放電圖譜辨識之應用
,國立勤益技術學院,碩士論文,2005。
[45] 蔡文、楊春燕、林傳初,可拓工程方法,全華科技圖書,2008。
[46] 鍾裕國,應用熱影像和可拓方法於手部辨識,國立勤益科技大學,碩士論文,2010。
[47] http://www.doubletech.tw/product.htm.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top